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ABSTRACT
Blind image quality metrics have achieved significant im-
provement on traditional 2D image dataset, yet still being
insufficient for evaluating synthesized images generated from
depth-image-based rendering. The geometric distortions in
synthesized image are non-uniform, which is challenging
for feature representation and pooling. To address this, we
propose an end-to-end deep blind synthesized image quality
metric SIQA-CFP. We particularly design a contextual multi-
level feature pooling module to encode low- and high-level
features, which are extracted by a deep pre-trained ResNet.
Experimental results on IRCCyN/IVC DIBR dataset show
that our method outperforms state-of-the-art synthesized im-
age quality metrics. Our method also achieves competitive
performance on traditional 2D image datasets like LIVE
Challenge and TID2013.

Index Terms— image quality assessment, synthesized
image, feature pooling, DIBR, deep learning

1. INTRODUCTION

Depth-image-based rendering (DIBR) has been widely used
in 3D applications, such as 3DTV [1] and free-viewpoint
video (FVV) [2]. By utilizing a few reference views, it can
synthesize arbitrary new virtual views without knowing the
ground truth. However, such synthesized images suffer from
distortions, especially the geometric distortion, leading to
inferior quality of experience (QoE). To maintain the quality
of service (QoS), being able to evaluate synthesized image
quality thus becomes an emergency.

Traditional image distortions, such as Gaussian blurring,
white noise and blocking artifact, distribute homogeneously
across a distorted image. In contrast, as depth discontinu-
ities occurring around the disoccluded regions of a synthe-
sized view, it leads to locally and non-uniformly distributed
geometric distortions as illustrated in Fig. 1. The sensitiv-
ity of such local structure distortion is related to its contex-
tual regions, i.e., luminance adaptation or contrast masking of
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Fig. 1. Reference image and a DIBR synthesized image. The
blank regions indicate the geometric distortions.

its neighborhoods, as validated by psychology and cognitive
sciences [3]. Feature representation and pooling of synthe-
sized images therefore become challenging, where previous
2D image quality assessment (IQA) methods designed for tra-
ditional distortions are incapable to deal with such distortion.

Recently, deep learning has attracted a great attention in
computer vision tasks, where the convolutional neural net-
work (CNN) is utilized to represent image features rather than
relying on handcraft ones. Despite of its success in general
computer vision tasks, applying deep learning to blind syn-
thesized image quality assessment still encounters difficulties
[4]. First of all, current DIBR synthesized image benchmarks
are too small to train a deep model against overfitting. Trans-
fer learning with pre-trained model may partially solve the
problem. However, a proper feature presentation and pooling
strategy are desired for evaluating synthesized image quality.

This paper proposes a novel end-to-end blind synthesized
image quality with contextual multi-level feature representa-
tion and pooling (SIQA-CMP). We investigate and select low-
and high-level outputs from a pre-trained ResNet model on
ImageNet classification to represent synthesized image fea-
tures. We then design a contextual pooling to aggregate the
multi-level features, and finally regress to subjective scores.
The proposed contextual multi-level feature pooling is be-
lieved to properly represent geometric distortions toward the
image quality, which is validated by testing against the IRC-
CyN/IVC [5] and our DIBR image datasets [6]. Notably, our
metric can be generalized to traditional IQA databases.
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2. RELATED WORK

IQA methods can be divided into full-reference (FR-), reduced-
reference (RR-) and no-reference (NR-) according to the
knowledge of pristine image [7]. Since the ground truth of
synthesized images are usually not available in DIBR-related
applications, we only concern about NR-IQA or blind IQA.

Most blind IQA methods predict distorted image by us-
ing natural scene statistics (NSS), where natural images are
assumed to have a similar statistical distribution in spatial
or transform domain. A common framework comprises two
stages. A distorted image is firstly represented with NSS fea-
tures, and then pooled to get the predicted scores. Typical
metrics include BRISQUE [8], NIQE [9], etc.

Deep learning has recently been introduced into IQA.
Due to the feature extraction power of non-linear convo-
lution, CNN-based NR-IQA methods have outperformed
traditional NR-IQAs, approaching the state-of-the-art FR-
IQAs. Typical examples include [10, 11, 12, 13], where the
representation and pooling of features extracted from CNN
model are diverse. Kang [10] proposed using the final output
and max/min-pooling layers to train the quality prediction
model. Bosse [11] adopted a similar strategy, but improving
the assignment of image patch scores with saliency. Kim [12]
proposed extracting patch-aware features through convolu-
tional network and spatially pooled them to the subjective
scores. More recently, MFIQA [13] proposed using multi-
level features extracted from pre-trained deep model, and
then pooled them with simple global average pooling.

Current blind synthesized image quality metrics still fol-
low the traditional way, but paying extra attention on geomet-
ric distortions. For instance, Tian [14] assumed that holes
regions appear differently before and after morphological op-
erations. The distortion degrees can thus be estimated by ex-
tracting and pooling the differential map features. Gu [15]
proposed using auto-regression model to evaluate the station-
arity of local intensity, where the local region containing ge-
ometric distortions is assumed to result in high variance. A
saliency thresholding is utilized to pool the local features. No
deep learning based methods has been reported to deal with
DIBR synthesized images.

3. FRAMEWORK

The framework of our blind synthesized image quality assess-
ment with contextual multi-level feature representation and
pooling (SIQA-CMP) is illustrated in Fig. 2. Inspired by
transfer learning, we exploit the ResNet-50 model pretrain-
ing on ImageNet database for image classification to extract
multi-level features of synthesized images. We then design
a contextual pooling to encode low- and high-level features,
with the aim of balancing the contextual effect of local fea-
tures. Finally, we train the contextual pooling module with
our new DIBR synthesized image dataset [6].
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Fig. 2. Overall framework of our proposed metric. ’Conv’,
’DeConv’, ’FC’, ’Concat’ and ’GAP’ indicate convolutional,
deconvolutional, fully-connected, concatenate, and global av-
erage pooling layers, respectively.

Multi-level feature representation. As investigated by
previous work, a deep CNN model is a multi-level feature
extractor. Low-level features are learned in the early layers,
while in the deeper layers, more abstract information is per-
ceived [16]. We choose the ResNet-50 pre-trained on Ima-
geNet dataset to extract multi-level features [17]. We select
the two outputs after the 1st and 4th residual groups from
the ResNet-50 model, denoting as {F1,n} and {F4,m}, where
n ∈ [1, 256], and m ∈ [1, 2048]. The original global aver-
age pooling and fully-connected layers after the 4th residual
groups are removed.

As the original ResNet model is trained with 224 × 224
images, we crop each input distorted image into 50 image
patches (224× 224). We particularly use slide-window strat-
egy to maximize the exploitation of a whole image. The ex-
tracted patch-aware features are then pooled through our pro-
posed contextual feature pooling module to predict the quality
scores.

Contextual feature pooling. From computational cogni-
tive science, an early convolutional layer has local receptive
field with respect to local regions in the image. The recep-
tive field is enlarged in a later convolutional layer, becoming
sensitive to larger scale information. The benefit of multi-
level feature pooling has been validated in [13], where the
multi-level features are separately averaged along the depth
dimension, and then simply pooled for regression.

In synthesized images, geometric distortions are non-
uniform and related to its surrounding regions. For instance,
a small hole yet having structure features would be insensitive
if it is masked by complex textures in the surroundings. Ex-
amples of extracted features are shown in Fig. 3. We can see



(a) The distorted image patch
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Fig. 3. Feature maps extracted by using pre-trained ResNet-
50 model. (a) is a distorted image patch, while its low- and
high-level feature maps are sorted from top to bottom show-
ing on its right. Note that (b) depicts structure features of
local regions, while (c) emphasizing the context of holes.

that the structure features of holes are sensitive in low-level
features, but being obsolete in the high-level features. An
early averaging and a simple pooling cannot represent such
contextual relationship properly.

Instead, we firstly aggregate low- and high-level features
by warping the high-level features to align the size of the low-
level features. Particularly, since F1,n is 28× 28× 256 while
F4,m is 7 × 7 × 2048, we encode the outputs with a 1 ×
1 convolutional layer, so as to align the channels. We then
warp F4,m to the scale of F1,n via a deconvolutional layer.
The warped high-level features and the low-level features are
aggregated, combining with the pristine 7 × 7 × 2048 high-
level features by using the global average pooling 1.

Our contextual pooling is different from previous pooling
strategies from two aspects. First, high-level features are ag-
gregated to low-level features with warping. Compared with
[13], the contextual information is preserved before the global
average pooling. Secondly, we additionally encode the high-
level features into the concatenate layer. The main idea is to
weight the local structure information and contextual infor-
mation. It fits for the observation that geometric distortions
are contextual-aware.

Database. Considering that current benchmark IRC-
CyN/IVC DIBR image dataset contains only 3 reference
scenes and 84 distorted images [5], we build a new DIBR
image dataset, which contains 12 total different reference
scenes [6]. Similar to IRCCyN/IVC DIBR image dataset, we
warp the reference images to 4 different virtual viewpoints,
and then apply 7 DIBR algorithms to generate a total of 336
synthesized images. To validate the performance of the pro-
posed metric, we also test it on IRCCyN/IVC DIBR image
dataset, and most popular 2D image quality datasets, LIVE
[18] and TID2013 [19]. The LIVE IQA dataset contains only
homogeneous distortions, e.g., Gaussian noise, Gaussian blur.

1https://github.com/wangxiaochaun/Contextual-Multi-level-Feature-
pooling-for-synthesized-image-quality-assessment

TID2013 dataset contains 24 kinds of distortion, where the
14th distortion Non eccentricity pattern noise and the 15th
distortion Local block-wise distortions of different intensity
are similar to geometric distortion, which distribute locally in
the images.

Training and testing. To train the metric, we randomly
divided our DIBR image dataset into two subsets, training
(80%) and testing (20%). The subsets were divided with re-
spect to the reference scenes, so as to prevent overfitting.
The mean squared error (MSE) between the predicted image
scores and the subjective scores was used as the loss func-
tion, with a stochastic gradient optimizer with momentum of
0.9 and initial learning rate of 10−3. The training iterated for
7 epochs, where an early stopping is used to prevent overfit-
ting. During the testing stage, the distorted image was firstly
cropped into patches. The predicted patch scores were aver-
aged to produce the final quality score. To testify the proposed
metric, we used three standard evaluation indices, i.e., Spear-
man’s rank order correlation coefficient (SROCC), Pearson’s
linear correlation coefficient (PLCC) and Root mean squared
error (RMSE).

4. ABLATION STUDY

To analyze the effectiveness of proposed feature representa-
tion and contextual pooling strategy, we tested them indepen-
dently. Firstly, we substituted the pre-trained ResNet-50 with
another pre-trained model VGG-19 on ImageNet dataset [20],
while the outputs of Conv3 4 and Conv5 4 are exploited as
low- and high-level features, respectively (Row 1 of Table
1). We then tested each feature level separately, where the
extracted features were directly averaged and pooled (Row 2
and 3 of Table 1). Thirdly, we tested the performance of in-
verse feature aggregation by warping the low-level features
to the scale of the high-level features (Row 4 of Table 1).
Finally, we reused the two level features from the ResNet
model, but removing the contextual pooling (Row 5 of Table
1). The extracted multi-level features were directly averaged
and pooled. The results are shown in Table 1. Each result is
the average of ten-fold-cross-validation with random training
and testing subsets. The blue tests indicate the highest perfor-
mance among each group.

We can draw three conclusions from the table. First, the
backbone network benefits the performance, i.e., the ResNet-
50 with deeper and advanced network architecture is superior
than VGG-19. Secondly, the single-level features are insuffi-
cient for evaluating synthesized image quality. The individual
low-level features or high-level features with straight pooling
is inferior than our method, which validates the reasonability
of contextual pooling to some extent. In paticular, the high-
level features followed by simple pooling like previous work
[10, 11, 12] performs even inferior than that with only low-
level features, indicating that contextual information conceals
distortions. Finally, the inverse warping is inferior than our



Table 1. Performance comparison of different strategies. ’X’
indicates the parameters in the CNN model are being updated,
while other rows are results without parameter updating.

Update
back-
bone

Strategy SROCC PLCC RMSE

X VGG-19 0.872 0.908 0.099

- {F1,n} 0.878 0.910 0.107

- {F4,m} 0.826 0.826 0.124

X inv. warping 0.865 0.909 0.094

X w/o c.f.p 0.878 0.910 0.093

- Ours 0.879 0.938 0.065

Table 2. SROCC and PLCC comparison on our DIBR dataset
and the IRCCyN/IVC DIBR image dataset. Italics indicate
CNN-based methods.

Type
Our dataset IRCCyN/IVC

SROCC PLCC SROCC PLCC

NR,2D BRISQUE 0.312 0.301 0.320 0.307
NR,2D NIQE 0.109 0.102 0.118 0.115
NR,2D Kang 0.240 0.295 0.281 0.302
NR,2D MFIQA 0.156 0.510 0.346 0.345

FR,DIBR 3DSwiM 0.612 0.632 0.616 0.662
FR,DIBR SDRD 0.742 0.788 0.810 0.761

NR,DIBR NIQSV+ 0.662 0.711 0.667 0.711
NR,DIBR APT 0.708 0.725 0.716 0.730
NR,DIBR Ours 0.879 0.938 0.967 0.976

method, stating that emphasizing local information is against
the perception of geometric distortion. Additionally, we uti-
lize all the features without the proposed contextual pooling,
as applied in [13]. The results validate that the early GAP
and simple pooling is insufficient for evaluating synthesized
image quality.

5. BENCHMARK

We benchmarked four NR-IQA metrics (BRISQUE [8],
NIQE [9], Kang [10], and MFIQA [13]) designed for tra-
ditional 2D image, and four DIBR-related metrics (3DSwiM
[21] and SDRD [22] as FR-IQAs, NIQSV+ [14] and APT
[15] as NR-IQAs). For the CNN-based metrics, we adopted
the same training and testing on our DIBR image dataset.
The trained models are evaluated on the IRCCyN/IVC DIBR
image dataset. The results are shown in Table 2. Our metric
achieved higher correlation scores than the previous methods.
Particularly, the performance outperforms previous FR-IQAs.

Table 3. SROCC comparision on traditional image datasets.

Train Test Bosse [11] MFIQA Ours

LIVE LIVE 0.956 0.964 0.986

TID2013 TID2013 0.882 0.240 0.910
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Fig. 4. SROCC and PLCC comparison of individual dis-
tortion types on the TID2013 dataset. First four groups are
SROCC, next four are PLCC. The partially shown distortion
types are 8th-Gaussion blur, 10th-JPEG compression, 14th-
Non eccentricity pattern noise and 15th-Local block-wise dis-
tortions of different intensity.

As depicted in Table 3, we additionally trained and tested
the proposed metric on LIVE and TID2013 datasets, showing
our metric achieved significant improvement comparing to
previous CNN-based methods. Particularly, we separately
tested the correlation scores on the 14th and 15th distortions
in the TID2013. As in Fig. 4, we can find the different
behaviors of feature representation and pooling. Generally,
multi-level features representation (MFIQA and Ours) per-
forms better than single outputs and straight pooling ([11]),
while the contextual pooling outperforms existing pooling
strategies, e.g., max-/min-pooling ([10, 11]) and early GAP
[13], especially on those local-distributed distortions.

6. CONCLUSION

We proposed a novel end-to-end blind synthesized image
quality metric SIQA-CFP. By analyzing of geometric dis-
tortion and investigating effectiveness of features extracted
from pre-trained CNN model, we proposed using multi-level
feature to represent local and contextual information. We par-
ticularly designed a contextual pooling to aggregate the low-
and high-level features. The proposed method outperforms
previous work both on our DIBR dataset and the benchmark
IRCCyN/IVC DIBR image dataset. The contextual multi-
level feature pooling can also benefit the performance on
traditional image dataset, especially on the locally-distributed
distortion types.
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