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SUMMARY 

 
A clinically applicable approach to estimate the in vivo elastic material properties of the heart wall 
is presented.  This strategy utilizes a patient-specific bi-ventricle mechanical model within an 
optimization-type inverse problem solution procedure that accounts for the rigid body motion of 
the heart to estimate elastic properties from untagged cardiac images and corresponding 
hemodynamic measurements.  An example is examined of applying this inverse solution procedure 
to actual clinical patient data, including standard clinical imaging and interventricular pressure 
measurement.  The results show that the inverse solution procedure can obtain a consistent estimate 
for the elastic properties of the heart wall.  
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1  INTRODUCTION 
 
Measures of myocardial stiffness have been identified as important features of a variety of 
cardiovascular diseases, such as myocardial infarction and diastolic heart failure [1].  One specific 
example is pulmonary hypertension (PH), which is a deadly cardio-pulmonary illness that is 
clinically characterized by a hemodynamic state of elevated mean pulmonary arterial pressure [2].  
A particular observation relating to the effects of PH on the human heart is that PH substantially 
changes the mechanical properties of the heart, especially the right ventricle (RV).  Although this 
link between mechanics and PH is clear, more detailed quantitative studies are necessary before 
specific features of mechanical property changes can be available for improved diagnosis and 
prognosis.  Moreover, to study the in vivo mechanical property changes of the RV, a reliable 
method is necessary to quantify these mechanical properties from standard clinically available 
patient data.  Towards addressing this challenge, an inverse problem solution technique is being 
developed, and will be presented herein, to estimate the mechanical material properties of the heart 
wall from clinically attainable cardiac medical images (e.g., CMRI) and measurable 
hemodynamics.  This approach includes a bi-ventricle (i.e., left and right ventricle combined 
geometries only) computational representation of the passive mechanics of the heart combined with 
a shape-matching optimization-based inverse solution estimation procedure that includes a 
registration strategy to account for any rigid rotation and translation of the heart during passive 
function.  The following details the inverse solution estimation procedure, which is followed by 
application of the estimation procedure to a clinical example to evaluate the solution capabilities.  
 
 
2  METHODOLOGY 
 
The overall inverse solution procedure utilized herein is based upon ongoing work of the authors to 
develop a shape-based strategy to inversely estimate mechanical properties of biological structures, 



particularly focused on the human heart [3].  The solution procedure follows the standard pattern of 
a PDE-constrained optimization method for estimation of inverse problem solutions [4].  In 
particular, in this work a bi-ventricle representation of the heart is generated from the patient 
imaging data.  Then, finite element analysis is used to estimate the passive diastolic process by 
applying the patient-specific pressure change between beginning and end diastole to the 
interventricular walls for a given estimate of the ventricular wall material parameters.  Lastly, the 
shape of the ventricle(s) estimated by the finite element analysis is compared to the shape of the 
ventricle(s) extracted from the patient imaging data.  If the comparison of the shape is sufficient, 
then the estimated properties are accepted as the estimate of the actual in vivo mechanical 
properties.  Alternatively, if the shape comparison is not yet sufficient, the estimated parameters are 
updated (corresponding to a standard optimization procedure), and the process is repeated from the 
point of simulating diastole with the bi-ventricle model.   
 
For the present study, the standard transversely isotropic Fung-type model for myocardium was 
used as the constitutive model in the bi-ventricle finite element analysis.  In this representation, 
there are two key material parameters to determine (which were the unknowns in the inverse 
problem): (1) the stiffness parameter, C0, and (2) the nonlinearity parameter, B0.  A standard 
gradient-based interior point optimization method was used to minimize the objective function to 
estimate the material parameters.  Of particular importance to the present development is the 
strategy used to compare the estimated ventricular shape and the target shape at end diastole 
extracted from the patient’s imaging data (i.e., the optimization objective function). 
 
2.1 Objective Function 
 
In order to have an approach to utilize standard clinical imaging data (e.g., without tagging) most 
directly, the strategy proposed is to compare shape, rather than displacement or strain, which would 
require additional pre-processing to obtain.  For the study herein, the standard Hausdorff distance 
was applied for this shape comparison.  Moreover, since the focus of the application of interest 
(PH) is on the RV, only the RV shape, specifically the RV endocardial surface (RVES), was used 
as the target shape extracted from the medical images.  However, prior to calculating the Hausdorff 
distance, it is necessary to account for the potential of organ-level rotation and translation, so that 
only the deformation of the ventricle is compared, not its rigid motion.  Therefore, the process to 
evaluate the objective function includes an iterative closest point rigid registration step to remove 
this rotation and translation.  Fig. 1 shows a flowchart for this approach that was used to compare 
the RV shape estimated by the bi-ventricle finite element analysis to the target RV shape.  
 

 
Fig.1 Flow chart for the method to quantitatively compare the estimated and target RVES shapes. 
 
 



3 RESULTS AND CONCLUSIONS  
 
3.1 Clinical Data Acquisition 
 
Cardiovascular magnetic resonance (CMR) images from a randomly chosen patient who underwent 
both CMR and right heart catheterization within a 2-day period were utilized in this study.  Images 
were acquired using a 1.5-Tesla Siemens Magnetom Espree (Siemens Medical Solutions, Erlangen, 
Germany) equipped with a 32-channel cardiac coil.  Standard breath-held cine imaging was 
acquired with steady-state free precession in the short axis orientation spanning the base to apex (6 
mm slice thickness, 4 mm skip).   Typical imaging parameters included 30 phases per R-R interval, 
matrix 256 by ~144, flip angle 51 deg, TE 1.11 ms, acceleration factor 3.  
 
4.1 Inverse Estimation of Passive Elastic Properties 
 
The inverse solution procedure defined was applied five separate times, with a different randomly 
generated starting estimate of the two material parameters each time to evaluate the consistency of 
the result.  The results were found to be highly consistent for this example patient, with each 
inverse estimation providing nearly identical material parameter estimates.  The average estimate 
of the two material parameters were:  C0 = 1.15 kPa and B0 = 9.6.  These parameters are well 
within the normal range of stiffness and nonlinearity terms reported in the literature.  More 
importantly, Fig. 2 shows the final RVES shape predicted by the finite element analysis with the 
estimated material parameters in comparison to the target RVES shape from the medical images by 
overlapping the corresponding point cloud representations.   
 

 
Fig.2 Comparison of the point cloud representations of the RVES shape from the inversely 
estimated material parameters and the RVES shape extracted from the clinical imaging data. 
 
The material properties estimated by the inverse solution procedure clearly produce an RVES 
shape at the end of the simulated diastolic process that qualitatively matches well with the RVES 
shape extracted from the clinical imaging data at end diastole.   
 
To further examine the behavior of the inverse problem, each of the two material parameters were 
varied in a feasible range, and the optimization objective function (i.e., the Hausdorff distance) was 
calculated for each combination of material parameters.  Fig. 3 shows a plot of this Hausdorff 
distance for each combination of the stiffness and nonlinearity material parameters.  
 

 
Fig.3 Hausdorff distance between the target RVES shape and the simulated RVES shape with 
various combinations of the stiffness and nonlinearity parameters. 
 



What is particularly significant is that the objective function surface is smooth and convex.  
Therefore, it is not surprising that the inverse solution estimation procedure consistently estimated 
nearly the same parameters each time.  However, there is a “trough” in the objective function 
surface where a relatively large range of parameter combinations provided a similarly low error 
estimation.  Although this was not an issue for the current test, there could be some concern that if 
a similar trough exists for other cases, that there may be situations where a unique (or nearly 
unique) solution cannot be obtained from the inverse estimation process.   
 
The results indicate that potential exists to use the proposed method for inversely estimating the in 
vivo elastic material properties of the heart wall with standard clinical cardiac imaging and 
hemodynamic data.  Yet, work still remains to further evaluate and develop the proposed approach.  
In addition to examining more test cases, a particularly important future development is to 
incorporate more realistic material propeties and boundary conditions.   
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