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Abstract
Dinur’s celebrated proof of the PCP theorem alternates two main steps in several iterations: gap
amplification to increase the soundness gap by a large constant factor (at the expense of much
larger alphabet size), and a composition step that brings back the alphabet size to an absolute
constant (at the expense of a fixed constant factor loss in the soundness gap). We note that the
gap amplification can produce a Label Cover CSP. This allows us to reduce the alphabet size via a
direct long-code based reduction from Label Cover to a Boolean CSP. Our composition step thus
bypasses the concept of Assignment Testers from Dinur’s proof, and we believe it is more intuitive –
it is just a gadget reduction. The analysis also uses only elementary facts (Parseval’s identity) about
Fourier Transforms over the hypercube.
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1 Introduction

Constraint Satisfaction Problem (CSP) is a canonical NP-complete problem. Assuming
P 6= NP, no polynomial time algorithm can find a satisfying assignment to a satisfiable
CSP instance. If we are happy with the easier goal of satisfying a 1 − o(1) fraction of
constraints, does there exist an efficient algorithm to do so? Answering this in the negative,
the fundamental PCP theorem [1, 2] implies that for some fixed integers k, q ≥ 2 and c < 1,
it is NP-hard to find an assignment satisfying a fraction c of constraints in a satisfiable CSP
of arity k over alphabet {0, 1, . . . , q − 1}. Further this result holds for the combinations
(q, k) = (2, 3) and (3, 2). The PCP theorem lies at the center of a rich body of work that has
yielded numerous inapproximability results, including many optimal ones.
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The PCP theorem was originally proved using algebraic techniques such as the low-
degree test and the sum-check protocol. In a striking work, Dinur [7] gave an alternative
combinatorial proof of the PCP theorem. Her proof works by amplifying the “Unsat value”
of a CSP instance – the fraction of constraints any assignment should violate. The goal is to
show that it is NP-hard to distinguish if the Unsat value of a CSP instance is equal to 0
or at least a constant c > 0. Starting with a NP-hard problem such as 3-coloring with m
constraints, we can already deduce that it is NP-hard to identify if Unsat value is equal to
0 or at least 1/m. The Unsat value is increased slowly and iteratively via two steps – gap
amplification and alphabet reduction. In gap amplification, we incur a constant factor blow
up in the size of the instance, and get a constant factor improvement in the Unsat value.
However, this step also blows up the alphabet size. To alleviate this, alphabet reduction
brings back the alphabet size to an absolute constant while losing a constant factor in the
Unsat value (and blows up the instance size by a constant factor). Combining both the steps,
we can increase the Unsat value by a constant factor (say 2) incurring a constant factor blow
up in the size of the instance. Repeating this logm times proves the PCP theorem.

In this paper we revisit the alphabet reduction step. Dinur implemented this step by
an “inner” PCP construction, which is in effect a gadget reducing a specific predicate ψ to
be tested to a collection Ψ of constraints over a fixed (say Boolean) alphabet, such that
if ψ is unsatisfiable, then a constant fraction of constraints of Ψ must be violated by any
assignment.1 This inner PCP is then applied to all constraints in the CSP instance (say G)
produced by the gap amplification step. The collection of inner PCPs as such only ensure
that each constraint of G is individually satisfiable, which is not very meaningful. To ensure
that the inner PCPs together ensure that the constraints of G are all satisfiable by a single
consistent assignment, error-correcting codes are used to encode the purported assignments
to the variables of G. The inner PCP is also replaced by an Assignment Tester that ascertains
whether the specific assignment given by these encodings satisfies the predicate ψ being
checked.

The key observation driving this work is that instead of designing the inner PCP for
arbitrary constraints (as in Dinur’s paper), we can first reduce the CSP instance G produced
by gap amplification to a Label Cover instance. Label Cover is a special kind of CSP which
has arity 2, and whose underlying relations are functions (so the value of one of the variables
in each constraint is determined by the value taken by the other variable in that constraint).
Conveniently for us, we also observe that Dinur’s gap amplification step in fact already
produces a CSP with this Label Cover structure, allowing us to skip the reduction step.2
We can thus focus on alphabet reduction when the CSP we are reducing from has the Label
Cover structure, and is over a fixed, albeit large, alphabet. We then follow the influential
Label Cover and Long Code framework, originally proposed in [5] and strengthened in [11]
and since then applied in numerous works on inapproximability, to reduce the CSP obtained
from gap amplification, now viewed as Label Cover, to a Boolean CSP. Finally, we reduce
the Boolean CSP back to a Label Cover instance (see Section 4) that can be plugged in as
input to the gap amplification step.

1 While this might seem circular, as this is what the PCP reduction is trying to accomplish in the first
place, the key is that this inner reduction can be highly inefficient (even triply exponential blow up is
okay!), as it is applied to a constraint of constant size.

2 Technically, the gap amplification step produces a version of Label Cover whose constraints are rectangular
rather than functions, but this is a minor difference that can be easily accommodated in reductions
from Label Cover.
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Our main result is the following, which can be viewed as reproving a case of alphabet
reduction from [8, 7].

I Theorem 1. There is a polynomial time reduction from Label Cover with soundness 1− δ
to a fixed template CSP with soundness 1− Cδ for an absolute constant C > 0.

We analyze our reduction using Fourier analysis as pioneered by Håstad [11]. Usually, in
this framework, we reduce from low soundness Label Cover to strong (and at times optimal)
soundness of CSP. But here we start with a high soundness Label Cover, and we reduce to
high soundness CSP.

We highlight a couple of differences from previous works that make our proof easier:
We have the freedom to choose any CSP rather than trying to prove inapproximability
of a CSP. We choose the following 4-ary predicate R in our reduction: (u, v, w, x) ∈ R
if and only if u 6= v ∨ w 6= x. This predicate appears in [11] in the context of proving
optimal hardness for NAE-4SAT.
In [11] and [5], the objective is to prove optimal inapproximability, or at least to get good
soundness. However, our present goal is to prove “just” a nontrivial soundness. (On the
other hand, we also start with high soundness Label Cover.) This allows us to use a very
convenient test distribution leading to a simple analysis.
We remark that a similar statement as Theorem 1 can be also deduced using [5, Sec-
tion 4.1.1]. We believe that the test presented in this paper is more direct since we benefit
from ideas in [11].
It is possible to perform alphabet reduction using the Hadamard code instead of the long
code as described in [10, 12]; the latter [12], similarly to our proof, avoids explicit use of
Assignment Testers.
Long code tests correspond exactly to testing whether a function is a polymorphism of
the corresponding CSP, and as such corresponds to gadget reductions in the algebraic
approach to CSP (see e.g. [4]). The PCP theorem surpasses these algebraic (gadget)
reductions; this is even more evident when extending the scope from CSPs to promise
constraint satisfaction problems (PCSPs) as there are PCSPs that can be shown to be
NP-hard by using PCP theorem via a natural reduction through Label Cover, but cannot
be shown to be NP-hard using only algebraic reductions [3, 6]. In this sense, the present
paper shows that this strength of the PCP theorem comes from the Gap Amplification
step.

Alphabet Reduction is an essential step in both the original proof of the PCP theorem as
well as Dinur’s proof and deserves further attention. Our proof of alphabet reduction bypasses
the concept of Assignment Testers and is more intuitive in our opinion as it is nothing but
a gadget reduction. Our proof is elementary using only Parseval’s identity from Fourier
Analysis over the hypercube. Dinur’s analysis used the Friedgut-Naor-Kalai theorem [9]
about Boolean functions with most of the Fourier mass at level 1. We believe that this makes
our proof more accessible to readers that are new to PCPs. We also hope that this material
might be useful in teaching the proof of PCP theorem as it relies only on techniques that
any such basic course would cover anyway.

Outline
We start by formally defining CSP, Label Cover, and other preliminaries in Section 2. Then,
in Section 3, we prove the main reduction from Label Cover to CSP. In Section 4, we show
how the reduction can be used in the alphabet reduction step of Dinur’s proof.

APPROX/RANDOM 2020
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2 Preliminaries

2.1 CSPs and Label Cover

Loosely speaking, a CSP over some domain Σ is a decision problem which gets as input
a set of variables and a set of constraints on the values of these variables. The goal is to
decide whether there is an assignment of values from Σ to the variables such that all the
constraints are satisfied. Usually, the shape of the constraints is somehow restricted. We first
give a formal definition of the general CSP, and then two restrictions that we will use further.

I Definition 2 (CSP). The constraint satisfaction problem over an alphabet Σ takes as input a
set of variables V = {x1, . . . , xn} and a finite set of constraints where each constraint is a pair
((xi1 , . . . , xik ), R) where k is a number (the arity of the constraint), i1, . . . , ik ∈ {1, . . . , n},
and R ⊆ Σk. The goal is to decide whether there exists an assignment s : V → Σ such that
for each constraint ((xi1 , . . . , xik ), R) we have (s(xi1), . . . , s(xik )) ∈ R.

A fixed template CSP is a restriction of the general CSP that requires that the constraints
only involve relations from a fixed list of relations over the given alphabet (a template). In
the case the domain is Boolean, often negation of variables is allowed. Below, we formally
define a Boolean fixed template CSP with a template consisting of a single relation allowing
for negation of variables.

I Definition 3 (Boolean fixed template CSP). Let Σ = {0, 1} be a Boolean domain, and fix
a relation R ⊆ Σk. The constraint satisfaction problem associated with R, denoted by CSP(R),
takes input as a set of variables V and a set of constraints of the form ((xi1 , . . . , xik ), R) where
each xi is either a variable x, or a negation of a variable (i.e., an expression ¬x). An assign-
ment s : V → Σ is said to satisfy the constraint ((xi1 , . . . , xik ), R) if (s(xi1), . . . , s(xik )) ∈ R
where s(¬x) is defined as ¬s(x) for each x ∈ V .

The restriction of CSP to binary constraints is traditionally referred to as Label Cover.

I Definition 4 (Label Cover). In an instance of Label Cover problem, we are given a tuple
(G = (V,E),Σ,Π) where
1. G is a graph on vertex set V .
2. Each vertex in G has to be assigned a label from Σ.
3. For each edge e = (u, v) ∈ E, there is a relation Πe ⊆ Σ× Σ. This relation corresponds

to a constraint between u and v.
A labeling of graph is a function s : V → Σ that assigns a label to each vertex of G. Such
labeling is said to satisfy a constraint e if and only if (s(u), s(v)) ∈ Πe.

For a Label Cover instance or in general for a CSP instance I, we use size(I) to denote
m+ n, where m is the number of constraints and n is the number of variables. We remark
that Label Cover usually refers to the case when G is bipartite, and the constraint relations
are functions. However, in this work, we find it convenient to consider a (closely related)
version which has rectangular relations.

I Definition 5 (Rectangular relation). A relation R ⊆ A × B is said to be rectangular if
there is a set C and functions π : A → C and σ : B → C such that (a, b) ∈ R if and only
if π(a) = σ(b). Equivalently, R is rectangular if for all a, a′ ∈ A and b, b′ ∈ B such that
(a, b) ∈ R, (a, b′) ∈ R, and (a′, b) ∈ R, we have (a′, b′) ∈ R.
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2.2 The long code
Loosely speaking, the long code is the longest (error-correcting) code over the Boolean
alphabet that does not repeat bits. It is constructed as follows: the long code is a Boolean
code of length 2n which encodes a value i ∈ [n] into a tuple pi whose k-th coordinate, k < 2n,
is the i-th least significant digit of k in binary.

The long code be also described in another way: we view a Boolean tuple of length 2n
as an n-ary function p : {0, 1}n → {0, 1} (each coordinate of the tuple encodes one value
of p). In this perspective, the code words of the long code are functions pi defined as
pi(x1, . . . , xn) = xi. These functions are often called dictators.

We also remark that in the conjunction with the long-code, a rectangular constraint can
be expressed as an identity. More precisely, given a rectangular relation R ⊆ [n]× [m], say
R = {(i, j) : π(i) = σ(j)} for some π : [n]→ [k] and σ : [m]→ [k], then the long codes pi and
pj of values i, j satisfy

pi(xπ(1), . . . , xπ(n)) = pj(xσ(1), . . . , xσ(m))

for all x1, . . . , xk ∈ {0, 1} if and only if (i, j) ∈ R. This is a key property of rectangular
relations that is used implicitly in our proof.

2.3 Boolean Fourier analysis
As usual in Boolean Fourier analysis, we treat true as −1 and false as +1. In particular,
in this notation, “negation” is expressed as ¬x = −x, “xor” x⊕ y is expressed as x⊕ y = xy,
and “or” is the expressed by the following function:

x ∨ y =
{
−1 if x = −1 or y = −1, and
1 otherwise.

Throughout the paper, we will use all the same symbols to denote the coordinatewise (or
bitwise) application of these functions to tuples, e.g. (x1, x2)⊕ (y1, y2) = (x1y1, x2y2).

We define an inner product space on functions from {−1,+1}n → R as 〈f, g〉 =
Ex[f(x)g(x)]. For a set α ⊆ [n], let

χα(x1, . . . , xn) =
∏
i∈α

xi.

The set of such functions form an orthonormal basis for all functions from {−1,+1}n to R
in the above defined inner product space. Moreover, if α 6= ∅, then Ex[χα(x)] = 0.

I Definition 6 (Fourier expansion). Given a function f : {−1,+1}n → R, we can thus write
it uniquely as a linear combination of this basis –

f =
∑
α⊆[n]

f̂(α)χα

The real quantities f̂(α) are called the Fourier coefficients of f . We abuse the notation f̂(i)
to denote f̂({i}).

The following simple but crucial identity follows from the definitions and is all that we
will need in our analysis.

I Theorem 7 (Parseval’s Identity). For each Boolean valued function f , i.e., f : {−1,+1}n →
{−1,+1},∑

α⊆[n]

f̂(α)2 = 1.

APPROX/RANDOM 2020
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2.3.1 Connection to the long code
We remark, that the function χ{i} corresponds to a valid long code: the function pi encoding
the value i. Also observe that there is a connection between the natural distance defined
by the inner product 〈f, g〉 on Boolean functions and relative Hamming distance of f and
g: This is thanks to the fact that if x, y ∈ {−1, 1} then x = y if and only if xy = 1, and
consequently, the relative Hamming distance of f to the long code word pi = χ{i} can be
expressed as

(
1− f̂(i)

)
/2. This means that the closest valid long code to a function f is the

pi for which f̂(i) is maximal.
These ideas are manifested in the common strategy in rounding a Boolean function f

to a long code: First make sure that coefficients f̂(α) for large sets α are small enough,
then decode to a value i that belongs to a small-enough (ideally 1-element) set α with a
large-enough f̂(α).

3 Label Cover to CSP

This section describes our gadget reduction from Label Cover to CSP(R) where R is the
4-ary relation over Boolean domain defined as

R = {(x, x′, z, z′) | x 6= x′ ∨ z 6= z′}.

I Theorem 8. There exists absolute constant C such that given a Label Cover instance (not
necessarily bipartite) G = (V,E,Σ,Π) with rectangular constraints, there is a reduction from
G that outputs an instance I of CSP(R) such that size(I) = O(size(G)) and

If G is satisfiable, then I is satisfiable as well.
If no labeling can satisfy 1− δ fraction of constraints of G, then no assignment can satisfy
1− Cδ fraction of constraints in I for all δ.

Since the domain of CSP(R) is Boolean, the above reduces from an alphabet Σ of arbitrary
size to the alphabet of size 2. We note that the constant in O(size(G)) above hides exponential
dependency on |Σ|.

We describe the reduction as a probabilistic checker of a solution to G encoded using
a long code, i.e., the proof contains for each u ∈ V a word fu : {−1, 1}|Σ| → {−1, 1}. In
other words, we design the test in such a way that if s : V → Σ is a solution to G, then the
assignment fu 7→ ps(u) passes the test. This will then immediately give the completeness of
the reduction. The test is as follows: Sample an edge e = (u, v) from E uniformly at random,
and then with equal probability do one of the following
1. run a long code test inside fu;
2. run a long code test inside fv;
3. run a constraint test between fu and fv.
We describe the long code test and the constraint test below. Both query the respective
tables of fu and fv at some 4 bits that are generated by a certain randomized algorithm,
and then check whether these 4 Boolean values satisfy the predicate R defined above.

This checker can be viewed as a gadget reduction in the following sense: We replace
each vertex u ∈ V with 2|Σ| Boolean variables labeled by fu(x) for x ∈ {−1, 1}|Σ| (we see
an assignment to such variables as a function fu : {−1, 1}|Σ| → {−1, 1}), and each edge
e = (u, v) with a set of weighted 4-ary constraints on fu and fv, each involving the relation
R and some 4 values of fu and fv (the result is therefore an instance of CSP(R)). These
constraints depend only on the relation Πe.
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To simplify some notation, we assume Σ = [n]. We also assume that the tables for fu’s
are folded so fu is forced to satisfy f(−x) = −f(x). This is a standard technique. Such
a folding is ensured by including only one variable of each pair x,−x, and if the test queries
fu at the bit corresponding to some x that is not included, the bit f(−x) is queried instead,
and the value is negated. As a consequence of this folding, we have to allow for negation
of variables in CSP(R). An important and useful consequence of this is that all “even”
Fourier coefficients of f vanish, i.e., f̂(β) = 0 for all β such that |β| is even. We remark
that folding can be avoided in the construction of the gadget. Nevertheless, it considerably
simplifies the calculations below. Further, for calculations, it is useful to view R as a predicate
ρ : {±1}4 → {0, 1} defined as

ρ(x, x′, z, z′) = 1− (xx′ + 1)(zz′ + 1)
4 .

It is easy to check that ρ(x, x′, z, z′) = 1 if and only if (x, x′, z, z′) ∈ R.
Let us now describe the two probabilistic checkers.

3.1 Long code test

The long code test has on input a table of a function f (= fu or fv), and it is supposed to
check whether this function is a code word of the long code, i.e., there is i such that f = pi.
We design the test so that all these words pass with probability 1. Since we are only using
the predicate R, this further limits possible checks. In fact, we include all checks of the form
f(x1, x2, x3, x4) ∈ R that are passed by all dictators.3

Long code test. Given f : {−1, 1}n → {−1, 1} to test against being a long code word.
Choose x, y, z, µ ∈ {−1, 1}n uniformly at random. Test whether

(f(x), f(x⊕ (µ ∨ y)), f(z), f(z ⊕ (µ ∨ ¬y))) ∈ R. (1)

Note that for all x, y, z, µ ∈ {−1, 1}, (x, x ⊕ (µ ∨ y), z, z ⊕ (µ ∨ ¬y)) ∈ R. This implies
that any dictator function passes the test with probability 1, and therefore provides the
completeness of the test. We also note that this test can give some false positives, e.g. the
function −pi : x 7→ −pi(x) passes the test with probability 1, but is not a long code word. It
is in fact a negation of the word pi. It can be checked that all functions that pass are either
long code words, or their negations. In the decoding, we simply decode the above function f
to i.

The following lemma bounds the probability that the test accepts in the means of the
Fourier coefficients. We remark, that since we want to ensure that f is as close to a valid
long code as possible, the probability should decrease as the coefficients f̂(α) for α 6= {i}
increase. Indeed, the lemma states that this is the case.

I Lemma 9. Assuming that f is folded, the probability the long code test accepts is at most

1− 3
16
∑
|α|>1

f̂(α)2.

3 Any function that passes any such test with probability 1 is called a polymorphism of R, see also [4].

APPROX/RANDOM 2020
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Proof. Assume f(x) =
∑
α f̂(α)χα(x). The probability that the test accepts is

Ex,y,z,µ ρ(f(x),f(x⊕ (µ ∨ y)), f(z), f(z ⊕ (µ ∨ ¬y))) (2)

= Ex,y,z,µ

[
1−

(
f(x)f(x⊕ (µ ∨ y) + 1

)(
f(z)f(z ⊕ (µ ∨ ¬y)) + 1

)
4

]

= 3
4 −

1
4 Ex,y,µ f(x)f(x⊕ (µ ∨ y))− 1

4 Ey,z,µ f(z)f(z ⊕ (µ ∨ ¬y))

− 1
4 Ex,y,z,µ f(x)f(x⊕ (µ ∨ y))f(z)f(z ⊕ (µ ∨ ¬y))

We further simplify this expression one term at a time.

Ex,y,µ f(x)f(x⊕ (µ ∨ y)) = Ex,y,µ
∑
α,β

f̂(α)f̂(β)χα(x)χβ(x⊕ (µ ∨ y)) (3)

=
∑
α,β

f̂(α)f̂(β)Ex[χα(x)χβ(x)]Ey,µ[χβ(µ ∨ y)]

=
∑
α

f̂(α)2 Ey,µ[χα(y ∨ µ)] =
∑
α

f̂(α)2(−1/2)|α|.

The third equality follows since χα and χβ are orthogonal if α 6= β. The last equality follows
from the fact that Ey,µ[y ∨ µ] = (−1) · 3/4 + 1 · 1/4 = −1/2 and coordinates are chosen
independently. Similarly, we get that

Ey,z,µ f(z)f(z ⊕ (µ ∨ ¬y)) =
∑
α

f̂(α)2(−1/2)|α|. (4)

Moving to the next term, we get

Ex,y,z,µ f(x)f(x⊕ (µ ∨ y))f(z)f(z ⊕ (µ ∨ ¬y))

=
∑
α,β

f̂(α)2f̂(β)2 Ey,µ χα(µ ∨ y)χβ(µ ∨ ¬y) =
∑

α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β|. (5)

The last equality follows since Ey,µ[(µ ∨ y) ⊕ (µ ∨ ¬y)] = Ey,µ[¬µ] = 0 and Ey,µ[µ ∨ y] =
Ey,µ[µ ∨ ¬y] = −1/2. The overall acceptance probability is then

3
4 −

1
2
∑
α

f̂(α)2(−1/2)|α| − 1
4
∑

α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β|

= 1− 1
2
∑
α

f̂(α)2((−1/2)|α| + 1/2
)
− 1

4
∑

α∩β=∅

f̂(α)2f̂(β)2(−1/2)|α∪β| (6)

where for the last equality, we used Parseval’s identity. Further, we assumed that f is folded,
and therefore f̂(α) = 0 for all α such that |α| is even. Restricting the sums to α and β with
odd cardinality, and using that for such disjoint α and β, |α ∪ β| is even, the last expression
of (6) can be bounded from above by

1− 1
2
∑
|α|>1

f̂(α)2 (3/8)− 1
4
∑

α∩β=∅

f̂(α)2f̂(β)2(1/2)|α∪β| ≤ 1− 3
16
∑
|α|>1

f̂(α)2 (7)

which concludes the proof. J
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3.2 Constraint test
The constraint test has on input tables for functions f and g corresponding to some u and
v such that (u, v) ∈ E, and it is supposed to test (assuming f and g are correct long code
words) whether the values these functions encode satisfy the constraint given by a rectangular
relation Πe. We construct the test in a similar way as the long code test: We test functions
f and g in 4 bits in such a way that long code words encoding satisfying values pass. In
contrast with the long code test, we do not include all such tests, but only a selection; in
particular, we include only tests that query two values from each function.

We assume that the constraint relation Πe is given by π, σ : [n]→ [m] such that (i, j) ∈ Πe

if and only if π(i) = σ(j), and we denote by yπ the vector in {−1, 1}n such that yπ(i) =
y(π(i)).

Constraint test. Given f, g : {−1, 1}n → {−1, 1} to test against satisfying a constraint Πe

given by (i, j) ∈ Πe if and only if π(i) = σ(j) for fixed π, σ : [n]→ [m]. Choose x, z ∈ {−1, 1}n
and y ∈ {−1, 1}m uniformly at random, and test whether

(f(x), f(x⊕ yπ), g(z), g(z ⊕ (¬y)σ)) ∈ R. (8)

Note that if both f and g are dictators, say f = pi and g = pj , such that π(i) = σ(j) = k

then the above test accepts with probability 1. Indeed, the tuple gets evaluated to

(x(i), (x⊕ yπ)(i), z(j), (z ⊕ (¬y)σ)(j)) = (x(i), x(i)⊕ y(k), z(j), z(j)⊕ ¬y(k))

which is in R for all x, y and z. This provides the completeness of the test.
In the analysis below, we will use the following notation.

I Definition 10. Let α ⊆ [n] and π : [n]→ [m], we denote by π[α] the subset of [m] defined
by π[α] = {k : |π−1(k) ∩ α| is odd}.

The goal of the constraint check is to ensure that functions f , g which are far from
valid long codes that encode values satisfying the constraint pass with low probability.
Unfortunately, the test gives a lot of false positives: it accepts any pair of functions χα and
χβ such that π[α] = σ[β] with probability 1.4 This is nevertheless good-enough since the
long code test provides that relevant α and β contain only one element, and π[{i}] = σ[{j}]
if and only if π(i) = σ(j).

Naturally, the pairs of α and β with π[α] = σ[β] will appear in the analysis below. A
useful fact that will simplify the computation below is that

∏
i∈α xπ(i) =

∏
i∈π[α] xi, for all

x1, . . . , xm ∈ {−1, 1}, which implies that

χα(xπ) = χπ[α](x).

I Lemma 11. Given that both f and g are folded, the probability that the consistency test
accepts is at most

1− 1
4

∑
i,j:π(i) 6=σ(j)

f̂(i)2ĝ(j)2.

4 We note that π[α] = σ[β] is equivalent to χα(xπ(1), . . . , xπ(n)) = χβ(xσ(1), . . . , xσ(n)) for all x ∈
{−1, 1}m.
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Proof. We can compute the acceptance probability in the same way as before, i.e., as

3
4 −

1
4 Ex,y[f(x)f(x⊕ yπ)]− 1

4 Ez,y[g(z)g(z ⊕ (¬y)σ)]

− 1
4 Ex,y,z[f(x)f(x ⊕ yπ)g(z)g(z ⊕ (¬y)σ)] (9)

We have

Ex,y[f(x)f(x⊕ yπ)] =
∑
α

f̂(α)2 Ey[χα(yπ)] =
∑
α

f̂(α)2 Ey[χπ[α](y)] = 0 (10)

where the last equality holds since |α| is odd, and consequently π[α] 6= ∅. Similarly,
Ex,z[g(z)g(z ⊕ (¬y)σ)] vanishes. Thus the probability that the test accepts is

3
4 −

1
4 Ex,y,z f(x)f(x⊕ yπ)g(z)g(z ⊕ (¬y)σ) (11)

= 3
4 −

1
4
∑
α,β

f̂(α)2ĝ(β)2 Ey[χα(yπ)χβ(−yσ)]

= 3
4 + 1

4
∑
α,β

f̂(α)2ĝ(β)2 Ey[χα(yπ)χβ(yσ)]

= 3
4 + 1

4
∑
α,β

f̂(α)2ĝ(β)2 Ey[χπ[α](y)χσ[β](y)]

= 3
4 + 1

4
∑

α,β:π[α]=σ[β]

f̂(α)2ĝ(β)2

= 1− 1
4

∑
α,β:π[α]6=σ[β]

f̂(α)2ĝ(β)2

where the second equality follows from |β| being odd, and the last equality follows from the
Parseval’s identity. Since π(i) = σ(j) implies that π[{i}] = σ[{j}], the claim follows. J

3.3 The full test
Putting the analysis of the two tests together we get the following.

I Lemma 12. Given that both f and g are folded, the probability that the joint test accepts
is at most

1− 1
16
( ∑
|α|>1

f(α)2 +
∑
|β|>1

g(β)2 +
∑

i,j:π(i) 6=σ(j)

f̂(i)2ĝ(j)2)
Proof. Follows directly from Lemmas 9 and 11. J

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 8. The completeness follows in a straightforward way from the two
comments after the description of the tests. We prove the soundness. Suppose that the test
passes with probability 1− δ. We will show that this implies that there is an assignment to
the Label Cover instance that satisfies (1− 16δ)-fraction of constraints.

Our decoding is as follows: for a node v ∈ V , decode v to i ∈ Σ with probability
proportional to f̂v(i)2. Intuitively, we decode to the value i with higher probability if f is
closer to the code word pi = χ{i} or its negative −pi (see also Section 2.3.1). We will show
that in expectation, this decoding satisfies at least 1 − 16δ fraction of constraints, which
proves that there exists a labeling that satisfies at least 1− 16δ fraction of constraints.
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Let 1− δe denote the probability that the test passes when we pick edge e. As test passes
with probability 1− δ, we know that Ee[δe] = δ. Suppose that we pick e = (u, v) with f and
g being the functions corresponding to u and v respectively. From the above lemma, we have
that

1− δe ≤ 1− 1
16
( ∑
|α|>1

f̂(α)2 +
∑
|β|>1

ĝ(β)2 +
∑

i,j:π(i)6=σ(j)

f̂(i)2ĝ(j)2), (12)

and therefore,

16δe ≥
∑
|α|>1

f̂(α)2 +
∑
|β|>1

ĝ(β)2 +
∑

i,j:π(i)6=σ(j)

f̂(i)2ĝ(j)2. (13)

The probability that our decoding satisfies edge e of Label Cover is at least∑
i,j:π(i)=σ(j)

f̂(i)2ĝ(j)2 = 1−
∑
α,β

|α|>1, or |β|>1, or α={i} and β={j} and π(i)6=σ(j)

f̂(α)2ĝ(β)2 (14)

≥ 1−
∑
α,β
|α|>1

f̂(α)2ĝ(β)2 −
∑
α,β
|β|>1

f̂(α)2ĝ(β)2 −
∑
i,j

π(i)6=σ(j)

f̂(i)2ĝ(j)2

= 1−
∑
|α|>1

f̂(α)2 −
∑
|α|>1

ĝ(α)2 −
∑

i,j:π(i) 6=σ(j)

f̂(i)2ĝ(j)2

≥ 1− 16δε

where the first equality follows from Perseval’s identity. Thus, the expected number of
constraints satisfied by the labeling is at least Ee[1 − 16δe] = 1 − 16δ which proves the
required claim with C = 1/16. J

Theorem 1 is stated without the assumption that the constraints are rectangular. This
slightly more general version follows from Theorem 8 by a standard reduction which we
describe below, in the proof of Theorem 13.

4 CSP to Label Cover

In this section, we recall the basic structure of Dinur’s proof of PCP Theorem, and show
how the previous reduction can be used in the alphabet reduction step of Dinur’s proof. The
resulting proof requires a gap amplification step for which we refer to Dinur’s paper [7].

We first prove that the previous reduction can be combined with standard reductions to
get back Label Cover from the CSP.

I Theorem 13 (Alphabet reduction). Given a Label Cover instance G = (V,E,Π,Σ0) with
rectangular constraints, there is a polynomial time reduction that outputs another Label Cover
instance with rectangular constraints G′ = (V ′, E′,Π′,Σ) with alphabet size Σ such that |Σ|
is an absolute constant, size(G′) = O(size(G)) and

If G is satisfiable, then G′ is satisfiable as well.
If every labeling violates δ fraction of constraints of G, then every labeling violates Cδ
fraction of constraints in G′ for an absolute constant C.

Proof. We first convert the Label Cover instance G to a CSP instance I as in Theorem 8.
The CSP instance can be converted to bipartite Label Cover using standard clause-variable
Label-coverization technique. We include the proof here for the sake of completeness. We
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have n vertices x1, x2, . . . , xn corresponding to the variables of I on the left L, and m vertices
corresponding to constraints C1, C2, . . . , Cm of I on the right R. The label set is binary on
the left, and satisfying assignments (at most 16) on the right corresponding to the possible
assignments to four variables in the constraint. We add an edge between u ∈ L and v ∈ R if
xu ∈ Cv. The constraint on this edge enforces that the assignment to xu is consistent with
the assignment Cv assigns to xu.

If there is a satisfying labeling to G, there is a satisfying assignment to I. Using this,
we can assign the variables on the left the satisfying assignment, and the corresponding
assignment to tuples for the vertices of constraints on the right, and thus get a satisfying
assignment to G′. Suppose that every labeling violates at least δ fraction of constraints
of G. From Theorem 8, every assignment violates at least Cδ fraction of constraints in
I. Suppose there is a labeling to G′ that satisfies δ′ fraction of constraints. Consider the
assignment obtained by this labeling on the left. This assignment violates at least Cδm
number of constraints in I. Note that this should violate at least Cδm constraints in G′ and
thus δ′ ≥ C ′δ for an absolute constant C ′. The constraints are in fact projections, and thus
are rectangular too. J

In order for us to use this as Composition step in the PCP of Dinur, we need the
final observation that the output of Gap Amplification applied to a CSP with rectangular
constraints results in a Label Cover with rectangular constraints. Dinur achieves gap
amplification by “graph powering” which is described more formally below.

IDefinition 14 (Constraint Graph Powering). Given a d-regular Label Cover (a.k.a. Constraint
graph) G = (V,E,Σ,Π), we obtain t-th power of it Gt = (V,E′,Σ′,Π′) as follows:

Vertices. The vertices in Gt are the same as vertices in G.
Edges. u and v are connected by k parallel edges in E′ if there are exactly k paths of
length t between u and v in G.
Alphabet. The alphabet of Gt is Σddt/2e . A value a ∈ Σddt/2e is interpreted as assigning
values a : Γ(u) → Σ to ddt/2e elements from Σ. This value is treated as u’s opinion on
Γ(u), the set of all vertices within dt/2e distance from u.
Constraints. An edge (u, v) ∈ E′ is satisfied by a, b ∈ Σddt/2e if and only if the following
holds: there is an assignment σ : Γ(u) ∪ Γ(v) → Σ that satisfies every constraint c(e)
where e ∈ E ∩ (Γ(u)× Γ(v)), and such that

∀u′ ∈ Γ(u), σ(u) = au′ ;∀v′ ∈ Γ(v), σ(v) = bv′

where au′ (and respectively bv′) is the value a (and resp. b) assigned to u′ (and resp. v′).

The output Gt is also a binary CSP, and hence can be viewed as a Label Cover. We claim
that if every constraint of G is rectangular, then every constraint of Gt is rectangular as well.
Let e = (u, v) be an edge in E′ with constraint relation as Re. Suppose (a, b), (a′, b), (a, b′) ∈
Re. This implies that for all (u′, v′) ∈ E ∩ (Γ(u)× Γ(v)) with constraint relation ce,

(au′ , bv′), (a′u′ , bv′), (au′ , b′v′) ∈ Rce
.

Since Rce
is rectangular, (a′u′ , b′v′) ∈ Rce

as well. As this holds for all such u′ and v′,
(a′, b′) ∈ Re, thus proving that Re is a rectangular relation.

Combined with the preprocessing step, the gap amplification theorem of Dinur can be
rewritten as follows.
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I Theorem 15 (Gap amplification). Fix a parameter t. Given a Label Cover G = (V,E,Π,Σ)
where Σ is an absolute constant, there is a polynomial time reduction to output a rectangular
Label Cover instance G′ = (V ′, E′,Π′,Σ′) with the alphabet size |Σ′| = c(|Σ|, t) such that

If G is satisfiable, G′ is satisfiable as well.
If every labeling violates at least δ fraction of the constraints of G, then every labeling
violates at least Ω(δ

√
t) fraction of the constraints of G′.

Choosing t large enough constant and iterating Theorem 13 and Theorem 15 log(m)
times proves the PCP theorem.
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I Lemma 16. There is a gadget with inputs n, m, k, π : [n] → [k], and σ : [m] → [k] that
produces an instance of CSP(R) with variables f(a1, . . . , an) and g(a1, . . . , am) such that
1. if π(i) = σ(j) then pi and pj satisfy all the constraints, and
2. if at least 99% of the constraints are satisfied, then π(if ) = σ(ig).

Proof. First, we bound the probability that the test accepts. For the long code test, starting
with the first expression in (7), we obtain the following bound.

1− 1
2
∑

|α|>1

f̂(α)2 (3/8)− 1
4
∑
α∩β=∅

f̂(α)2f̂(β)2(1/2)|α∪β| ≤ 1− 3
16
∑

|α|>1

f̂(α)2 − 1
16
∑
i 6=j

f̂(i)2f̂(j)2

For the consistency test, we use the bound from Lemma 11. Thus the overall probability
that the whole test accepts is at most

1− 1
16
∑
|α|>1

f̂(α)2 − 1
48
∑
i 6=j

f̂(i)2f̂(j)2 − 1
16
∑
|α|>1

ĝ(α)2 − 1
48
∑
i6=j

ĝ(i)2ĝ(j)2

− 1
12

∑
i,j:π(i)6=σ(j)

f̂(i)2ĝ(j)2.

Given that the acceptance probability is at least 99% > 1− 1/96, we get that∑
|α|>1

f̂(α)2 ≤ 1/6 (15)

∑
i 6=j

f̂(i)2f̂(j)2 ≤ 1/2 (16)

∑
|α|>1

ĝ(α)2 ≤ 1/6 (17)

∑
i 6=j

ĝ(i)2ĝ(j)2 ≤ 1/2 (18)

∑
i,j:π(i)6=σ(j)

f̂(i)2ĝ(j)2 ≤ 1/8 (19)

From Parseval’s identity and (15), we get that 1 ≥
∑
i f̂(i)2 ≥ 5/6. Recall that if is such

i that f̂(i)2 is maximal. Then using the above and (16), we obtain that

f̂(if )2 ≥ f̂(if )2
∑
i

f̂(i)2 ≥
∑
i

f̂(i)4 =
∑
i,j

f̂(i)2f̂(j)2 −
∑
i 6=j

f̂(i)2f̂(j)2

≥ (5/6)2 − 1/2 = 4/9. (20)

Similarly, from (17) and (18), we get ĝ(ig)2 ≥ 4/9. Finally, since f̂(if )2ĝ(ig)2 ≥ (4/9)2 > 1/8,
we have that π(if ) = σ(ig) otherwise (19) cannot be true. J

Theorem 8 can be also directly obtained from this lemma albeit with a worse constant
than in the above proof: Let C = 1% and assume that δ < 1. Given that the resulting
CSP instance has an assignment fails no more than Cδ-fraction of the constraints, we derive
that in at least (1− δ)-fraction of the gadgets, no more than C-fraction of constraints are
unsatisfied. Lemma 16 then shows that the assignment s : u 7→ ifu

is an assignment of the
Label Cover instance that satisfies all the constraints corresponding to these gadgets. This
completes the proof.
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