
Generalized Matching Games for International Kidney Exchange
Péter Biró

Institute of Economics, Hungarian Academy of Sciences

Budapest, Hungary

peter.biro@krtk.mta.hu

Walter Kern

Faculty of Electrical Engineering, Mathematics and

Computer Science, University of Twente

Enschede, The Netherlands

w.kern@utwente.nl

Dömötör Pálvölgyi

MTA-ELTE Lendület

Combinatorial Geometry Research Group

Budapest, Hungary

domotorp@gmail.com

Daniel Paulusma

Department of Computer Science, Durham University

Durham, United Kingdom

daniel.paulusma@durham.ac.uk

ABSTRACT
We introduce generalized matching games defined on a graph G =
(V ,E) with an edge weightingw and a partition V = V1 ∪ · · · ∪Vn
of V . The player set is N = {1, . . . ,n}, and player p ∈ N owns the

vertices in Vp . The value v (S ) of coalition S ⊆ N is the maximum

weight of a matching in the subgraph of G induced by the vertices

owned by players in S . If |Vp | = 1 for every player p we obtain

the classical matching game. We prove that checking core non-

emptiness is polynomial-time solvable if |Vp | ≤ 2 for each p and

co-NP-hard if |Vp | ≤ 3 for each p. We do so via pinpointing a

relationship with b-matching games and also settle the complexity

classification on testing core non-emptiness for b-matching games.

We propose generalized matching games as a suitable model for

international kidney exchange programs, where the vertices in

V correspond to patient-donor pairs and each Vp represents one

country. For this setting we prove a number of complexity results.
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1 INTRODUCTION
The assignment game is a TU-game defined on a weighted bipartite

graph, where the nodes are the agents and the value of a coalition

is the maximum weight of a matching in the induced subgraph

[33]. The core of any assignment game is always non-empty and

can be computed efficiently [33]. The matching game is its general-
ization to non-bipartite graphs, where the core can be empty, but

the problem of finding a core element (if it exists) is polynomial

time solvable [9]. The multiple partners assignment game [35] and
the b-matching game [10] are natural generalizations of the assign-
ment and matching game, respectively, where the agents may be
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involved in multiple pairs up to their capacities (i.e. we consider

b-matchings). The core is again nonempty in the bipartite case [34].

For the non-bipartite case, deciding if a given allocation is in the

core is co-NP-hard already with capacities b ≤ 3 and tractable for

b ≤ 2 [10]. The complexity of deciding if the core of a b-matching

game is nonempty was left open for b ≤ 3 in [10]. In Section 4 we

solve this open problem by proving co-NP-hardness even for unit

weights.

In Section 3 we introduce a second generalization of the assign-

ment game, called generalized matching game, which is defined

on a weighted (arbitrary) graph G, whose node set is partitioned
into sets, and these sets form the agents of the game. The value

of a coalition is again the maximum weight of a matching in the

corresponding induced subgraph of G. We show a close relation-

ship between generalized matching games and b-matching games

regarding core non-emptiness. By combining this relationship with

the results for b-matching games, we prove in Section 4 that testing

core non-emptiness is co-NP-hard for generalized matching games

in which each set has size at most 3, even for unit weights, and

polynomial-time solvable if each set has size at most 2.

As a strong motivation for the generalized matching game we

consider international kidney exchange schemes in Europe and

multi-hospital exchange schemes in the US. In both cases the nodes

represent patient-donor pairs, but the agents represent sets of coun-

tries in the first case and sets of hospitals in the second case. The

matching edges correspond to pairwise kidney exchanges, where

edge weights represent the quality of the transplants (or number of

transplants in the unit weighted case). As “fair” target solutions we

initially propose to take core solutions. This leads to the computa-

tional challenge of finding a maximum weight matching such that

the utilities realized by the countries (or hospitals) are as close as

possible to the target shares. In Section 5 we show the tractability

of this problem for unit weights, but prove NP-hardness for various
weighted scenarios. The deviation between the target and realized

solutions are recorded as credits, which are taken into account in

the subsequent matching runs; we assume that the matching runs

take place in regular time intervals, e.g. in every three months (as

usual in Europe). Below we discuss this application in more detail.



2 INTERNATIONAL KIDNEY EXCHANGE
For kidney failure, transplantation is currently the most effective

treatment, but there is a shortage on deceased donors and waiting

lists are long. A patient may have a willing donor, but a kidney

transplant might not be possible due to blood- or tissue-type incom-

patibilities. However, patients and donors may be swapped after all

patient-donor pairs are pooled together. A kidney exchange program
(KEP) is a centralized program where the goal is to find an optimal

kidney exchange scheme in some pool of patient-donor pairs.

One can model the above problem via a compatibility graph,
which is a directed graph D = (V ,A) with an arc weightingw . Each

vertex inV represents a patient-donor pair, and there is an arc from

patient-donor pair i to patient-donor pair j if the donor of pair i
is compatible with the patient of pair j. The associated weightwi j
indicates the utility of the transplant. An exchange cycle is a directed
cycleC in D. The weight of a cycleC is the sum of the weights of its

arcs. An exchange scheme X is the union of pairwise vertex-disjoint

exchange cycles of D. The weight of X is the sum of the weights

of its cycles. The aim is to find an exchange scheme of maximum

weight, subject to a fixed exchange bound ℓ, which is an upper bound
on the length of the exchange cycles that may be used. The reason

for the latter is that kidneys are usually transplanted simultaneously

and large exchange cycles may cause logistical difficulties.

Although KEPs are not legalized in some countries, national

KEPs exist in many countries all over the world [20] including

ten European countries [8]. For example, in the French and the

Swedish KEPs the exchange bound is ℓ = 2 [3], whereas ℓ = 3 in the

UK [24, 29] and ℓ = 4 in the Netherlands [14]. Setting ℓ ≥ 3 changes

the complexity of the problem from polynomial-time solvable, via

solving a matching problem, to NP-hard [1]. In the latter case the

problem is usually solved via integer programming techniques (see

e.g. [1]). In fact, NP-hardness is not a major obstacle, as in many

countries the size of the KEP pool (the setV ) is small. To find better

solutions, one can merge KEP pools of different countries to obtain

larger KEP pools. This leads to international KEPs, which are still in

their initial stages. For instance, the pools of the Austrian and Czech

KEPs have recently been joined [12]. Scandiatransplant will organ-

ise the international KEP of Sweden, Norway and Denmark [3].

Other examples include initial agreements between France and

Switzerland, and between Portugal, Spain and Italy [7].

We model an international KEP by partitioning the vertex set V
of a compatibility graph D = (V ,A) into setsV1, . . . ,Vn , where n is

the number of countries involved andVp is the set of patient-donor

pairs of country p. The objective is still to maximize social welfare,
that is, to find an exchange scheme of D that has maximum weight

subject to the given exchange bound ℓ. We can compute such a

scheme as before. However, apart from a number of ethical and legal

issues which we will not discuss here, we now have an additional

problem to solve. Namely, in order to ensure full participation, it is

crucial that proposed exchange schemes will be accepted by each of
the participating countries. This is a highly non-trivial issue.

Example 1. Let D be a compatibility graph with vertices i1, i2, j
and arcs (i1, i2), (i2, i1), (i2, j ), (j, i2) with weights 1 − ϵ, 1 − ϵ, 1, 1,
respectively, for some small ϵ . Let V1 = {i1, i2} and V2 = {j}. The
optimum solution is an exchange between i2 and j with weight 2.

However, the in-house solution of V1 consisting of the exchange

between i1 and i2 (with weight 2 − 2ϵ) is better forV1, as then both

patients in the pairs i1 and i2 receive a kidney, and with more or less

the same chance of success, so, (i1, i2) is “easy-to-match” in-house.

Example 1 illustrates the problem of countries having an incentive

to hide their easy-to-match pairs and only register their hard-to-

match pairs to the international KEP. For instance, in the US large

hospitals take up the role of “local KEPs” and conduct around 62%

of the transplantations in-house and only 38% with the help of the

three nationwide KEPs (UNOS, APD, NKR). This fragmentation is

highly inefficient [2]. Proposed solutions use amatchingmechanism

ensuring that full hospital participation is individually rational [5,

6]. The tradeoff between optimality and strategy-proofness (with

regard to reporting the full pools) has also been investigated in

recent theoretical papers [4, 11, 37]. The same goal was behind

the concept of a credit system, where hospitals are rewarded for

disclosing their patient-donor pairs [23]. Indeed, among the three

nationwide KEPs in the US, NKR is considered to be the most

successful, partly due to their strong financial incentives for full

participation and a credit system for patient-donor pair registration;

each hospital is assigned a “Liquidity Score” based on the relative

number of easy-to-match patients a hospital is bringing to the pool.

The kidney exchange collaborations of the European countries

differ from the collaboration of US hospitals in many respects. In

Europe the countries register their pools fully due to their strict

national protocols. In the US this can only be achieved by giving in-

centives to the hospitals. In Europe the matching runs are typically

conducted once every three months. In the US this is done more or

less on-line on a daily basis. Both systems also have different health

care practices, e.g. with respect to the use of desensitization.

The goal of the international kidney exchange problem is to offer

kidney exchange schemes of maximum weight in the compatibility

graph that are acceptable for each of the participating countries.

Our goal is to provide a fundamental basis for this problem with a

focus on the European setting. For this setting we also propose a

credit system, but the above differences with the US setting explains

why we will base our credit system on flexible game-theoretical fair

shares rather than pre-defined scores for each type of patient-donor

pair, as done in the US.We emphasize that our suggestion to use core

allocations as initial target solutions for international cooperations

is not to avoid ad-hoc blocking by coalitions of countries in the KEP

but to guarantee fair, mutual long-term benefits for all parties. We

describe our model in more detail in the next section, where we

also discuss some related work that inspired our research [13, 26].

3 GAME-THEORETIC MODEL
A (cooperative) game is a pair (N ,v ), where N is a set of n players
and v : 2

N → R+ is a value function with v (∅) = 0. If v (N ) ≥
v (S1) + · · · + v (Sr ) for every partition (S1, . . . , Sr ) of N , then the

players may form the grand coalition N . Under this assumption, the

central problem is then how to distributev (N ) amongst the players.

An allocation is a vector x ∈ RN with x (N ) = v (N ), where x (S ) =∑
p∈S xp for S ⊆ N . The core of a game consists of all allocations

x ∈ RN satisfying x (S ) ≥ v (S ) for each S ⊆ N . Core allocations

are highly desirable, as they offer no incentive for a subset S of

players to leave N and form a coalition on their own. So core

allocations ensure that the grand coalition N is stable. However, the
2



core may be empty, and the next problem may be computationally

hard (assuming a “compact” description of the input).

Core Non-Emptiness

Instance: A game (N ,v ).
Question: Is the core of (N ,v ) nonempty?

We introduce the notion of a generalized matching game (N ,v ),
defined on an undirected graph G = (V ,E) with a positive edge

weightingw and partition (V1, . . . ,Vn ) ofV . We set N = {1, . . . ,n}.
For S ⊆ N , we letV (S ) =

⋃
p∈S Vp . The value v (S ) of coalition S is

the maximum weight of a matching in the subgraph of G induced

by V (S ). If Vp = {p} for p = 1, . . . ,n, then we obtain a matching
game [9, 15, 17, 25, 27]. Hence, generalized matching games are

matching games where one player may own more than one vertex.

Such games are well suited to model the international kidney ex-

change problem. To explain this, we first assume that the exchange

bound ℓ = 2. The reason for this assumption is that ℓ = 2 is used

in several countries and there is no universally agreed exchange

bound. Moreover, for ℓ = 2, we can compute a maximum weight

exchange scheme in polynomial time. We modify a compatibility

graph D = (V ,A) into an undirected graph D = (V ,E) by adding an
edge between two vertices i and j of V if and only if both (i, j ) and
(j, i ) belong toA. We give each edge ij weightw (ij ) = wi j +w ji . We

obtain a maximum weight exchange scheme of (D,w ) by comput-

ing a maximumweight matching in (D,w ), which takes polynomial

time [16]. We say that (D,w ) is the weighted graph that underlies
(D,w ). For the international kidney exchange problem, a player p
represents a country p with set of patient-donor pairsVp and coun-

try size |Vp |. For S ⊆ N , the set V (S ) =
⋃
p∈S Vp is the union of

all patient-donor pairs in the countries of S . We justify our model

below.

The goal of an international KEP is to form the grand coalition N
and to keep N stable. For a generalized matching game (N ,v ) it
holds thatv (N ) ≥ v (S1)+· · ·+v (Sr ) for every partition (S1, . . . , Sr )
of N . However, as seen from Example 1, even 2-country coalitions

may not be stable. Moreover, it is illegal to pay for kidneys and

thus we cannot associate any monetary value with them. Hence,

we cannot distribute the total value v (N ) among the participating

countries according to some allocation x . Just as proposed in [26],

we overcome both obstacles by following the solution of the US

and proposing a credit system. We do this, because optimal kidney

exchange schemes are usually computed three or four times each

year. Hence, we can level out discrepancies in single rounds so

that, on average, social welfare does get allocated in a manner that

encourages the participating countries to stay in the grand coalition.

For a certain round, let (N ,v ) be a generalized matching game

defined by a compatibility graph (D,w ) with country partitionV .

Assume we are given a “fair” allocation y together with a credit
function c : N → R, which satisfies

∑
p∈N cp = 0 where cp is the

credit that country p has received in the past. Then, for p = 1, . . . ,n,
we set xp = yp + cp . Note that x is again an allocation, as y is

an allocation and

∑
p∈N cp = 0. Recall that we maximize social

welfare and hence only consider the maximum weight matchings

of (D,w ). LetM denote the set of all maximum weight matchings

of (D,w ). For p ∈ N , a utility function up gives for eachM ∈ M, a

utility up (M ), which expresses the worth ofM for p. The aim is to

chose a maximum weight matchingM ∈ M with up (M ) “as close

as possible” to xp for each country p. Afterwards we compute a

new credit function for the next round and repeat the process.

Note that we do not use allocations to distribute v (N ), but in-
stead use them to find an acceptable sequence of maximum weight

matchingsM0,M1,M2, . . . for all participating countries. To keep

our model as general as possible, we did not specify the credit func-

tion c , utility function u, allocation y or norm | | · | |. We give specific

examples later and define the following problem.

Allocation Approximation

Instance: A generalized matching game (N ,v ) defined by a

compatibility graph (D,w ) and partitionV ; an al-

location x ; and a constant δ .

Question: Does (D,w ) have a maximum weight matchingM
such that | |xp − up (M ) | | ≤ δ for p = 1, . . . ,n?

This problem is trivial for graphs with a unique maximum weight

matching, which is highly likely when weightswi j take many dif-

ferent values at random [30]. However, in our context, we mainly

consider compatibility graphs with only a small number of different

weights. The reason is that to overcome certain blood and antigen

incompatibilities, patients can undergo one or more desensitization

treatments to match with their willing donor. After full desensiti-

zation the chance on a successful kidney transplant is almost the

same as in the case of full compatibility. Allowing desensitization

results in compatibility graphs with weights either 1 (when no de-

sensitization was needed) or 1 − ϵ (after applying desensitization).

As ϵ is small, it is sometimes even assumed thatw ≡ 1.

All features of our model are present in the forthcoming interna-
tional KEP between Sweden, Norway, and Denmark, where ℓ = 2,
desensitization is possible, and the size of the solution is the first
priority [3].

Related Work. Carvalho et al. [13] also modelled international

KEPs using game theory. They mainly considered the situation

with two countries, ℓ = 2, no credit system, and matching runs

over two stages. In the first stage each country decides which in-

house exchanges they conduct and in the second stage a maximum

matching is selected for the patient-donor pairs registered for the

international exchange. Klimentova et al. [26] considered interna-

tional KEPs with a credit system. The differences with our model

are as follows: 1) they allow ℓ ≥ 3, whereas we set ℓ = 2; 2) they

use a particular individually rational solution concept for comput-

ing fair allocations based on marginal contributions, whereas we

suggest the core of the corresponding generalized matching game;

and 3) they consider only the size of the solutions, whereas we

also investigate the weighted case, where the scores represent the

utilities of the transplants. They also performed simulations using

integer programming techniques for investigating the long-term

effects of their compensation policy.

Gourvès, Monnot and Pascua [21] considered a variant of gen-

eralized matching games where organizations own a number of

vertices in a market situation. Their goal differs from ours and is

to find an individually rational maximum weight matching (which

gives each organization p at least the value that it can obtain on

its own). They also proved complexity results in this setting for

several parameters, such as the number of organizations, number

of weights and maximum degree.

3



4 CORE NON-EMPTINESS
Here we show our results for Core Non-Emptiness for b-matching

and generalized matching games. For a vertex capacity function

b, a b-matching in an undirected graph G = (V ,E) is a subset

M ⊆ E such that each i ∈ V is incident to at most bi edges in
M . A b-matching game is a game (N ,v ) on an undirected graph

G = (N ,E) with edge weightingw , such that for S ⊆ N , v (S ) is the
maximum weight of a b-matching in the subgraph of G induced

by S . A matching game is a 1-matching game. It is well known that

Core Non-Emptiness is polynomial-time solvable for matching

games; see [9] for an O (nm + n2 logn)-time algorithm. In [10] it

was shown that deciding if an allocation belongs to the core of a

b-matching game is polynomial-time solvable if b ≤ 2 and co-NP-
complete ifb ≡ 3. The first result implies thatCore Non-Emptiness

is polynomial-time solvable for b-matching games with b ≤ 2 [10].

However, the case where b ≰ 2 was left open. We prove it is co-

NP-hard even ifw ≡ 1 and bi ≤ 3 for every i ∈ N . By pinpointing

a relationship with generalized matching games, we also prove

that Core Non-Emptiness problem is co-NP-hard for generalized

matching games even whenw ≡ 1 and country sizes ≤ 3. As such,

we first show the following reduction.

Theorem 4.1. The Core Non-Emptiness problem for generalized
matching games with country size ≤ c reduces to the Core Non-

Emptiness problem for b-matching games with capacities b ≤ c .

Proof. We assume c ≥ 2 as for c = 1 both problems are identical.

Let (N ,v ) be a generalized matching game defined by a graph

G = (V ,E) with edge weights w and partition V = (V1, . . . ,Vn )
of the vertex set. We construct a corresponding b-matching game

(N ,v ), defined by a graph G = (N ,E) (where N ⊇ V and E ⊇ E),
edge weightsw and node capacities b as follows. For each Vi , we
add a new root node ri that is adjacent to all nodes in Vi and no

other nodes in G. Thus in total we add n new nodes and |V | new
edges. Every new edge gets weight 2W whereW > v (N ). Let R be

the set of root nodes. This completes our description of G = (N ,E)

on vertex set N = V ∪ R. All nodes in V get capacity b = 2 and

each node ri ∈ R gets capacity |Vi |. Let (N ,v ) be the corresponding
b-matching game. We claim that (N ,v ) has non-empty core if and

only if (N ,v ) has so.

“⇒:” Suppose x ∈ core(N ,v ). For i = 1, . . . ,n, we let x :≡
xi
|Vi |
+W

on Vi and xri := |Vi |W . We claim that x ∈ core(N ,v ). Indeed,
x (N ) = v (N ) = v (N ) + |V |2W by definition. To check the core

constraints, consider S ⊆ N . Let S := {i | S ∩Vi , ∅}. A maximum

weight b-matching inG[S] is obtained by matching each root node

ri ∈ S to all its neighbors in S and matching the nodes in S ∩V to

each other in the best possible way. Thusv (S ) ≤ v (S )+
∑
i :ri ∈S

|S∩

Vi |2W , while x (S ) =
∑
i ∈S (

|S∩Vi |
|Vi |

xi + |S ∩Vi |W ) +
∑
i :ri ∈S

|Vi |W .

Comparing the two values, we find that the core constraint x (S ) ≥

v (S ) holds unless S =
⋃
i ∈S Vi ∪ {ri }. In the latter case, however,

v (S ) = v (S ) +
∑
i ∈S |Vi |2W and x (S ) = x (S ) +

∑
i ∈S |Vi |2W , so that

the core constraint follows from x (S ) ≥ v (S ).

“⇐:” Assume core(N ,v ) = ∅. By the Bondareva-Shapley Theorem,

there are coalitions Sq ⊆ N and λq ≥ 0 such that

∑
q λqSq = N and∑

q λqv (Sq ) > v (N ) (here, for convenience, we identify coalitions

Sq and N with their corresponding incidence vectors in Rn ). Define

corresponding coalitions Sq :=
⋃
{Vi ∪ {ri } | i ∈ Sq } in (N ,v ). A

maximumweightb-matching inG[Sq ] is obtained bymatching each

root ri ∈ Sq to all nodes in Vi and matching Sq ∩V in an optimal

way. Thus v (Sq ) = v (Sq ) + |Vq |2W . Hence, again writing coali-

tions as incidence vectors,

∑
q λqSq =

∑
q λq (

∑
i ∈Sq Vi + {ri }) =∑

i (
∑
q:i ∈Sq λq ) (Vi + {ri }) =

∑
i (Vi + {ri }) = N and, similarly,∑

q λqv (Sq ) =
∑
q λqv (

⋃
i ∈Sq Vi ∪ {ri }) =

∑
q λqv (Sq ) + |V |2W >

v (N ) + |V |2W = v (N ), showing that also core(N ,v ) = ∅. □

As Core Non-Emptiness is polynomial-time solvable for b-
matching games with b ≤ 2 [10], we obtain the following result.

Corollary 4.2. Core Non-Emptiness is polynomial time solv-
able for generalized matching games with country size ≤ 2.

Contrary to above, our next reduction reduces instances with

uniform weightsw = 1 to instances with uniform weights.

Theorem 4.3. The Core Non-Emptiness problem for b-matching
games with b ≤ c reduces to the Core Non-Emptiness problem for
generalized matching games with country sizes ≤ c . The transforma-
tion can be done so that uniform weight instances of b-matching are
transformed to uniform weight instances of generalized matching.

Proof. Let (N ,v ) be a b-matching game defined by G = (V ,E),
edge weights w and node capacities b. We construct a weighted

graphG = (V ,E) with partitionV of its vertex set such that the cor-

responding generalized matching game has a non-empty core if and

only if core(N ,v ) is non-empty. To this end we apply a classical con-

struction of Tutte [38] that is generally used to reduce b-matching

to standard matching problems. This works as follows. Each node

i ∈ V of capacity bi gets replaced by bi copies i
(s ) , s = 1, . . . ,bi .

Secondly, each edge ij ∈ E gets replaced by a tree Ti j connecting
the copies of i to the copies of j . The tree consists of a central edge
with endpoints i j and ji . Node i j is adjacent to all copies of i and,
similarly, ji is adjacent to all copies of j (see also Figure 1). All edges

in Ti j get weight wi j . Denote the resulting graph by G = (V ,E).
The idea is that any b-matching M in G can be represented by a

corresponding matching M ⊆ E in G as follows. If e = ij ∈ M ,

then we match i j to some copy of i in G and, similarly, ji to some

copy of j. (Note that, by definition, enough copies of i resp. j are
available.) If e = ij < M , then we match i j and ji to each other

in G. The resulting matching M in G then has size |E | + |M | and

weightw (E) +w (M ). We refer toM as a transform ofM . (Different

transforms differ by the choice of copies of node i that are “matched”

to j .) The partition ofV is the obvious one with blocksVi consisting
of all copies of i and 2-node blocks Ei j = {i j , ji }. This completes the

description of the generalized matching game (N ,v ). Note that the

players in N are in 1− 1 correspondence withV ∪E = N ∪E, so we
sometimes also identify them with V ∪ E. We claim that core(N ,v )
is non-empty if and only if core(N ,v ) is non-empty.

“⇒:” Letx ∈ core(N ,v ), assumeM is amaximumweightb-matching

in G (so v (N ) = w (M )) and define an allocation x on N by setting

x (Vi ) := xi for i ∈ N and x (Ei j ) = wi j . Then x ∈ core(N ,v ). Indeed,
first observe that a maximum weight matching inG is a transform

M of M , so v (N ) = w (M ) = v (N ) + w (E). Thus x (N ) = v (N )

4



i j

i (1)

i (2)

i (3)

i j ji
j (1)

j (2)

j (3)

Figure 1: Tutte’s gadget replacing an edge e = ij.

indeed. To check the core constraints, consider a coalition S ⊆ N .

Let S ⊆ V be the union of all blocks in S . Then v (S ) is the weight

of a maximum weight matching in G[S]. The latter is obtained as

a transform of a maximum weight b-matchingM in G[S ∩V ]. So

v (S ) = w (M ) +w (E[S]) and x (S ) =
∑
i, j :Ei j ⊆S

wi j +
∑
i :Vi ⊆S

xi =

w (E[S])+x (S∩V ) ≥ v (S ) because x (S∩V ) ≥ w (M ) by assumption.

“⇐:” Assume core(N ,v ) = ∅. By the Bondareva-Shapley Theo-

rem, there are λq ≥ 0 and Sq ⊆ V such that

∑
λqSq = N and∑

λqv (Sq ) > v (N ). Let Sq :=
⋃
{Vi | i ∈ Sq } ∪

⋃
{Ei j | i, j ∈ Sq }.

Then (the incidence vector of)

∑
λqSq equals 1 on N = V and is

at most 1 on N \ N = E. By setting λi j = 1 −
∑
q:Ei j ⊆Sq

λq , we

construct a non-negative combination N =
∑
q λqSq +

∑
i j λi jEi j .

To show thatv (N ) <
∑
q λqv (Sq )+

∑
i j λi jv (Ei j ), letMq be a max-

imum weight b-matching in G[Sq ]. ThenMq has weightw (Mq ) +

w (E[Sq ]) inG[Sq ]. Sov (Sq ) ≥ v (Sq )+w (E[Sq ]). Hence
∑
q λqv (Sq )+∑

i j λi jv (Ei j ) ≥
∑
q λq (v (Sq ) +w (E[Sq])) +

∑
i j λi jwi j > v (N ) +∑

e (
∑
q:e ∈E (Sq ) λq )we +

∑
i j λi jwi j = v (N ) +w (E) = v (N ). □

We identify a b-matchingM in a graph G with the subgraph of

G induced by M (subgraph of G consisting of all edges in M and

vertices covered by M). We speak about (connected) components
ofM . For instance, for b = 1, every edge e ∈ M is a component.

Lemma 4.4. Let (N ,v ) be a b-matching game on weighted graph
(G,w ) with a nonempty core. Let x be a core allocation of (N ,v ) and
M be a maximum weight matching of G. Then, for every component
C ofM , it holds that x (C ) = w (C ).

Theorem 4.5. CoreNon-Emptiness is co-NP-hard forb-matching
games with b ≤ 3, even ifw ≡ 1. The same holds for (uniform weight)
generalized matching games with country size ≤ 3.

Proof. Due to Theorem 4.3 it suffices to prove the first statement.

The proof is by reduction from the 3-Regular Subgraph problem,

which is to decide if a given graph has a 3-regular subgraph (a

graph is 3-regular if every vertex has degree 3). This problem is NP-
complete even for bipartite graphs [36]. Actually, we use a slight

variant that might be called the Nearly 3-Regular Subgraph

problem: given a (non-bipartite) graph, decide if it has a subgraph

with all nodes of degree 3 except for one node of degree 2. This is

NP-complete as well: given an instance of 3-Regular Subgraph,

i.e., a bipartite graph (U ∪V ,E), construct the non-bipartite graphG
consisting of |E | disjoint copies of (U ∪ V ,E) where in the copy

corresponding to e ∈ E the edge e is subdivided by a new node, say

ve . Then (U ∪V ,E) has a 3-regular subgraph if and only ifG has a

nearly 3-regular subgraph. Indeed, if there is a 3-regular subgraph

in (U ∪ V ,E) that contains the edge e , there will be an almost 3-

regular subgraph in G whose degree 2 node is ve . Conversely, if
there is an almost 3-regular subgraph in G, it must contain a node

v

av,1 av,2 av,3

bv,1 cv,1 bv,2 cv,2 bv,3 cv,3

Figure 2: Attached triangles (av ,bv , cv ) and r omitted.

ve for some e , because otherwise the subgraph would be bipartite,

but an almost 3-regular graph cannot be bipartite.

We reduce from Nearly 3-Regular Subgraph for non-bipartite

graphs. Given an instance G = (V ,E) of the latter, we construct a

graphG with vertex capacities bi ≤ 3 and edge weightsw = 1 such

that G has a nearly 3-regular subgraph if and only if the weighted

b-matching game on (G,w ) has an empty core. We construct G as

follows. To every vertex v of G we attach three edges vav,1, vav,2
and vav,3. Each of the three new vertices av, j , for j = 1, 2, 3, is

part of a triangle with vertices av, j ,bv, j , cv, j . Vertex capacities are
bv = 3 for all “original” vertices v ∈ V and bw = 2 on all new

“triangle” vertices w . Finally, for each v ∈ V there is a vertex av
of capacity b = 3 that is adjacent to all three vertices av, j , for
j = 1, 2, 3. Similarly, there are vertices bv and cv , adjacent to bv, j ,
for j = 1, 2, 3 and cv, j , for j = 1, 2, 3, resp. Finally, we add a root node
r that is adjacent to all v ∈ V and none of the other (new) nodes.

The root r has capacity br = 1. This completes the description of

G = (V ,E) with corresponding vertex capacitiesb and edge weights
w = 1. See also Figure 2.

We next describe a maximum weight matching (as indicated in

Figure 2) in G. Let M consist of all edges vav, j plus all edges of
the form bv, jcv, j plus all edges incident to av ,bv and cv . ThusM
saturates all nodes except r , soM is a maximum (weight) matching.

First supposeG contains no nearly 3-regular subgraph. We claim

that in this case x ≡ 3

2
on the vertices inV , x ≡ 1 on the vertices of

each triangle, x ≡ 3

2
on the “connector” vertices av ,bv , cv (v ∈ V )

and xr = 0 yields a core allocation. Obviously we have x (V ) =
w (M ) = |M |. To show that x satisfies the core constraints, suppose

to the contrary that there exists a blocking coalition, i.e., a vertex set
S ⊆ V with corresponding maximum weight matchingMS in the

subgraph induced by S such that x (S ) < |MS |. Assume furthermore

that S is a (w.r.t. set inclusion) minimal blocking coalition. Since xi
equals half the capacity of each vertex except r , this can only happen
if S contains r andMS saturates all vertices in S . So, in particular

MS contains some edge rv0,v0 ∈ V . AsMS saturates all nodes in

S , v0 must be matched by MS to two more nodes (other than r ).
Assume first that all v ∈ S ∩V \ {v0} are either matched “down” to

av,1,av,2,av,3 by three matching edges inMS or matched “up” by

three matching edges e ∈ MS ∩ E. If v ∈ V ∩ S is matched down to

its three triangles, then the component ofM containing these three

edges joining v to its triangles is paid exactly its value (all vertices

in the component are saturated and each vertex gets exactly half of

its capacity except v). Removing the component ofM containing v
from S thus results in a smaller blocking set S ′ ⊂ S , contradicting
the minimality of S . Thus, all vertices v ∈ S ∩V ,v , v0 must be

matched “up”. If alsov0 is matched “up” by two edges inMS∩E, then
(S ∩ V ,MS ) is a nearly 3-regular subgraph of G, a contradiction.
So we are left to deal with the case where there exists a vertex
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v ∈ S ∩V that is, say, matched down by some edge e = vav,1 ∈ MS
but, say, e ′ = vav,3 < MS . We distinguish the following cases:

Case 1. av ,bv , cv ∈ S . Since all these are saturated by MS , we

have all av, j ,bv, j , cv, j ∈ S . Thus av,3,bv,3, cv,3 ∈ S and each of

these is already matched to av ,bv , cv , resp. Since vav,3 < MS , at

most two of av,3,bv,3, cv,3 can be saturated byMS , a contradiction.

Case 2. av ,bv ∈ S, cv < S . Again we find that av,1,av,2,av,3 ∈
S andbv,1,bv,2,bv,3 ∈ S . Moreover, each of these is alreadymatched

by some edge inMS to av or bv . In addition, av,1 is matched to v ,
so av,1 is “already” saturated. Hence, in order to saturate also bv,1,
MS must contain bv,1cv,1. Hence, cv,1 ∈ S andMS cannot saturate

it (as cv < S), a contradiction.
Case 3. av ∈ S,bv , cv < S . Here we conclude av,1,av,2,av,3 ∈ S .

Sincevav,3 < MS , av,3 can only be saturated if, say, av,3bv,3 ∈ MS
and hence bv,3 ∈ S . The latter can only be saturated by bv,3cv,3 ∈
MS . Hence, cv,3 ∈ S and this cannot be saturated (since av,3bv,3 ∈
MS would imply that av,3 is already saturated from edges inside

its triangle, so av cannot be saturated any more), a contradiction.

Case 4. av < S . Since av,1 is in S , it must be saturated, and

as av < S , either av,1bv,1 or av,1cv,1 ∈ MS . By symmetry, sup-

pose that av,1bv,1 ∈ MS . Then bv,1 is in S and must be saturated,

so either bv,1bv ∈ MS (and cv,1 must be uncovered by MS ) or

bv,1cv,1 ∈ MS . In the first case bv ∈ S and cv < S , in the second

case bv < S and cv ∈ S (as cv,1 can only be saturated by cv,1cv ). In
both cases we get a contradiction when considering the third tri-

angle, as follows. If bv ∈ S and cv < S , then we have bvbv,3 ∈ MS .

Thus bv,3 is in S and must be saturated, i.e., matched to either av,3
or cv,3. In the first case av,3 must be matched to cv,3 and the latter

remains unsaturated, a contradiction. In the second case, cv,3 must

be saturated by matching it to av,3 and then again, the latter must

remain unsaturated. The case cv ∈ S and bv < S is similar. From

cv ∈ S we conclude that cvcv,3 ∈ MS . Thus cv,3 ∈ S and this must

be matched to either av,3 or bv,3. In the first case, av,3 must be

matched to bv,3 (as av is not available) and bv,3 remains unsatu-

rated. In the second case bv,3 must be matched to av,3 and again,

the latter remains unsaturated, a contradiction.

Now suppose the b-matching game on G has a core allocation x .
Fix any v ∈ V and let Sab := {av ,bv ,av, j ,bv, j | j = 1, 2, 3}. As

Sab allows a saturating matching Mab of size |Mab | = 9, we find

that x (Sab ) ≥ 9. Similarly, x (Sbc ) ≥ 9 and x (Sac ) ≥ 9 for Sbc and
Sac defined analogously. Adding all three inequalities and dividing

by 2 yields x (S ) ≥ 27/2 for S := Sab ∪ Sbc ∪ Sac . The set S ∪ {v}
is covered exactly by two components of the maximum weight

matchingM in G. Hence, by Lemma 4.4 we obtain x (S ∪ {v}) = 15

and xr = 0, so xv ≤
3

2
. As this holds for all v ∈ V , any nearly

3-regular subgraph G ′ = (S, F ) of G with distinguished node v0 of
degree 2 would define a blocking coalition S ∪ {r }. Indeed, the edge
set F ∪ {rv0} matches each node in S up to its capacity, while x
assigns only half this value to each node in S and zero to r , implying

x (S ) < v (S ), contrary to our assumption that x is in the core. So

there can be no nearly 3-regular subgraph. □

5 ALLOCATION APPROXIMATION
Recall that to keep the Allocation Approximation problem as

general as possible, we did not specify the credit function c , utility
function u, allocation x and distance norm | | · | |. We note that c is

irrelevant for our problem and that x is part of the input (although

we argued to let x be a core allocation). Hence, we only need to

define the utility function u and norm | | · | |. As norm we choose

the classical norm |a − b | for two numbers a,b. As to the utilities
up (M ), there are two natural options.

Cardinalities.Wemay defineup (M ) as the total number of incom-

ing kidneys for country p by M ∈ M. That is, let up (M ) = sp (M )
for p = 1, . . . ,n, where sp (M ) is the size of the setMD (p) = {(i, j ) ∈
A| ij ∈ M, j ∈ Vp }, or equivalently, sp (M ) = |{j ∈ Vp | ∃i ∈ V : ij ∈
M }|. See Figure 3 for an example. This is a natural utility func-

tion due to its simplicity and because in practice the weightswi j
are sparsely spread (see Section 3). Using sp also has a computa-

tional advantage. Namely, we prove that for up = sp , Allocation
Approximation is polynomial-time solvable. For example, given

an allocation x and constant δ , we can find in polynomial time

some M ∈ M (if it exists) such that sp (M ) ∈ [xp − δ ,xp + δ] for
p = 1, . . . ,n.

Weights.Wemay defineup (M ) as the total weight of the incoming

kidneys for p. That is, let up (M ) = tp (M ) for p = 1, . . . ,n, where
tp (M ) =

∑
i, j :i j ∈M, j ∈Vp wi j (see also Figure 3). If w ≡ 1 on D,

then tp = sp and we can solve Allocation Approximation in

polynomial time, see above. If n = 1, then the problem is trivially

polynomial-time solvable, as t1 (M ) is the same for everyM ∈ M.

If all country sizes are 1, we obtain a matching game, and we will

also prove polynomial-time solvability. However, if the number of

different weights is 2 in both (D,w ) and (D,w ) or if n = 2, then we

prove NP-hardness. We also prove NP-hardness if country sizes

are ≤ 2, but only if we assume some compact description of the

input. The case wherew ≡ 1 on D (butw . 1 in D) turns out to be

polynomially equivalent with Exact Perfect Matching [31], a

well-known problem whose complexity is yet unknown.

We prove the following result for up = sp ; a similar construction

was used by Plesnik [32] to solve a constrained matching problem.

Theorem 5.1. Given a generalized matching game (N ,v ) on a
weighted graph (G,w ), and closed intervals I1, . . . , In , it is possible
in polynomial time to decide if there exists a matchingM ∈ M with
sp (M ) ∈ Ip for p = 1, . . . ,n, and to find such a matching (if exists).

Proof. Letw∗ be the maximum weight of a matching in G. Let

Ip = [ap ,bp ], where bp ≤ |Vp |. We extend G = (V ,E) to a graph G
as follows. For p = 1, . . . ,n, we add a set Bp of |Vp | − bp new

i2

i1

j2

j1

i3

1

1

1

3

2

2

1
1

5

i2

i1

j2

j1

i3

2

4

2

Figure 3: A compatibility graph (D,w) and its undirected
graph (D,w). Let M1 = {i2j2} and M2 = {i1i2, j1j2}. Then
w(M1) = w(M2) = 4, andM = {M1,M2}. LetV1 = {i1, i2, i3} and
V2 = {j1, j2}. Then s1 (M1) = s2 (M1) = 1, and t1 (M1) = 3 and
t2 (M1) = 1, whereas s1 (M2) = s2 (M2) = t1 (M2) = t2 (M2) = 2.
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vertices, each of them joined to all vertices ofVp by edges of weight

we = 0. We also introduce a set Ap of bp − ap new vertices that are

completely joined to all vertices ofVp by edges of weightwe = 0. In

addition, all vertices in

⋃
p Ap are joined to each other by edges of

weightwe = 0. The original edges e ∈ E in G keep their (original)

weights, i.e.,we = we . In case the total number of vertices is odd,

we add an additional vertexv and join it by zero weight edges to all

vertices of

⋃
p Ap . This completes the description of (G,w ). Letw∗

denote the maximum weight of a perfect matching in G, which we

can compute in polynomial time [16, 28]. Hence, it suffices to show

there is a matchingM ∈ M with sp (M ) ∈ [ap ,bp ] for p = 1, . . . ,n
if and only ifw∗ = w∗.
“⇒:” Suppose there is a matching M ∈ M with sp (M ) ∈ [ap ,bp ]
for p = 1, . . . ,n. As M ∈ M, we have w (M ) = w∗. As sp ≤ bp , we
can match all vertices of Bp to Vp by all zero weight edges. Finally,

since sp ≥ ap , we can match all (at most bp −ap ) remaining vertices

in Vp from Ap . Thus, eventually, all vertices of Vp will get matched.

In case there are vertices in

⋃
p Ap that are not yet matched, we

match these to each other and, in case their number is odd, to the

extra vertex v . This yields a perfect matching in G of weightw∗.

“⇐:” Supposew∗ = w∗. LetM be a corresponding perfect matching

in G of weight w∗. Let M := M ∩ E denote the corresponding

matching inG. AsM matches all vertices of Bp into Vp , we know
thatM leaves at least |Vp | −bp vertices unmatched. Hence, sp (M ) ≤

bp as required. Similarly, since all vertices of Vp are matched byM
and at most |Vp | − bp + bp − ap = |Vp | − ap vertices in Vp can be

matched to Bp ∪Ap , we find thatM matches at least ap vertices in

Vp , so sp (M ) ≥ ap , as required. □

Corollary 5.2. For up = sp , Allocation Approximation is
polynomial-time solvable.

We now consider the case where up = tp and recall that for

up = tp , Allocation Approximation is polynomial-time solvable

if n = 1 or w ≡ 1 on D. We show the following result (proof

omitted).

Theorem 5.3. For up = tp , Allocation Approximation is
polynomial-time solvable for matching games, or equivalently, if
all country sizes are 1.

In what follows below, some instances will make use of reduc-

tions from the NP-complete problem Partition [19], which is to

decide if there is a set I ⊆ {1, . . . ,k } with a(I ) = 1

2

∑k
i=1 ai for some

given tuple of k integers a1, . . . ,ak .

Theorem 5.4. For up = tp , Allocation Approximation is NP-
complete even if n = 2.

Proof. We show the statement even for δ = 0. We reduce from

Partition. From an instance (a1, . . . ,ak ) of Partition we con-

struct a generalized matching game (N ,v ) with n = 2. We define

countries V1 = {v1, . . . ,vk ,v
′
1
, . . . ,v ′k } and V2 = {v

′′
1
, . . . ,v ′′k }. For

i = 1, . . . ,k we have arcs (vi ,v
′
i ), (v

′
i ,vi ), (vi ,v

′′
i ) and (v ′′i ,vi ),

each with weight ai . Any maximum weight matchingM matches

each vi with either v ′i or v
′′
i . Matching vi with v

′
i adds 2ai to coun-

tryV ′
1
s utility (and 0 to the utility ofV2), while matchingvi withv

′′
i

adds ai to both the utility of V1 and V2. Note that v (N ) = 2

∑
j aj .

Let x be the allocation with x1 =
3

2

∑
j aj and x2 =

1

2

∑
j aj . Then

there exists a matchingM ∈ M with t1 (M ) = x1 and t2 (M ) = x2 if
and only if (a1, . . . ,ak ) is a yes-instance of Partition. □

As in the setting of international KEPs sparsely weighted games

are relevant, in the remainder of our paper we consider such cases.

Theorem 5.5. For up = tp , Allocation Approximation is NP-
complete even if the number of weights in the computability graph
and its underlying graph is 2.

Proof. We show the statement even for δ = 0. We reduce from 3-

Partition, which is to decide if we can partition a set of 3k positive

integers a1, . . . ,a3k , with
∑
3k
p=1 ap = kc for some integer c , into k

sets that each sum up to c . This problem is stronglyNP-complete (so

NP-complete even when encoded in unary) even if
1

4
c < ai <

1

2
c ,

ensuring that each set in a solution has size exactly 3 [19].

From an instance (a1, . . . a3k ) with
1

4
c < ai <

1

2
c we construct a

generalized matching game (N ,v ) on a compatibility graph (D,A)
as follows. We start with 3k sources. For p = 1, . . . ,k let Sp :=

{sp , s
′
p , s
′′
p } and S :=

⋃
p Sp . Add a set of 3k sinks T := {z1, . . . , z3k }.

Join all sources to all sinks by (3k )2 pairwise internally vertex

disjoint paths: from each sp (s
′
p , s
′′
p ) there is a path Ppq (P

′
pq , P

′′
pq ) to

each zq of length 2aq − 1. Any two consecutive vertices on the path

are joined by two opposite arcs of equal weight. The weights on

each path alternate between L and L + 1, starting and ending with

L+1, where L ≫ 0 is sufficiently large, say, L > kc . For p = 1, . . . ,k ,
let Vp =

⋃
q (Ppq ∪ P

′
pq ∪ P

′′
pq ) \T and let Vk+1 = T .

As L ≫ 0, every maximumweight matchingM in the underlying

graph D = (V ,E) is perfect. More precisely,M looks as follows. For

p = 1, . . . ,k there are three paths Ppq from sp to zq , P
′
pq′ from s ′p

to zq′ , and P
′′
pq from s ′′p to zq′′ that are completely matched in the

sense thatM ∩ Ppq is a perfect matching of Ppq (and similarly for

P ′pq and P ′′pq ), contributing a gain of (2(aq + aq′ + aq′′ ) − 3) (L + 1)

to up (M ). Furthermore, there are (3k − 3) paths from sp to the

remaining 3k − 3 sinks inT \ {zq , zq′ , zq′′ } that start and end with a

non-matching edge (and are otherwiseM-alternating). These paths

(emanating from sp ) contribute a total of 2L(
∑
r<{q,q′,q′′ } (ar −1)) =

2L(
∑
r ar − (aq + aq′ + aq′′ ) − (3k − 3)) to up (M ). So tp (M ) =

2(aq + aq′ + aq′′ ) + 2L(
∑
ar ) − 6L(k − 1) for p = 1, . . . ,k . Let x be

the allocation with xp = 2c + 2L(
∑
ar ) − 6L(k − 1) for p = 1, . . . ,k

and xk+1 = 3k ((3k − 1)L+L+ 1). Then there is a matchingM ∈ M
with tp (M ) = xp for p = 1, . . . ,k + 1 if and only if (a1, . . . ,a3k )
is a yes-instance of 3-Partition. As 3-Partition is strongly NP-

complete, a1, . . . ,a3k can be represented in unary. Thus, the size

of the instance of 3-Partition is kc . Hence, (D,w ) has polynomial

size. □

Note that the number of countries in Theorem 5.5 can be arbi-

trarily large. By a “compact description” of a game defined on a

graph we mean a logarithmic description of the graph (if possible).

For example, a cycle of length k can be described by its length,

which results in input size O (logk ) rather than k .

Theorem 5.6. For up = tp , Allocation Approximation is NP-
complete even for compact generalized matching games with three
different weights and country sizes ≤ 2.

Proof. We show the statement even for δ = 0. We reduce

again from the NP-complete Partition problem [19]. From an
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M :

L + 1 L + 1 L + 1

2
L + 1

2

L LL L L + 1 L + 1 L + 1

L + 1 L + 1 L + 1 L L LL L L L + 1 L + 1

L + 1L

V1 V2

M ′ :

L + 1 L + 1 L + 1

2
L + 1

2

L LL L L + 1 L + 1 L + 1

L + 1 L + 1 L + 1 L L LL L L L + 1 L + 1

L + 1L

V1 V2

Figure 4: C = Ci for ai = 5 with edges e and e in the middle.

instance (a1, . . . ,ak ) of Partitionwe construct a compact general-

ized matching game (N ,v ) with number of weights 3 and country

sizes ≤ 2. We assume that k is even (otherwise add ak+1 = 0), that

the size of I is |I | = k/2 (otherwise add a large number to each ai )
and that every ai is odd (otherwise replace every ai by 2ai + 1).

LetC = Ci be an even cycle of length 4ai + 4. Let e and e be two
opposite edges. Assign weights we = L and we = L + 1 to these

edges, where L > 0 is large, say, L =
∑
ai . Weightswe andwe are

assumed to be split equally to their corresponding two opposite

arcs. Removing e and e splits C into two paths P1 and P2 of length
2ai +1 each. The edge weights on these two paths alternate between
L and L+ 1 except for their last edge, which has weight L+ 1

2
. More

precisely, P1 starts with an edge (say, incident to e) of weight L + 1
and continues alternating between edges of weight L + 1 and L
until its last edge (incident to e) gets weight L + 1

2
(instead of L + 1).

Similarly, P2 starts with an edge of weight L, incident to e , and
alternates between weights L + 1 and L until the last edge gets

weight L + 1

2
(instead of L). See Figure 4 for the case where ai = 5.

We letU1 andU2 denote the vertex sets of P1 and P2, respectively.
For L suitably large,C has exactly two maximum weight matchings,

namely its two complementary perfect matchingsM andM ′, where
M is the perfect matching that matches both e and e andM ′ is the
complement of M . We compute: t1 (M ) = 1

2
L + 1

2
(L + 1) + aiL =

L(ai +1)+
1

2
, t2 (M ) = 1

2
L+ 1

2
(L+1)+ai (L+1) = L(ai +1)+

1

2
+ai ,

t1 (M
′) = L(ai + 1) +

1

2
+ ai , and t2 (M

′) = L(ai + 1) +
1

2
.

Recall that we have k such components Ci , each with two com-

plementarymaximumweight (perfect) matchings. So in the graphG

consisting of these k components Ci we have 2
k
maximum weight

matchings, obtained by picking one of the two complementaryM

and M in each Ci . Let V1 be the union of all the U1s in each Ci
and V2 be the union of all the U2s. Consider the allocation x with

x1 = x2 = L(
∑
ai + 1) +

1

2

∑
ai + k/2 and assume these can be real-

ized by a suitable maximum matching. Let I ⊆ {1, . . . ,k } be the set
of indices i such that the matching picksM in Ci . With respect to

this matching,V1 has utility L
∑
(ai +1)+k/2+

∑
I ai . Such a match-

ing exists if and only if (a1, . . . ,ak ) is a yes-instance of Partition.
This completes the reduction. Each component Ci of the graph we

construct has a description of length O (log(kamax )), where amax
denotes the maximum ai ; note that L is bounded by log(kamax ) and

the length ofCi is bounded by ai . Hence, allowing compact descrip-

tions, the weighted graph we constructed has sizeO (k log(kamax )),
which is polynomial in the size of (a1, . . . ,ak ). □

We now consider the case where n = 2 and w ≡ 1 on (D,w )
but the computability graph (D,w ) itself has two different weights.

We do not solve this case, but link it to Exact Perfect Matching

introduced in [31]. This problem has as input an undirected graphG
whose edge set is partitioned into a set R of red edges and a set B of

blue edges. The question is whether G has a perfect matching with

exactly k red edges for some given integer k . The complexity status

of Exact Perfect Matching is a longstanding open problem, and

so far only partial results were shown (see, for example, [22]).

Let D = (V ,A) be a compatibility graph D = (V ,A), in which all

2-cycles on vertices i, j have weights wi j =
1

3
and w ji =

2

3
. Note

that w ≡ 1 in the underlying weighted graph (D,w ). In fact the

exact values of wi j and w ji = 1 − wi j do not matter, as long as

they differ from
1

2
(if w ≡ 1

2
on D, then tp (M ) = sp (M ) and we

can apply Corollary 5.2). Let (V1,V2) be the country partition, such

that i ∈ V1, j ∈ V2 implies that wi j =
1

3
and w ji =

2

3
. Note that

edges inside V1 and V2 are also allowed. Moreover, we assume that

D has a perfect matching. Asw ≡ 1 in D, the setM of maximum

weight matchings of D consists of all perfect matchings. We call the

generalized matching game (N ,v ) defined on such a compatibility

graph (D,w ) and (V1,V2) perfect. We show the following result

(proof omitted).

Theorem 5.7. Exact Perfect Matching and Allocation Ap-

proximation on perfect generalized matching games (N ,v ) are poly-
nomially equivalent.

6 CONCLUSIONS
Just as for other cooperative games (such as, flow games [18]), we

generalized matching games by allowing a player to own multiple

vertices. We showed that generalized matching games are equiva-

lent tob-matching games with respect toCore Non-Emptiness and

proved two complexity dichotomies. For the case with only 2-way

kidney exchanges, we used these games to model a credit system

in international Kidney Exchange Programs, introducing a credit

system for compensating unhappy countries in future rounds. This

led to the Allocation Approximation problem for computing ex-

change schemes as close as possible to some given allocation. If the

total number of incoming kidneys is the utility function, we gave

a polynomial-time algorithm. If instead their total weight is taken

as the utility function, we proved NP-hardness. For the latter case
the main open problem is to determine the complexity in case of

small country sizes; we could only show NP-hardness for compact

encodings.
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