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Abstract: Sparse regression is an efficient statistical modelling technique which
is of major relevance for high dimensional problems. There are several ways of
achieving sparse regression, the well-known lasso being one of them. However,
lasso variable selection may not be consistent in selecting the true sparse model.
Zou (2006) proposed an adaptive form of the lasso which overcomes this issue, and
showed that data driven weights on the penalty term will result in a consistent
variable selection procedure. Weights can be informed by a prior execution of
least squares or ridge regression. Using a power parameter on the weights, we
carry out a sensitivity analysis for this parameter, and derive novel error bounds
for the Adaptive lasso.
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1 Introduction

Let X = (X1, · · · , Xp) with Xj = (X1j , . . . Xnj)
T for 1 ≤ j ≤ p, and Y =

(Y1, . . . , Yn)T. We can characterise their relation in the linear regression
setting

Y = Xβ + ε, (1)

where β = (β1, · · · , βp)T is a vector of regression coefficients and ε ∼
N (0, σ2In), with In denoting the n-dimensional identity matrix. We assume
X and Y to be scaled to mean 0.
The least squares method is the conventional way to estimate these regres-
sion coefficients. However, in high dimension (i.e p > n), the least squares
method, which involves inversion of XTX, cannot be used. Several estima-
tors have been proposed which solve the issue by introducing bias in the
estimation process. Tikhonov (1963) introduced `2 penalised regression or
Ridge regression. The `2 penalty achieves a stable solution through the

This paper was published as a part of the proceedings of the 35th Inter-
national Workshop on Statistical Modelling (IWSM), Bilbao, Spain, 19–24 July
2020. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).



2 A Sensitivity Analysis of Adaptive Lasso

eigen value decay method, which, however, fails to be sparse which is a
desirable property in high dimensional statistics. Tibshirani (1996) intro-
duced the lasso or least absolute shrinkage and selection operator, which
attains sparsity through a `1 penalty. Zou (2006) proposed an adaptive form
of lasso based on data-driven weights in the penalty term that satisfies de-
sired asymptotic properties for high-dimensional problems as suggested by
Fan and Li (2001). We exploit the framework given by Zou (2006) to in-
vestigate and understand the sensitivity of the adaptive lasso. For this we
apply a two-step approach. We employ least squares or ridge estimates,
say β̂j , and a parameter γ to initialise the weights of type 1/|β̂j |γ which
are then embedded in the penalty term. The effect of the parameter γ is
then investigated, theoretically, through error bounds, and experimentally,
through a sensitivity analysis.

2 Adaptive Lasso

Let us consider the linear model (1) which can be written in alternative
form as

E[Y | X] = Xβ = β1X1 + · · ·+ βpXp. (2)

Note that XTX is guaranteed to be positive semi-definite but not necessar-
ily positive definite, even for p < n. We make the following two assumptions
on the design X:

(A1) E[XTε | X] = 0

(A2) limn→∞
1
nX

TX = Σ exists, where Σ is positive definite.

Let β̂ = (β̂1, · · · , β̂p)T be any root-n consistent estimator of β. Then the
adaptive lasso estimates are given by

β̂alasso(λ, γ) = arg min
β

1

2
‖Y −Xβ‖22 + λ

p∑
j=1

wj(γ)|βj |

 (3)

where

wj(γ) = |β̂j |−γ , for γ > 0. (4)

We generally use least squares estimates or ridge estimates as weights since
these are root-n consistent.

3 Main Result

Let β̂alasso(λ, γ) be the adaptive lasso estimates with respect to the param-
eters λ and γ and Σn = 1

nX
TX. Let β∗ be the true regression coefficients.
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Theorem: For any root-n consistent estimate β̂ = (β̂1, · · · , β̂p), we have
the following error bounds:∥∥∥β̂alasso(λ, γ)− β∗

∥∥∥2
2
≤ σ2

n

∥∥Σ−1n
∥∥+

λ2p

n2
∥∥Σ−1n

∥∥2 min
1≤j≤p

|β̂j |−2γ (5)

∥∥∥Y −Xβ̂alasso(λ, γ)
∥∥∥2
2
≤ λ2p

n

∥∥Σ−1n
∥∥ min

1≤j≤p
|β̂j |−2γ (6)

We see that the error bounds increase with increasing λ (increased bias
from regularisation) but tend to decrease with increasing γ.

4 Simulation Study

We simulate the predictors from a standard normal distribution such that,
Xij ∼ N(0, 1) for j = 1, · · · , 20 and i = 1, · · · , n. We assign the regression
coefficients to be (β1, · · · , β6) = (5, 3, 1,−1,−3,−5) and βj = 0 for j > 6.
We consider standard normal noise to construct the response vector yi =∑6
j=1Xijβj + εi where, εi ∼ N(0, 1) for i = 1, · · · , n. The experiment is

repeated for n = 100, 500, 1000.
We analyse the sensitivity of the model for 0 ≤ γ ≤ 1 (γ = 0 yields regular
lasso estimates). We use least squares estimates for the choice of weights.
In Table 1, we compare prediction accuracy of different lasso variants, and
also display the number of active co-variates, p∗. In the first row we give
the results of the adaptive lasso for γ = 1. We specify λ through cross-
validation. In the next three rows we show results for varying γ and fixed
λ. In Figure 1, we show the coefficient path and RMSE curve evaluated
over γ for 100 observations. From Figure 1 we see that as the value of γ
increases, the bias and RMSE decrease which is plausible in the light of
Theorem 1. However, we also notice that it overfits and selects six extra
variables as important. In the last row we show results from the lasso.

5 Conclusion

We have presented a sensitivity analysis for the adaptive lasso with respect
to γ, and obtained novel bounds for the lasso estimates. We have shown
through simulation that the bias due to regularisation with λ can be re-
duced for larger values of γ, however, especially for small sample sizes, at
the potential expense of overfitting and selection of some non-important
variables in the model.
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FIGURE 1. Coefficient path and fitting accuracy w.r.t. γ (λ = 1) for n = 100.

TABLE 1. Comparison of prediction accuracy (RMSE) between different meth-
ods.

n = 100 n = 500 n = 1000

RMSE p∗ RMSE p∗ RMSE p∗

Adaptive Lasso

γ = 1, λ by CV 0.94 6 1.02 6 0.99 6
γ = 0.1, λ = 1 2.20 5 2.02 6 1.94 6
γ = 0.5, λ = 1 0.97 6 1.05 6 1.02 6
γ = 1, λ = 1 0.81 12 0.99 6 0.97 6

Lasso, λ by CV 0.93 10 1.03 6 1.00 6
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