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ABSTRACT

Correlation filters (CF) combined with pre-trained convolu-
tional neural network (CNN) feature extractors have shown
an admirable accuracy and speed in visual object tracking.
However, existing CNN-CF based methods still suffer from
the background interference and boundary effects, even when
a cosine window is introduced. This paper proposes a rank-
ing based or guided attention approach which can reduce
background interference with only forward propagation. This
ranking stores several convolution kernels and scores them.
Subsequently, a convolutional Long Short Time Memory
network (ConvLSTM) is used to update this ranking, which
makes it more robust to the variation and occlusion. More-
over, a part-based multi-channel convolutional tracker is
proposed to obtain the final response map. Our extensive
experiments on established benchmark datasets show compa-
rable performance against contemporary tracking approaches.

Index Terms— Visual tracking, Ranking based attention,
Convolutional tracker, ConvLSTM

1. INTRODUCTION

In recent years, visual tracking algorithms have evolved
rapidly, as a fundamental and critical topic within computer
vision, with various applications such as autopilot system,
video surveillance and human-computer interaction interface.
In visual tracking algorithms, the object categories should not
be limited by the training set. Since the specific kind of target
will not be known in advance of the tracking task, the vi-
sual tracking algorithm should be robust enough to track any
kind of the object and can be promptly specialized according
to the information obtained from the initial frame. Mean-
while, robust trackers should also deal with tough challenges
such as appearance variations, motion blur, scale changes,
illumination changes and occlusion.

Early tracking algorithms tended to use well-designed
hand-craft feature extractors such as HOG [1] and SIFT [2].
At that time, correlation filter based tracking algorithms were
widely considered due to their superior accuracy [3]. Ker-
nelized correlation filters [4] offered a good way to speed up
tracking by changing the convolution operation to an element-
wise product via the Fourier domain. Spatially regularized
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Fig. 1. Flow chart of the ranking network in time step t.
Ranking will use feature xS

t and function Fscore to score the
stored kernels and select the first and the last.

correlation filters [5] were proposed to deal with boundary
effects. In recent years, with the development of deep learn-
ing, convolutional neural networks (CNN) are widely used in
the field of computer vision, such as image classification and
semantic segmentation. Some studies [6] have shown that
the feature maps from shallow layers in CNN contain object
texture and localised detail information. In contrast, feature
maps from deeper layers contain semantic information of
the input image. As a result, many new tracking algorithms
have been proposed based on CNN feature extractors [7] [8].
Further more, there exist some approaches which attempt to
use convolution operation instead of correlation operation to
achieve end-to-end training [8]. However, some papers [9]
point out that existing deep learning based methods are un-
stable and time consuming with the use of stochastic gradient
descent (SGD) to update the kernel on a frame by frame basis.

Although CNN have an admirable ability to extract fea-
tures, it is still not enough to eliminate the influence of back-
ground interference only by the backpropagation of a loss
function. This is why [8] proposed residual connections to
enhance performance. In convolutional trackers, the convolu-
tion kernel should be the same size as object which will com-
monly result in network instability and training difficulties.
The work of [9] has advantages in speed and memory sav-
ing, using convolutional Long Short Time Memory network
(ConvLSTM). However there still exists some problems such
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Fig. 2. Overall structure of the ranking based attention network. xL
t and xS

t are feature maps with different scale levels. mt is
the attention map as also shown in Fig. 3(b) .

Fig. 3. Visualization of the feature map (a), replaced with
the search patch, the attention map (b) and the results of at-
tention map multiplied with feature map (c), which show that
the background interference is significantly suppressed.

as low spatial resolution and lacking robustness to occlusion.
To address the aforementioned problems, we propose a

ranking based attention network for visual tracking as shown
in Fig. 1 and Fig. 2. This ranking stores several convolu-
tion kernels which contain semantic information of the tar-
get. If we perform convolution operations between these ker-
nels with feature maps, we obtain response maps as shown
in Fig. 3, which can significantly suppress background inter-
ference. The ranking network is initialized at the first frame.
In each frame, the ranking re-scores and re-ranks the stored
convolution kernels. The first one will be chosen as the out-
put, the last one will be updated by using the ConvLSTM. We
also propose a part-based multi-channel convolutional tracker
which reduces the kernel size and improves robustness to oc-
clusion. The main contributions of this paper are summarized
as follows:

• We propose a ranking network to guide the usage and
update of convolution kernels within an adaptive visual
tracking framework. It can make the attention map sta-
ble, especially when occlusion occurs.

• We propose a part-based multi-channel convolutional
tracker. It can speed up network updates and make the
model more robust to occlusion.

2. THE PROPOSED METHOD

This section will describe our framework in detail. The rank-
ing network is the key component, which will store several
convolution kernels, score them and then pick the best one as
the output. ConvLSTM is used to update these stored kernels.
Within the part-based multi-channel convolutional tracker, a
large convolution kernel is divided into several smaller ker-
nels in multiple channels and then using a novel kernel to
combine these channels together, which achieves the same ef-
fect of part-based tracking.

2.1. Ranking Based Attention

Firstly, the ranking network stores several convolutional ker-
nels which contain the semantic information of the target.
We obtain an attention map as shown in Fig. 3(b), after the
convolutional operation between convolution kernel and fea-
ture map. Background interference and boundary effect can
be significantly eliminated after we multiply the feature map
with the attention map in channel-wise as shown in Fig. 3(c).

A ranking network is proposed to store and score several
convolution kernels. In each frame or time step, the rank
will score the stored kernels using the current feature map
and choose the best one as the output. The output kernel will
convolve with the feature map from Conv Layers2 to get the
attention map as shown in Fig. 2. The upsampled attention
map will be multiplied with the feature map from Conv Lay-
ers1 using a residual connection as shown in Fig. 2, which
ensures the spatial resolution is guaranteed while background
interference is reduced.

Specifically, the ranking is described as an ordered
set, {c1t , c2t , . . . , cNt }, cit ∈ R11×11×512, i = 1, 2, . . . , N ,
as shown in Fig. 1. In each time step or frame t, xS

t ∈
RH/8×W/8×512 and xL

t ∈ RH/4×W/4×256 are extracted from
Conv Layers2 and Conv Layers1 respectively as shown in
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Fig. 4. Flow chart of convolutional LSTM. As stated in [9],
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Fig. 2. H and W are the height and width of the search patch
which is input into the feature extraction network. The rank
will score the stored kernels using a score function Fscore:

sit = Fscore(c
i
t,x

S
t ) = PNR(cit ∗ xS

t ), s
i ∈ R, (1)

where ∗ represents the convolution operation. We use the
same method in [10] to calculate the PNR score:

PNR(m) =
max(m)−min(m)

mean(m/max(m))
, m ∈ RH/8×W/8, (2)

of response map for each cit. The ordered set is re-ordered by
the scores:

{c1t , c2t , . . . , cNt } ⇐ ordering{s1t , s2t , . . . , sNt }. (3)

The c
(1st)
t with the top score will be selected as the output of

the rank. The c
(Nth)
t with the lowest score will be updated:

c
(1st)
t = argmax

ci
t

{sit | i = 1, 2, . . . , N}, (4)

c
(Nth)
t = argmin

ci
t

{si | i = 1, 2, . . . , N}. (5)

The ConvLSTM is used to update c(Nth)
t and the hidden state

ht−1:

(ht, c
(Nth)
t ) = ConvLSTM(ht−1, c

(1st)
t ,xpre

t ). (6)

We use PreNet, a pre-trained 2-layers CNN, to downsample
the xS

t and match the size of ht−1:

xpre
t = PreNet(c

(1st)
t ,xS

t ), x
pre
t ∈ R11×11×512. (7)

Finally, the attention map mt can be generated from the con-
volution operation between the ht and feature map xS

t :

mt = ht ∗ xS
t , mt ∈ RH/8×W/8, (8)
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Fig. 5. Each output channel is concentrated on one part of
tracking the target.

as shown in Fig. 3(b) for visualization.
In offline training stage, the loss function L(ht):

L(ht) =
1

H×W
8×8

∑
h,w

(ht ∗ xS
t − yS

t )
2 + λ1‖ht‖2, (9)

is proposed to push the ConLSTM to learn how to update
convolution kernels , where yS

t ∈ RH/8×W/8 is a two-
dimensional gaussian label centered on the target position for
each search patch and λ1 is the regularization parameter. The
ranking network will degrade to normal ConvLSTM since the
ranking length N will be set as 1, which makes the gradient
back propagation normally.

2.2. Part-based Multi-channel Convolutional Tracker

Following closely, the feature map xL
t ∈ RH/4×W/4×256 is

multiplied with the upsampled attention map in channel wise,
which will be input into part-based multi-channel convolu-
tional tracker. The target will be split into 9 parts by a 3 × 3
grid. There are 9 channels in this tracker. Each channel will
concentrate on tracking one part of the target, as illustrated in
Fig. 5. The tracker is described as the convolution operation
between weight wt ∈ R9×7×7×256 and feature xL

t , as stated
in [8]. The output of the tracker contains 9 channels. Each
channel has a 2D gaussian distribution like response map and
the peak of the response map represents the position of the
corresponding part. A convolution kernel with prior informa-
tion is proposed to generate the final one channel response
map, which combines the 9 channels together. The position
of the whole target is the peak position of the final response
map.

In the online updating stage, the online training dataset
will be collected from last T frames. The last T tracking
results will be used to generate the training labels yL

t ∈
R9×H/4×W/4. The loss function is described as:

L(wt) =
1

H×W
4×4

9∑
l=1

∑
h,w

(w
(l)
t ∗ xL

t − y
L(l)
t )2 + λ2‖wt‖2,

(10)
where λ2 is the regularization parameter.



3. EXPERIMENT

In this section, we first explain the implementation details.
Subsequently, we compare our tracker with state-of-the-art
trackers on OTB2013 [11] and OTB2015 [12] datasets. Abla-
tion studies are adopted to evaluate each component.

3.1. Implementation Details

The hardware environment is a workstation with i7-6800K
CPU, 16GB RAM and GTX1080Ti GPU.

Offline training stage: In this stage, only ranking net-
work is trained. The training datasets are UAV123 [13] and
TC128 [14]. The overlap sequences with the test set [11] [12]
are eliminated in advance. We generate 2D Gaussian labels
yS for every search patch in each frame. We use the patch-
label pairs to train the ConvLSTM with the loss function (9).
The ranking network degrades to normal ConvLSTM with
N = 1 to make the gradient back propagation normally.

Online tracking stage: In this stage, all of the parameters
in ranking network are fixed. We just update the parameters
in the part-based convolutional tracker. The last T frames are
collected as the online training set. The multi-channel labels
yL are generated based the last T tracking results. The loss
function Eqn.(10) is used to update the weights. As for the
feature extracter, we use a pre-trained VGG16 [15] network.
We generate a batch of search patches with different scales
and find the best response to do scale estimation. We use a
simple initialization network to initialize the ranking network,
h0 and w0 at the first frame. The results below are from the
following super-parameter settings, N = 3, T = 12, H =
W = 255, λ1 = 1e− 10 and λ1 = 1e− 7.

3.2. Overall Performance

We select several state-of-the-art trackers ACT [16], CREST
[8], metaCREST [17], SRDCF [5], siamPRN [18], siamFC3s
[19] and staple [20]. Fig. 6 illustrates the results in OTB2013
[11] and OTB2015 [12] datasets. In OTB2013, our tracker
ranks the second in terms of precision and in OTB2015
ranks the first. The other trackers precision drops rapidly in
OTB2015, since its sequences number is two times larger
than OTB2013 and contains several challenging sequences.
Our tracker is robust enough to deal with such problems.

3.3. Ablation Studies

In order to evaluate the contribution of each component, ab-
lation studies are conducted. We construct a tracker without
ranking network as the baseline. It indicates that our part-
based convolution tracker is robust, especially in OTB2015
dataset as shown in Fig. 7. The proposed ranking network
can lead the precision much better than the baseline, since
the background interference is significantly suppressed by the
ranking based attention map.
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Fig. 6. Precision and overlap results. First row is the results
of OTB2013, second row is the results of OTB2015.
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Fig. 7. The results of ablation studies.

4. CONCLUSION

In this paper, we present a novel ranking based attention net-
work, which consists of an ranking network and a part-based
multi-channel convolutional tracker. Our ranking network can
significantly reduce the influence of background interference
and uses ConvLSTM to update attention kernels. The part-
based multi-channel convolutional tracker is shown to make
the model more robust to occlusion. We also compare our
tracker with contemporary tracking approaches, and obtain
comparable results. Ablation studies show the effectiveness
of each component.
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