
Tight & Simple Load Balancing
Petra Berenbrink

Universität Hamburg
Hamburg, Germany

petra.berenbrink@uni-hamburg.de

Tom Friedetzky
Durham University

Durham, U.K.
tom.friedetzky@dur.ac.uk

Dominik Kaaser
Universität Hamburg
Hamburg, Germany

dominik.kaaser@uni-hamburg.de

Peter Kling
Universität Hamburg
Hamburg, Germany

peter.kling@uni-hamburg.de

Abstract—We consider the following load balancing process
for m tokens distributed arbitrarily among n nodes connected
by a complete graph: In each time step a pair of nodes is
selected uniformly at random. Let `1 and `2 be their respective
number of tokens. The two nodes exchange tokens such that
they have d(`1 + `2)/2e and b(`1 + `2)/2c tokens, respectively.
We provide a simple analysis showing that this process reaches
almost perfect balance within O(n logn + n log ∆) steps, where
∆ is the maximal initial load difference between any two nodes.
This bound is asymptotically tight.

I. INTRODUCTION

We consider a discrete load balancing problem for m tokens
on n identical resources. Each node starts with an arbitrary
number of tokens and the objective is to distribute the tokens as
evenly as possible. In every step, a pair of resources is chosen
uniformly at random and their loads (number of tokens) are
balanced as evenly as possible. The continuous case, where
tokens can be arbitrarily divided and the resources can balance
their number of tokens evenly, is well understood. In this paper
we consider the discrete case where tokens are non-divisible.
Hence, if one of the resources has load ` and the other one
`′, the load will be divided as d`+ `′/2e and b`+ `′/2c. We
provide a simple and elementary proof that this process takes,
w.h.p. (with high probability1), O(n log n+ n log ∆) time steps
to reach almost perfect balance (see Section II). Here, ∆ is
the maximal initial load difference between any two nodes2

and almost perfect balance means that all nodes have a load
in { b∅e − 1, b∅e, b∅e+ 1 }, where ∅ = m/n and b∅e is ∅
rounded to the nearest integer. Our bound is asymptotically
tight (see discussion after Theorem 1). We also provide an
empirical study that not only confirms our theoretical results but
indicates that the constants hidden by the asymptotic analysis
are small (see Section III).

We should first like to note that the process we analyze has
been considered before. In [17] the authors consider the process
in a more general setting where the nodes are connected by
a graph and several balancing actions can be performed in
parallel (but only one per node). However their results, applied
to our setting, are not as tight as ours; they show a maximum
load of b∅e + c for a suitably chosen constant c. In [14]
the authors consider the population model, with our process

1The expression with high probability refers to a probability of 1−n−Ω(1).
2We assume ∆ > 0 (such that log ∆ is well defined); otherwise the system

is already perfectly balanced.

being used within an algorithm that calculates the proportion
of players holding one of two distinct opinions.

The first part of our analysis is based on a standard potential
function argument. We then switch from a resource-based
reasoning to a token-based reasoning, where we assign a height
to each token held by a node. This height is used to move
tokens in a certain order, thereby simplifying the analysis
considerably. The process itself, however, is blissfully unaware
of this, and coupling the actual with the analyzed process is
trivial. We believe this approach to analyzing this (kind of)
process may be useful elsewhere and hence be of independent
interest.

A. Related Work

There is a vast body of literature on iterative load balancing,
even when considering theoretical results only. Many of the
results for iterative load balancing are for the continuous case,
where load items can be broken into arbitrarily small pieces.
As it is beyond the scope of this article to provide a complete
survey, here we focus on results for discrete load balancing
only. For results about continuous load balancing see, for
example, [6, 12]. There are also many results in the context
of balancing schemes where not the resources try to balance
their load but the tokens (acting as selfish players) try to find
a resource with minimum load. See [7] for a comprehensive
survey and [1, 5, 11] for some recent results.

A vast majority of the results are for a more general model
where the resources are represented by the nodes of a graph and
the resources can balance with all or a subset of the neighboring
resources only. Here one distinguishes between diffusion load
balancing and the dimension exchange (or matching) model.
In diffusion load balancing nodes can, in every step, balance
their load with all neighbors, whereas in the matching model
the edges which are used for load balancing form a matching.
In the latter model every resource is only involved in one
balancing action per step which makes the analysis much
easier. Results for general graphs are usually expressed as a
function of graph parameters like the second largest eigenvalue.
In this overview we will discuss the results for general graphs
but the detailed performance results will be stated for complete
graphs only. Note that, for complete graphs, our results easily
carry over to the dimension exchange model with randomly
chosen matchings ([4, 17]).

The authors of [15] proved the first rigorous result for the
discrete load balancing in the diffusion model. They assume

1

that the number of tokens sent along each edge is obtained
by rounding down the amount of load that would be sent in
the continuous case. Using this approach, they established that
the discrepancy (difference between minimum and maximum
load) is at most O

(
n2
)

after O(log(Kn)) steps, where K is
the initial discrepancy. Similar results for the matching model
were shown in [9]. In [16] the authors show results for a wide
class of diffusion and matching load balancing protocols. They
introduce the so-called local divergence, which is a natural
parameter that essentially aggregates the sum of load differences
over all edges in all rounds and prove that the local divergence
yields an upper bound on the maximum deviation between
the continuous and discrete case of a protocol. To translate a
continuous into a discrete protocol, they assume that nodes
round down the amount of tokens which is send over an edge.
For complete graphs they show a discrepancy of O(n log n)
after O(log(Kn)) steps. Note that all the above results are for
general graphs.

While always rounding down may lead to quick stabilization,
the discrepancy tends to be quite large, a function of the
diameter of the graph. Therefore, the authors of [16] suggested
to use randomized rounding in order to get a better approxi-
mation of the continuous case (rounding is not necessary for
complete graphs). In [8] the authors show several results for
a randomized protocol in the matching model. For complete
graphs their result shows a discrepancy of O

(
n
√

(log n)
)

after O(log(Kn)) steps. Later, Berenbrink et al. [3] extended
some of these results to the diffusion model. In [17] improve
these results showing, for the first time, a constant discrepancy.
For complete graphs the balancing time is again O(log(Kn))
steps. Note that, to compare their results to ours, one has
to divide our run time by n (every n steps of our protocol
generates a random matching of size O(n)).

In [4] the authors propose a very simple potential function
technique to analyze discrete diffusion load balancing schemes,
both for discrete and continuous settings. They sequentialize the
load balancing actions of the diffusion approach in a suitable
way, and then we show that the potential decreases after each
of these sequential load balancing actions. They apply their
approach to a parallel version of our setting where every node
randomly chooses a load balancing partners from among the
set of all other nodes. The balancing time is again O(log(Kn))
and the maximum discrepancy O(

√
n). In [2] the authors show

another approach that turns any continuous into a discrete
algorithm. For complete graphs the approach yields a maximum
discrepancy of O(n).

Another related strain of literature considers discrete, sequen-
tial load balancing, but with the restriction that only one token
can move per time step. Goldberg [10] considered a simple
local search process in this scenario: Tokens are activated by
an independent exponential clock of rate 1. Upon activation, a
token samples a random node and moves there if that node’s
load is smaller than the load at the token’s current host node.
It has recently been proved [5] that this process reaches perfect
balance in O

(
log n+ log(n) · n2/m

)
time (both in expectation

and w.h.p.), which is asymptotically tight.

B. Model and Notation

Assume m indistinguishable tokens are distributed arbitrarily
among n nodes of a complete graph. Define the load vector
L(t) = (`1(t), . . . , `n(t)) ∈ Zn at time t, where `i(t) is the
number of tokens (load) assigned to node i at time t. The
discrepancy ∆L(t) at time t is the maximal load difference
between any two nodes. Let ∆ = ∆L(0) be the initial
discrepancy. We define ∅ = m/n as the average load and use
b∅e to denote the average load rounded to the nearest integer.

Given the load vector L(t) at time t, our load balanc-
ing process performs the following actions during time
step t: a) Two nodes u and v are selected uniformly
at random without replacement. b) Their loads are up-
dated according to `u(t + 1) = d(`u(t) + `v(t))/2e and
`v(t+ 1) = b(`u(t) + `v(t))/2c.

For the sake of the analysis we assume that tokens are
ordered (arbitrarily) on each node. Based on this order, we
define the height hb(t) of a token b at time t as the number
of tokens that precede b in this order. The normalized height
ĥb(t) = hb(t) − b∅e enumerates the tokens relative to the
rounded average b∅e. Furthermore, we initially assume that
balancing operations between two nodes operate in stack mode,
where the topmost tokens of the node with higher load are
moved to the node with lower load (see Figure 1a). For the
second part of our analysis (Phase 2) we assume that balancing
operations operate in skip mode, where every second token is
moved (see Figure 1b). Finally, in the third part of our analysis
(Phase 3), we assume that the excess tokens are first shuffled
before the balancing operates in stack mode (see Figure 1c).
Note that the mode does not influence the balancing process
but merely facilitates the analysis.

II. ANALYSIS

We split the analysis into three phases. In Phase 1 we use
a potential function argument to show that, w.h.p., it takes
O(n log n+ n log ∆) time steps until at most n/2 nodes have
a load larger than ∅ + Θ(1). In Phase 2 we look at individual
tokens and prove that, w.h.p., it takes O(n log n) more time
steps until all nodes have load at most ∅ + Θ(1). Finally,
in Phase 3 we prove that, w.h.p., it takes O(n log n) further
time steps until the maximum load is at most b∅e+ 1. Using
a symmetry-based argument we get a similar bound on the
minimum load and, thus, the following theorem.

Theorem 1. Let L(0) ∈ Nn0 be the initial load vector of the
load balancing process on n nodes and let ∆ = ∆L(0) be the
initial discrepancy. Let furthermore T be the first time when
all nodes have load in { b∅e − 1, b∅e, b∅e+ 1 }. With high
probability, T = O(n log ∆ + n log n).

Observe that Theorem 1 is tight: If ∆ = poly(n), with
constant probability there are nodes that are not selected
at all during the first o(n log n) time steps. Otherwise, if
∆ is superpolynomial in n, define β = (m − ∆)/n and
consider the initial configuration where `1(0) = β + ∆ and

2

Node u Node v

0
1
2
3
4
5
6
7

0
1
2
3
4

(a) Stack Mode

Node u Node v

0
1
2
3
4
5
6
7

0
1
2
3
4

(b) Skip Mode

Node u Node v

0
1
2
3
4
5
6
7

0
1
2
3
4sh

uffl
e

(c) Shuffle Mode

Fig. 1: Illustration of the different modes assumed for balancing operation during the analysis.

`i(0) = β for all i ∈ { 2, 3, . . . , n }. The probability that
node 1 takes part in any given interaction is 2/n. Thus,
during the first (n · log ∆)/4 interactions, node 1 is activated
(log ∆)/2 times in expectation and at most (log ∆) · 3/4 times
w.h.p. (by Chernoff, see Appendix A). If `1 denotes the load
of node 1 during any such interaction, it looses at most
d(`1 − β)/2e tokens. If ∆ is a power of two, we get that,
after the first (n · log ∆)/4 interactions, node 1 has, w.h.p., at
least β + ∆/2(log ∆)·3/4 = β + ∆1/4 = m/n + ω(1) tokens,
yielding a discrepancy of ω(1).

A. Phase 1: Potential Function Analysis

We analyze the process with the potential function

Φ(`) =

n∑
i=1

(`i −∅)
2 (1)

for a load vector ` ∈ Nn0 .

Lemma 1. Let T1 be the first time step for which Φ(L(T1)) <
n. W.h.p., T1 = O(n log n+ n log ∆).

Proof. We start by analyzing the expected change of the
potential during one time step. Let δ(`, i, j) be the potential
drop of a fixed load vector ` = (`1, . . . , `n) ∈ Nn0 when nodes
i and j are balancing. Then

δ(`, i, j) = (`i −∅)
2

+ (`j −∅)
2

−
(⌈

`i + `j
2

⌉
−∅

)2

−
(⌊

`i + `j
2

⌋
−∅

)2

.

(2)

We define the discretization error r`(i, j) as 1 if `i + `j is odd
and 0 otherwise. This allows us to expand and simplify the

above expression to get

δ(`, i, j) =
`2i
2

+
`2j
2
− `i`j −

r`(i, j)
2

2

=
(`i − `j)2 − r`(i, j)2

2

≥ (`i − `j)2

2
− 1/2 .

(3)

Equation (3) implies that the potential never increases when
two nodes balance (the only negative term is −r`(i, j)2/2, but
r`(i, j) = 1 implies `i 6= `j and, thus, (`i − `j)2 ≥ 1). We now
calculate the expected potential after one time step. Each pair
of nodes is chosen uniformly at random with probability 1/

(
n
2

)
.

When chosen, the potential drops by δ(`(t), i, j). Therefore,

E[Φ(L(t+ 1)) | L(t) = `]

=

n∑
i=1

n∑
j=i+1

1(
n
2

) · (Φ(`)− δ(`, i, j))

≤ Φ(`)− 1

2
(
n
2

) n∑
i=1

n∑
j=i+1

(`i − `j)2
+

1

2
. (4)

We now use
n∑
i=1

n∑
j=i+1

(`i − `j)2
= n · Φ(`) (5)

and obtain

E[Φ(L(t+ 1)) | L(t) = `]

≤ Φ(`)− 1

2
(
n
2

) · n · Φ(`) +
1

2

≤
(

1− 1

n

)
· Φ(`) +

1

2
. (6)

Note that Equation (5) can be verified straightforwardly by
expanding both sided. For completeness, the full calculations
are given in Appendix B.

We now partition the time horizon into rounds of n
consecutive time steps each and look at successful rounds

3

(in which the potential drops sufficiently). We then argue that
O(log(Φ(L(0))/n)) successful rounds suffice for the potential
to drop below n and that, w.h.p., we have sufficiently many
successful rounds among the first O(log n+ log ∆) rounds.

Let round r consist of the time steps in [r · n, (r + 1) · n).
We assume that the load vector L(r · n) = ` at the beginning
of round r is fixed. By recursive application of Equation (6),
we get

E[Φ(L((r + 1) · n)) | L(r · n) = `]

≤
(

1− 1

n

)n
· Φ(`) +

1

2
·
n−1∑
i=0

(
1− 1

n

)i
≤ e−1 · Φ(`) +

n

2
·
(
1− e−1

)
,

(7)

where we used the inequality (1− 1/n)
n ≤ e−1. As long as

Φ(`) ≥ n, the expected potential after one round is therefore
at most

E[Φ(L((r + 1) · n)) | L(r · n) = `]

≤
(
e−1 +

n

2Φ(`)

(
1− e−1

))
· Φ(`)

≤ 1 + e−1

2
· Φ(`) <

3

4
· Φ(`) .

(8)

Applying the Markov inequality (see Appendix A) now gives
us, for a load vector ` with Φ(`) ≥ n,

Pr

[
Φ(L((r + 1) · n)) ≥ 7

8
· Φ(`)

∣∣∣∣ L(r · n) = `

]
≤ 6

7
.

(9)
We define for a round r the event that r is successful as

Φ(L((r+ 1) ·n)) ≤ 7/8 ·Φ(L(r ·n)) ∨ Φ(L(r ·n)) < n and
use Er to denote this event. Equation (9) implies Pr[Er] ≥ 1/7.

We now argue that after at most ρ = log8/7(Φ(L(0))/n)+1
successful rounds the potential is smaller than n. Let rρ be the
ρ-th successful round. There are two cases. If there exists a
round r ≤ rρ for which Φ(L(r·n)) < n, then Φ(L(rρ)) < n is
trivially true since the potential does never increase. Otherwise,
by definition of a successful round, after ρ successful rounds
we have

Φ(L(rρ · n)) ≤
(

7

8

)ρ
· Φ(L(0))

=
7

8
· n

Φ(L(0))
· Φ(L(0)) < n .

(10)

It remains to show that, w.h.p., during the first
O(log n+ log ∆) rounds at least ρ rounds are successful. Let
the random variable X denote the number of successful rounds
during the first 168(lnn+ log ∆) rounds. Since each round is
successful with probability at least3 1/7, the random variable
X stochastically dominates the binomial random variable
Y ∼ Bin(168(lnn+ log ∆), 1/7) (written X � Y). Applying

3The lower bound holds independently for each round.

Chernoff bounds (see Appendix A) to Y with its expected
value µ = E[Y] = 24(lnn+ log ∆) gives

Pr[Y ≤ ρ] = Pr

[
Y ≤

(
1− µ− ρ

µ

)
µ

]
≤ exp

(
− (µ− ρ)

2

µ2
· µ

2

)
(12)
≤ exp

(
−µ

8

)
≤ n−3 ,

(11)

where we used the following inequality to bound µ−ρ, holding
for ∆ ≥ 1:

ρ = log8/7

(
Φ(L(0))

n

)
+ 1

≤ log8/7

(
n ·∆2

n

)
+ 1

≤ 2 log ∆

log 8/7
+ 1

< 12 log ∆ + 1 <
µ

2
.

(12)

Since X � Y , Equation (11) implies that the probability of
having fewer than ρ successful rounds during the first 7n · µ
time steps is smaller than n−3. Therefore, w.h.p.,

T1 ≤ 7n · µ = O(n log n+ n log ∆) .

B. Phase 2: Improving Individual Tokens

We now consider individual tokens. We start our analysis
with Lemma 2, where we show that during any time step any
token with normalized height larger than some constant reduces
its height with probability Ω(1/n) by a constant factor. This is
then used in Lemma 3 to argue that it takes at most O(n log n)
time steps for all tokens to reach a constant normalized height.

For the sake of the analysis we now define which tokens
are selected to be transferred when two nodes are balanced.
Recall that according to the definition of the process tokens
are indistinguishable and therefore arbitrary tokens may be
selected.

Fix a time step t and assume that node u interacts with
node v. In order to balance their loads, we need to move
tokens from the node with larger load to the node with smaller
load (say from u to v). To do so, we start with the token
at maximal height and take every other token until we have
selected required number of tokens. Then we place all tokens
on node v in their original order. An example for this process
is sketched in Figure 1b.

For the remainder, let c ≥ 10 be a constant and recall that
T1 is the first time step of the second phase. The rule defined
above allows us to show the following lemma.

Lemma 2. Let t ≥ T1 and let b be a token with normalized
height ĥb(t) > 2c. Then ĥb(t+ 1) ≤ 17/20 · ĥb(t) with
probability at least 1/n.

Proof. The idea of the proof is as follows. We first argue that
at any time after the first phase fewer than half of the nodes
have load larger than or equal to ∅ + c. This is then used

4

to derive a lower bound on the probability that a token of
normalized height larger than 2c takes part in balancing with
a node that has load at most ∅ + c. Finally, we compute the
new height of the token, which yields the lemma.

We now give the formal proof. Let S(t) =
{ v | `v(t) ≥ ∅ + c } be the set of nodes which have load at
least ∅ + c and suppose that |S(t)| ≥ n/2. Then

Φ(L(t)) =

n∑
i=1

(`i(t)−∅)
2 ≥

∑
i∈S

(`i(t)−∅)
2

≥
∑
i∈S

c2 ≥ 100n/2 > n .

(13)

However, the potential function does not increase over time
and, thus, Lemma 1 implies that Φ(L(t)) ≤ n for any t ≥ T1.
This is a contradiction and, therefore, |S(t)| < n/2.

We now proceed to lower bound the probability that b reduces
its normalized height by a constant factor. Let i be the node
on which token b is stored at time t. With probability 2/n,
node i is selected as one of the two nodes for balancing. Let
furthermore j be the other node selected for balancing. Since
|S(t)| < n/2, node j has load at most ∅ + c with probability
at least 1/2 (independent of i’s selection). In that case, either⌊
`i(t)−`j(t)

2

⌋
or
⌈
`i(t)−`j(t)

2

⌉
tokens are moved, depending on

whether (i, j) or (j, i) are selected. Using that each other token
is moved (see Figure 1b), carefully bounding the new height
gives in both cases, whether b is transferred to node j or not,
that the new height of token b becomes at most

hb(t+ 1) ≤ `j(t) +

⌈
hb(t)− `j(t) + 1

2

⌉
+ 1

≤ `j(t) +
hb(t)− `j(t)

2
+ 2

=
hb(t) + `j(t) + 4

2
.

(14)

We now bound the ratio between the new and the old
normalized height of token b. For `j(t) ≤ b∅e + c and
hb(t) ≥ b∅e+ 2c, this ratio is at most

ĥb(t+ 1)

ĥb(t)
=

1
2 (hb(t) + `j(t) + 4)− b∅e

hb(t)− b∅e

=
1

2
+

1

2
· `j(t)− b∅e+ 4

hb(t)− b∅e

≤ 1

2
+
c+ 4

4c
≤ 0.85 ,

(15)

where the last inequality holds since c ≥ 10. Therefore, at any
time t ≥ T1 and for any token b with ĥb(t) ≥ 2c, we have
ĥb(t+ 1) ≤ 0.85 · ĥb(t) with probability at least 1/n.

We are now ready to show the main lemma for Phase 2.

Lemma 3. Let T2 be the first time for which

max
1≤i≤n

{ `i(T2) } ≤ ∅ + 2c

min
1≤i≤n

{ `i(T2) } ≥ ∅− 2c .and

With high probability, T2 = T1 + O(n log n).

Proof. We first show the claim for the maximal load and
then use a coupling argument to extend the analysis to the
minimal load. For the maximal load, we consider a fixed token
b and use Lemma 2 to define and bound the probability of
a successful time step w.r.t. b. Then we show that this event
occurs sufficiently often during the first O(n log n) time steps
such that b reaches normalized height at most 2c with high
probability. Finally, we show the claim by a union bound over
all tokens of normalized height larger than 2c.

Let b be an arbitrary but fixed token with ĥb(t) ≥ 2c. We call
a time step t successful if ĥb(t+ 1) ≤ 17/20 · ĥb(t) ∨ ĥb(t) ≤
2c. From Lemma 2 we get that time step t is successful with
probability at least 1/n. Note that while the behavior of two
different tokens may be highly correlated, for one fixed token
the lower bounds hold independently for any time step in the
second phase. This allows us to leverage stochastic dominance
of a binomial distribution as follows: Let the random variable
Xb(τ) denote the number of successful time steps during
the first τ time steps in the second phase. Since each time
step is successful with probability at least 1/n, the random
variable Xb(τ) stochastically dominates the binomial random
variable Yb(τ) ∼ Bin(τ, 1/n). Applying Chernoff bounds (see
Appendix A) to Yb(τ) with τ = 12n log n gives

Pr

[
Yb(12n log n) ≤

(
1− 3

4

)
E[Yb(12n log n)]

]
≤ exp

(
−1

2
· 9

16
· 12 log n

)
≤ n−3 .

(16)

With the above mentioned stochastic dominance Xb(τ) �
Yb(τ), we get that Xb(12n log n) ≤ 3 log n with probability
at most n−3. It remains to show that the normalized height
of b after 3 log n successful time steps is at most 2c. Observe
that ĥb(T1) ≤

√
n, since otherwise Φ(L(T1)) ≥ n. Therefore,

after at most 3 log n successful time steps in the second phase,
the normalized height of b is at most4

ĥb(T1 + 12n log n) ≤ max {
√
n ·
(

17

20

)3 logn

, 2c } ≤ 2c .

(17)
We now use the union bound on the above analysis over all

tokens as follows. From the bound on the potential function
in Lemma 1 we obtain that after the first phase at most n
tokens remain above the average, since otherwise the potential
would be larger than n. Observing that the height of a token
never increases and taking the union bound over all tokens
of normalized height above 2c gives us that all tokens have
remaining height at most 2c after at most 12n log n interactions
with probability 1− 1/n−2.

We now argue an analogous bound for the minimal load. Let
` ∈ Zn be the initial load vector of the load balancing process
L(0) = `,L(1),L(2), . . . and let −` be the initial load vector
of the load balancing process L′(0) = −`,L′(1),L′(2),
We can couple the processes such that whenever a pair of nodes
(u, v) is chosen in L(t), the pair of nodes (v, u) is chosen in

4The maximum in Equation (17) covers the fact that the analysis does not
extend to ĥb(t) < 2c.

5

L′(t). This coupling ensures (determinstically) that `i(t) =
−`′i(t) and, thus, implies Pr[`i(t) = x] = Pr[`′i(t) = −x]. By
applying the upper bound on the maximal load to L′(T1 +
12n log n), we get a lower bound on the minimal load in
L(T1+12n log n). We therefore get that T2 ≤ T1+O(n log n),
which concludes the proof.

C. Phase 3: Fine Tuning

For the sake of the analysis of the third phase, we use the
following rule to select tokens to transfer when balancing two
nodes. We again assume that nodes operate like stacks, with
the following additional rule: both nodes shuffle their tokens
of normalized height in { 2, 3, . . . , 2c } (if they exist) before
balancing the loads. This rule allows us to show the following
lemma, our main result.

Lemma 4. Let T3 be the first time for which

max
1≤i≤n

{ `i(T3) } ≤ b∅e+ 1

min
1≤i≤n

{ `i(T3) } ≥ b∅e − 1 .and

With high probability, T3 = T2 + O(n log n).

Proof. We again start by analyzing the maximal load. We first
show that at any time step after the second phase at least a
constant fraction of nodes has load at most b∅e. Then we
consider an arbitrary but fixed token b with ĥb(t) > 1 at time t
and show that with probability Ω(1/n) we have ĥb(t+ 1) ≤ 1.
This is used to show that, w.h.p., ĥb(τ) ≤ 1 for τ = O(n log n).
The claim then follows from a union bound over all tokens
above normalized height 1.

Fix a time step t ≥ T2 and let γ be the fraction of nodes
that have load at most b∅e at time t. We use the definition of
the rounded average load and Lemma 3 to compute

n · (b∅e+ 0.5)

≥ n ·∅ =
∑

1≤i≤n

`i(t) =
∑

`i(t)>b∅e

`i(t) +
∑

`i(t)≤b∅e

`i(t)

≥
∑

`i(t)>b∅e

(b∅e+ 1) +
∑

`i(t)≤b∅e

(b∅e − 2c)

≥ n · (1− γ) · (b∅e+ 1) + n · γ · (b∅e − 2c) .

(18)

Therefore, solving for γ gives us that γ is a constant depending
on c with γ ≥ 1/(2 + 4c).

Similar to the analysis of the second phase, we now consider
an arbitrary but fixed token b. Fix a time step t ≥ T2 and a
token b with ĥb(t) > 1. Let i be the node on which b resides
before time step t. We have the following events.

a) Node i is selected for balancing: in any time step, i is
selected with probability 2/n.

b) Token b becomes the top-most token: all tokens b′ on
node i of normalized height ĥb′(t) > 1 are shuffled. Since
there are at most 2c such tokens after the second phase,
b becomes the top-most token with probability ≥ 1/(2c).

c) The other node has load at most b∅e: since the fraction
of such nodes is least γ, such a node is selected as the
balancing partner with probability at least γ.

We say b is successful in time step t if all three of these events
occur. Observe that in this case ĥb(t+ 1) ≤ 1. Let pb(t) be
the probability of a successful time step. Combining above
probabilities, we get pb(t) ≥ 2/n · 1/(2c) · γ = Ω(1/n).

We now consider O(n log n) time steps after the second
phase. Token b is not successful at least once during these time
steps with probability

O(n logn)∏
t=1

(1− pb(t)) ≤
(

1− Ω

(
1

n

))O(n logn)

≤ n−Ω(1) .

(19)
That is, for a suitable choice of constants, b reaches height 1
after at most O(n log n) time steps with probability 1− 1/n3.
The upper bound on the load now follows from a union bound,
since at most 2c ·n tokens have normalized height above 1 after
the second phase. For the lower bound on the load, precisely the
same argument as in the proof of Lemma 3 can be used.

The proof of Theorem 1 now follows from a union bound
over the results from Lemma 1 for the first phase, Lemma 3
for the second phase, and Lemma 4 for the third phase.

III. EMPIRICAL ANALYSIS

In this section we present simulation results to support our
theoretical findings. We implemented our simulation software
to run on a shared memory machine and simulate the distributed
system. The simulation is written in the C++ programming
language and consists of roughly 100 lines of code. It allows
to initially set n, the number of nodes, and m, the number of
tokens. Assuming the worst case, all load items are initially
placed on a single node such that ∆ = m. The load balancing
procedure is then simulated until the remaining discrepancy is
at most 2 (or 1 in the case of Figure 3). To allow a more
efficient simulation, the implementation checks only once
per n interactions whether the process has already converged.
Consistently, the simulation returns only the round – the number
of interactions divided by n – as its run time.

The two plots in Figure 2 both show the run time (in rounds
of n interactions each) of the simulation. In both plots, the
required number of rounds until the remaining discrepancy is at
most 2 is shown on the y-axis. In Figure 2a, we simulated the
load balancing procedure for varying numbers of nodes n on the
x-axis, while the load was set such that ∅ = 1000. In Figure 2b,
the number of nodes was set to a fixed number of n = 106,
while the load runs from m = 106 to m = 1012. For each
data point on the x-axis, more than 10 independent simulation
runs have been executed. The red lines in Figure 2a show
the functions f(n) = 2 log n and g(n) = 2 log ∆. Altogether,
the simulations do not only confirm our theoretical results but
show that the constants of the process are small in practice.
In particular, the measured run times have been well below
3 · n(log n+ log ∆) interactions.

Additionally, in Figure 3 we analyzed the run time until the
system has fully converged and all nodes have load either b∅c
or d∅e. In this case, the remaining discrepancy is either 0 if
∅ is an integer or 1 otherwise, and this is the best that can be

6

10

20

30

40

50

60

102 103 104 105 106 107 108

Run Time
2 log(n)

(a) Number of Nodes n

20

30

40

50

60

70

106 107 108 109 1010 1011 1012

Run Time
2 log(n)

(b) Initial Discrepancy ∆

Fig. 2: Empirical analysis. Both plots show the run time in rounds (y-axis) of n interactions until the system has remaining
discrepancy at most 2. In the left plot, the system was initialized such that ∅ = 1000 for varying n (x-axis). In the right plot,
n was set to 106 and the run time was measured for varying initial discrepancy ∆ (x-axis). In both plots, the entire load was
initially assigned to a single node.

0

100

200

300

400

0.0 0.2 0.4 0.6 0.8 1.0

Run Time

Fig. 3: Empirical analysis. The plot shows the run time to full
convergence for varying fractional parts of ∅.

achieved in the discrete setting. In Figure 3, we simulated the
load balancing process in a system of 106 nodes. On the y-axis,
we plotted the run time until all nodes have load either b∅c
or d∅e. The average load ∅ was selected from the interval
[1000, 1001] and the fractional part ∅−b∅c of ∅ is shown on
the x-axis. As before, the entire load was initially placed on
one single node such that ∆ = m. The plots indicate that for a
large range of parameters m and n the process fully converges
within 4 · n(log n+ log ∆) interactions.

REFERENCES

[1] H. Ackermann, S. Fischer, M. Hoefer, and M. Schöngens.
“Distributed algorithms for QoS load balancing”. In:

Distributed Computing 23.5-6 (2011), pp. 321–330. DOI:
10.1007/s00446-010-0125-1.

[2] H. Akbari, P. Berenbrink, and T. Sauerwald. “A simple
approach for adapting continuous load balancing pro-
cesses to discrete settings”. In: Distributed Computing
29.2 (2016), pp. 143–161. DOI: 10.1007/s00446-016-
0266-y.

[3] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich,
and T. Sauerwald. “Randomized diffusion for indivisible
loads”. In: J. Comput. Syst. Sci. 81.1 (2015), pp. 159–185.
DOI: 10.1016/j.jcss.2014.04.027.

[4] P. Berenbrink, T. Friedetzky, and Z. Hu. “A new analyt-
ical method for parallel, diffusion-type load balancing”.
In: J. Parallel Distrib. Comput. 69.1 (2009), pp. 54–61.
DOI: 10.1016/j.jpdc.2008.05.005.

[5] P. Berenbrink, P. Kling, C. Liaw, and A. Mehrabian.
“Tight Load Balancing via Randomized Local Search”.
In: Proceedings of the 31st International Parallel
& Distributed Processing Symposium (IPDPS). 2017,
pp. 192–201. DOI: 10.1109/IPDPS.2017.52.

[6] R. Diekmann, A. Frommer, and B. Monien. “Efficient
schemes for nearest neighbor load balancing”. In: Paral-
lel Computing 25.7 (1999), pp. 789–812. DOI: 10.1016/
S0167-8191(99)00018-6.

[7] S. Fischer, H. Räcke, and B. Vöcking. “Fast Convergence
to Wardrop Equilibria by Adaptive Sampling Methods”.
In: SIAM J. Comput. 39.8 (2010), pp. 3700–3735. DOI:
10.1137/090746720.

[8] T. Friedrich and T. Sauerwald. “Near-perfect load bal-
ancing by randomized rounding”. In: Proceedings of the
41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009.
2009, pp. 121–130. DOI: 10.1145/1536414.1536433.

7

https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.1007/s00446-016-0266-y
https://doi.org/10.1007/s00446-016-0266-y
https://doi.org/10.1016/j.jcss.2014.04.027
https://doi.org/10.1016/j.jpdc.2008.05.005
https://doi.org/10.1109/IPDPS.2017.52
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1137/090746720
https://doi.org/10.1145/1536414.1536433

[9] B. Ghosh and S. Muthukrishnan. “Dynamic Load Bal-
ancing by Random Matchings”. In: J. Comput. Syst. Sci.
53.3 (1996), pp. 357–370. DOI: 10.1006/jcss.1996.0075.

[10] P. W. Goldberg. “Bounds for the Convergence Rate
of Randomized Local Search in a Multiplayer Load-
balancing Game”. In: Proceedings of the 23rd Annual
Symposium on Principles of Distributed Computing
(PODC). 2004, pp. 131–140. DOI: 10.1145/1011767.
1011787.

[11] M. Hoefer and T. Sauerwald. “Threshold Load Balancing
in Networks”. In: CoRR abs/1306.1402 (2013). arXiv:
1306.1402.

[12] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-Based
Computation of Aggregate Information”. In: 44th Sympo-
sium on Foundations of Computer Science (FOCS 2003),
11-14 October 2003, Cambridge, MA, USA, Proceedings.
2003, pp. 482–491. DOI: 10.1109/SFCS.2003.1238221.

[13] M. Mitzenmacher and E. Upfal. Probability and Comput-
ing – Randomized Algorithms and Probabilistic Analysis.
2005.

[14] Y. Mocquard, E. Anceaume, and B. Sericola. “Optimal
Proportion Computation with Population Protocols”. In:
Proceedings of the 15th International Symposium on
Network Computing and Applications (NCA). 2016,
pp. 216–223. DOI: 10.1109/NCA.2016.7778621.

[15] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. “First-
and Second-Order Diffusive Methods for Rapid, Coarse,
Distributed Load Balancing”. In: Theory Comput. Syst.
31.4 (1998), pp. 331–354. DOI: 10.1007/s002240000092.

[16] Y. Rabani, A. Sinclair, and R. Wanka. “Local Divergence
of Markov Chains and the Analysis of Iterative Load
Balancing Schemes”. In: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (FOCS).
1998, pp. 694–705. DOI: 10.1109/SFCS.1998.743520.

[17] T. Sauerwald and H. Sun. “Tight Bounds for Randomized
Load Balancing on Arbitrary Network Topologies”. In:
Proceedings of the 53rd Annual Symposium on Founda-
tions of Computer Science (FOCS). 2012, pp. 341–350.
DOI: 10.1109/FOCS.2012.86.

APPENDIX

A. Tail Bounds

For completeness, we formally state in this appendix the
probabilistic tools that we use in our analysis. The following
theorem is the conditional version of Markov’s inequality,
which is based on Theorem 3.1 from [13].

Theorem 2 (Markov’s Inequality). Let X be a random variable
that assumes only nonnegative values defined for a probability
space Ω. Then, for all a > 0 and events A,

Pr[X ≥ a | A] ≤ E[X | A]

a
.

The following versions of Chernoff bounds are a combination
of Theorem 4.4 and Theorem 4.5 from [13].

Theorem 3 (Chernoff Bounds). Let X1, . . . , Xn be indepen-
dent Poisson trials such that Pr[Xi] = pi. Let X =

∑n
i=1Xi

and µ = E[X]. Then for 0 < δ < 1

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ

2µ

3

)
and

Pr[X ≤ (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
.

B. Full Equations
In the following, we show Equation (5).

Lemma 5. Let Φ(`) be the potential function of a load vector
`, defined as

Φ(`) =

n∑
i=1

(`i −∅)
2
.

Then
n∑
i=1

n∑
j=i+1

(`i − `j)2
= n · Φ(`) .

Proof. Since (`i − `j)2 = 0 for i = j we get by symmetry
n∑
i=1

n∑
j=i+1

(`i − `j)2
=

1

2
·
n∑
i=1

n∑
j=1

(`i − `j)2

=
1

2
·
n∑
i=1

n∑
j=1

(
`2i − 2`i`j + `2j

)
=

1

2
· 2 ·

n∑
i=1

n∑
j=1

`2i −
1

2
·
n∑
i=1

n∑
j=1

2`i`j

= n ·
n∑
i=1

`2i −
n∑
i=1

n∑
j=1

`i`j

= n ·
n∑
i=1

`2i − n ·
n∑
i=1

`i · n∑
j=1

`j
n

 .

We now use the definition ∅ =

n∑
i=1

`i
n

to get

n∑
i=1

n∑
j=i+1

(`i − `j)2
= n ·

(
n∑
i=1

`2i −
n∑
i=1

`i∅

)

= n ·

(
n∑
i=1

`2i − 2 ·
n∑
i=1

`i∅ +

n∑
i=1

`i∅

)

= n ·

(
n∑
i=1

`2i − 2 ·
n∑
i=1

`i∅ + n ·∅2

)

= n ·

(
n∑
i=1

`2i − 2 ·
n∑
i=1

`i∅ +

n∑
i=1

∅2

)

= n ·
n∑
i=1

(
`2i − 2`i∅ + ∅2

)
= n ·

n∑
i=1

(`i −∅)
2

= n · Φ(`) .

8

https://doi.org/10.1006/jcss.1996.0075
https://doi.org/10.1145/1011767.1011787
https://doi.org/10.1145/1011767.1011787
http://arxiv.org/abs/1306.1402
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/NCA.2016.7778621
https://doi.org/10.1007/s002240000092
https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1109/FOCS.2012.86

	Introduction
	Related Work
	Model and Notation

	Analysis
	Phase 1
	Phase 2
	Phase 3

	Empirical Analysis
	Appendix
	Tail Bounds
	Full Equations

