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Abstract—Automatic visual fire detection is used to com-
plement traditional fire detection sensor systems (smoke/heat).
In this work, we investigate different Convolutional Neural
Network (CNN) architectures and their variants for the non-
temporal real-time bounds detection of fire pixel regions in
video (or still) imagery. Two reduced complexity compact CNN
architectures (NasNet-A-OnFire and ShuffleNetV2-OnFire) are
proposed through experimental analysis to optimise the compu-
tational efficiency for this task. The results improve upon the
current state-of-the-art solution for fire detection, achieving an
accuracy of 95% for full-frame binary classification and 97%
for superpixel localisation. We notably achieve a classification
speed up by a factor of 2.3x for binary classification and
1.3x for superpixel localisation, with runtime of 40 fps and
18 fps respectively, outperforming prior work in the field pre-
senting an efficient, robust and real-time solution for fire region
detection. Subsequent implementation on low-powered devices
(Nvidia Xavier-NX, achieving 49 fps for full-frame classification
via ShuffleNetV2-OnFire) demonstrates our architectures are
suitable for various real-world deployment applications.

Index Terms—fire detection, real-time, non-temporal, reduced
complexity, convolutional neural network, superpixel localisation.

I. INTRODUCTION

Automatic real-time fire (or flame) detection by analysing
video sequences is increasingly deployed in a wide range of
auto-monitoring tasks. The monitoring of urban and industrial
areas and public places using security-driven CCTV video
systems has given rise to the consideration of these systems
as sources of initial fire detection (in addition to heat/smoke
based systems). Furthermore, the on-going consideration of
remote vehicles for automatic fire detection and monitoring
tasks [[1]], [2] further enhances the demand for autonomous fire
detection from such platforms. Detecting fire in images and
video is a challenging task among other object classification
tasks due to the inconsistency in its shape or pattern and varies
with the underlying material composition.

Many earlier traditional approaches in this area involve
attribute based approaches, such as the colour [3], [4]] and they
can be combined in high-order temporal approaches [S[]—[7].
The work of [3]] uses a colour based threshold approach on in-
put video. This is expanded in the work [5] which incorporates
both colour and motion, utilising a colour histogram to classify
fire pixels and examine the temporal variation of the pixels to
determine which are fire. The work by [6] further explores
temporal variation in the Fourier coefficients of fire regions

to capture the contour of the region. Slightly more recent
attribute based approach [7] models flame coloured objects
using Markov models to help distinguish the flames.

Fig. 1. An illustrative example of binary full-frame fire detection (A) and
localisation via superpixel segmentation (B) (fire = green, no-fire = red).

Before the advent of deep learning, fire detection work
mainly used shallow machine learning approaches using ex-
tracted attributes as the input [8]-[10]. The work by [§]]
uses a shallow neural network incorporating a single hid-
den layer. The model feeds six characteristics of the flame-
coloured regions as an input mapping to a hidden layer of
seven neurons. A two-class Support Vector Machine (SVM)
is used in the work [9] to find a separation between pixels in
candidate fire regions to try and remove noise from smoke and
differences between frames. Following from this, the work of
[10] develops a non-temporal approach that uses a decision
tree as the classification architecture, feeding colour-texture
feature descriptors as the input, and achieves 80-90% mean
true positive detection, 7-8% false positive.

With the advent of deep learning, the focus has shifted from
identifying explicit image attributes. A large increase in the
classification accuracy has come from creating an end-to-end
solution for fire classification [[11f], [12]] and localisation on
full-frame/superpixel images (Figure [I), achieved by feeding
raw image pixel data as input to a Convolutional Neural
Network (CNN) architecture. The work of [[I1] proposes a
custom architecture consisting of convolution, fully connected
and pooling layers on a custom dataset using Generative Ad-
versarial Networks (GAN). The work of [[12]] considers deep
CNN architectures such as VGG16 [13]] and ResNet50 [[14] for
the fire detection task. However, these strategies consists of a
large number of parameters which lead to slower processing
time and may not be suitable for deployment on low-powered



embedded devices as commonly found in deployed detection
and wide area surveillance systems.

Several CNN architectures [[15]-[18]] are designed to have
a low complexity without compromising on the accuracy. The
introduction of depth-wise separable convolutions involves
splitting up a conventional H x W filter into a H x 1
depth-wise filter followed by a 1 x W point-wise filter,
vastly reducing the number of floating-point operations and
reducing the overall parameter size in a CNN architecture.
Recent advancement in creating compact CNN architectures,
which focuses on reducing the overhead costs of computation
and parameter storage, involves pruning CNN architectures
and compressing the weights of various layers [19], [20]
without significantly compromising original accuracy. In the
work of [20]], a greedy criteria-based pruning of convolutional
kernels by backpropagation is proposed. This strategy [20] is
computationally efficient and maintains good generalisation in
the pruned CNN architecture. An approach by [19] presents
acceleration method for CNN architectures, by pruning con-
volutional filters that are identified as having a small effect on
the output accuracy. By removing entire filters in the network
with their connecting feature maps, it prevents an increase in
sparsity and reduces computational costs. A one-shot pruning
and retraining strategy is adopted in this work [19] to save
retraining time for pruning filters across multiple layers, which
is critical for creating a reduce complexity CNN architecture.

Recent works on non-temporal fire detection [21]], [22]] out-
perform the conventional architectures by simplifying a com-
plex high performance, generalised architecture. The FireNet
and InceptionV1Onfire are proposed in the work of [21]], where
the architectures are simplified version of AlexNet [23]] and
InceptionV1 [24] respectively. Both architectures offer better
performance in fire detection over their parent architectures
where FireNet [21] achieves 17 frames per second (fps) with
Accuracy of 0.92 for the binary classification task. Further
architectural advancements, InceptionV3 [25]] and InceptionV4
[26] architectures are experimentally simplified in the most
recent work of [22], which achieves Accuracy of 0.96 for
full-frame and 0.94 for superpixel classification task. Both
architectures achieve high accuracy while maintaining a high
computational efficiency and throughput.

In this work, we explicitly consider non-temporal fire de-
tection strategy by proposing significantly reduced complexity
CNN architectures compared to prior work of [10], [21], [22].
Our key contributions are the following:

— We propose two simplified compact CNN architectures
(NasNet-A-OnFire and ShuffleNetV2-OnFire), which are
experimentally defined as architectural subsets of seminal
CNN architectures [[17], [[18]] offering maximal perfor-
mance for the fire detection task.

— We employ the proposed compact CNN architectures
for (a) binary fire detection, {fire, no-fire}, in full-frame
imagery and (b) in-frame classification and localisation
of fire using superpixel segmentation [27].

II. PROPOSED APPROACH

We consider two CNN architectures, NasNet-A-Mobile [|18]]
and ShuffleNetV2 [17]] (Section [[I-A), which are experimen-
tally optimised using filter pruning [19] for fire detection
(Section [[T-B). Subsequently, we expand this work for in-frame
fire localisation via superpixel segmentation (Section [[I-C).

A. Reference Architectures

We select NasNet-A-Mobile [18] and ShuffleNetV2 [17]
due to their compactness and high performance on ImageNet
[28] classification. Both architectures have high level struc-
tures, containing normal cell and reduction cell, however with
fundamental differences in how these cells are structured at a
low level. Due to the modular structures of the architectures,
it is easy to remove/modify different cells.

Normal Cell

Fig. 2. Normal and reduction cells of NasNet-A-Mobile [18|.

Reduction Cell

NasNet-A-Mobile [18]] consists of an initial 3 x 3 convolution
layer followed by a sequence repeating three times that con-
sists of a number of reduction cells and four normal cells. The
normal and reduction cells (Figure [2)), both feed in the input
from the previous cell and the cell before, create a residual
network. The only convolution layers present in the normal cell
are three 3x 3 and two 5 x5 depth-wise separable convolutions.
The reduction cell contains one 3 x 3, two 5 x 5, and two 7 x 7
depth-wise separable convolutions. The rest of the layers are
either averaging or max pooling layers.

ShuffleNetV2 [[17] consists of an initial 3 x 3 convolution layer
followed by a 3 x 3 max pooling layer. This is followed by
three reduction and normal cells (Figure [3). There is only one
reduction cell for each loop and the number of normal cells
is [3,7,3]. This is followed by a final point-wise convolution
and a global pooling layer. The normal cell starts by splitting
the number of channels in half, where one half is unchanged
and the other half has three convolutions with two point-wise
1 x 1 convolutions and a 3 x 3 depth-wise convolution. The
output dimension is equal to the input in the normal cell. The
channels are concatenated and shuffled in order to mix the
channels across the branches. This is applied in both halves
of the cells. The reduction cell does not split the channels and
both branches receive the whole input. The right branch of the
reduction cell is similar to the right branch of the normal cell
however the depth-wise convolution has a stride of 2 to reduce
the height and width dimensions by two. The use of point-wise



convolutions and depth-wise convolutions allow the network
to go very deep without the number of parameters blowing

up.
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Fig. 3. Normal and reduction cell of ShuffleNetV2 [17].

B. Simplified CNN Architectures

We experimentally investigate variations in architectural
configurations of each reference architecture (Section |II-A)).

In the simplified CNN architectures, we use transfer learning
from network models training on ImageNet [28|] by removing
the final fully connected layer from both architectures [[17]],
[18] and create a new linear layer that mapped to a single value
for binary {fire, no-fire} classification. The entire architecture
is frozen except the final linear layer for the first half of
training. Subsequently, we unfreeze the final convolution layer
for ShuffleNetV2 [17]], and the final two reductions, normal
cell iterations for NasNet-A-Mobile [18]]. This prevents the
network over-fitting during training and allowing us to train
the model longer for better generalisation.

1) Simplified NasNet-A-Mobile: The base model for
NasNet-A-Mobile [18]] is pre-trained with 1,056 output chan-
nels for ImageNet [28]] classification. The main experimenta-
tion of this architecture revolves around the number of normal
cells in the model. In our simplified NasNet-A-Mobile archi-

TABLE I

NASNET-A-MOBILE VARIANTS WITH DIFFERENT COMPONENTS.
Reduced
Filter

Architecture ANy =2 Ay =4 Az = AN
NasNetyo1
NasNetyo2
NasNety,o3
NasNetqy,o4
NasNetyos5
NasNetyo6
NasNety,or

NasNetyos

Az =0

tectures, we experiment with eight different variants, with four
different architectural structure differences with and without

reduced filters (Table[l). The number of filters is calculated by
the number of penultimate filters specified in the architecture.
We reduce this number from 1,056 to 480 penultimate filters
for the reduced filter variants. This creates a reduction of 60%
of the filters throughout the whole model. This drastically
reduces the number of parameters but achieves a very low
accuracy for the each of the reduced filter variants (Figure
MLA). There is a sharp difference in accuracy between the
reduced filter variants and full filter variants in the NasNet-A-
Mobile architecture [18] (points {a,b,c,d} vs. points {e,f,g,h}
in Figure @} A) with the highest reduce filter variant achieving
0.77 accuracy compared to 0.95 for the corresponding full
filter variant.

2) Simplified ShuffleNetV2: The number parameters in
ShuffleNetV2 architecture [17]] are 340, 000. Upon examining
the distribution of parameters in the architecture, over 200, 000
of the parameters are contained in the final convolutional layer.
Therefore we freeze the parameters in the first half of the
network and experimentally incorporate the filter pruning strat-
egy to further reduce the complexity of the final convolutional
layer, without compromising the accuracy. We adopt a similar
approach proposed in the work of [19], which computes the
L2-normalisation of the filters, and subsequently we sort and
remove the lower valued filters. The intuition behind this
strategy is that filters with lower values will be less effective
to the final output of the architecture. The model is further
retrained with the removed pruned filters.

TABLE II
SHUFFLENETV?2 [[17] PRUNING VARIANTS ON THE FINAL
CONVOLUTIONAL FILTERS.

Pruned  Final Convolutional — Total
Architecture Filters  Layer Parameters Parameters
Shuf fleNetyo1 128 196,608 342,897
Shuf fleNet,o2 256 147,456 292,897
Shuf fleNetyos 384 122,800 267,937
Shuf fleNetyoa 512 98,304 242,977
ShuffleNet,os5 640 73,728 218,017
Shuf fleNetyos 768 49,152 193,057
Shuf fleNet,or 896 24,576 168,097
Shuf fleNet,os 960 12,288 155,617
Shuf fleNetyog 992 6,144 149,377

Table || shows the number of filters pruned in the different
variants of the ShuffleNetV2 architecture. We start by pruning
128 filters that represents 1/8th of the number of filters
in the final convolutional layer. We remove 128 filters in
each iteration and continued as long as the accuracy does
not degrade (Shuf fleNet,p1 to Shuf fleNet,o7). We sub-
sequently prune a further 64 filters in Shuf fleNet,os and
32 filters in ShuffleNet,g9 variants however at this stage
we stop pruning due to a decrease in accuracy (points 8,9 in
Figure 4} B).

With exhaustive experimentation using both architectures,
we propose following two reduced complexity architectural
variants modified for the binary {fire, no-fire} classification
task.
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Fig. 4. Parameter size and accuracy comparison for the two architecture variants: (A) Nasnet-A-Mobile where a to e represents NasNety01 - NasNetyos.
(B) ShuffleNetV2 where 1-9 represents Shuf fleNetV 2,01 - Shuf fleNetV 2,09.
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Fig. 5. Reduced complex1ty architecture for NasNet-A-OnFire optimised for
fire detection.
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NasNet-A-OnFire is a variant based on NasNet,g3 such
that each group of normal cells in the model only contain
two normal cells compared to the previous four (Table [I}
highlighted in underline). The normal cells and reduction
cells in the NasNet-A-OnFire architecture remain the same as
shown in Figure 2] The total number of parameter in NasNet-
A-OnFire is 3.2 million.
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Fig. 6. Reduced complexity architecture for ShuffleNetV2-OnFire optimised
for fire detection.

ShuffleNetV2-OnFire is a variant of Shuf fleNet,os (Ta-
ble highlighted in underline) with the same fundamental
architecture design as ShuffleNetV2. In ShuffleNetV2-OnFire
(Figure [6), by applying filter pruning strategy, we reduce the
number of filters in the final convolutional layer, which leads
to a total number of the model parameter of only 155, 617.

We employ these two CNN architectures for {fire, no-fire}
classification task applied on full frame binary and superpixel
segmentation based fire detection.

C. Superpixel Localisation

We further expand this work fo in-image fire localisation
by using superpixel regions [27], contrary to the earlier work
[4], [5] that largely relies on colour based initial locatio-
sation. Superpixel based techniques over-segment an image

into perceptually meaningful regions which are similar in
colour and texture. We use Simple Linear Iterative Clustering
(SLIC) [27]], which performs iterative clustering in a similar
manner to k-means to reduced spatial dimensions, where the
image is segmented into approximately equally sized super-
pixels (Figure [I}B). Each superpixel region is classified using
proposed NasNet-A-OnFire/ShuffleNetV2-OnFire architecture
formulated as a {fire, no-fire}, for fire detection task.

III. EVALUATION
A. Experimental Setup

In this section, we present the dataset and implementation
details used in our experiments.

1) Dataset: We use the dataset created in the work [21] to
train and evaluate the performance of our proposed architec-
tures. The dataset consists of 26, 339 full-frame images (Figure
[TFA) of size 224 x 224, with 14, 266 images of fire, and 12,073
images of non-fire. Training is performed over a set of 23, 408
images (70 : 20 data split) and testing reported over 2,931
images. The superpixel (SLIC [27]) training set consists of
54,856 fire, and 167,400 non-fire superpixels with a test set
of 1178 fire and 881 non-fire examples.

2) Implementation Details: The proposed architectures are
implemented in PyTorch [29] and trained with the following
configuration: backpropagation optimisation performed via
Stochastic Gradient Descent (SGD), binary cross entropy loss
function, learning rate (Ir) of 0.0005, and 40 epochs. We
measure the performance using the following CPU and GPU
configuration: Intel Core i5 with 8GB of RAM CPU, and
NVIDIA 2080Ti GPU.

B. Results

We present the results of the simplified architectures com-
pared to the state-of-the-art for binary classification (Section
[T-BT) and superpixel localisation task (Section [[II-B2). For
statistically comparing different architectures, we use the met-
rics of true positive rate (TPR), false positive rate (FPR),
F-score (F), Precision (P) and Accuracy (A), Complexity
(number of parameters in millions, C), the ratio between



accuracy and the number of parameters in the architecture
(A:C) and achievable frames per second (fps) throughput.

1) Binary Classification: From the results presented in
Table || for full-frame {fire, no-fire} classification task, our
proposed architectures achieve comparable performance with
prior works [21]], [22]. We present only the highest performing
variants, NasNet-A-OnFire and ShuffleNetV2-OnFire, in our
experimentation (Table [[TTHower).

TABLE III
THE STATISTICAL PERFORMANCE FOR FULL-FRAME BINARY FIRE
DETECTION. UPPER: PRIOR WORKS. LOWER: OUR APPROACHES.

Architecture TPR FPR F P A

FireNet [|2|| 092 0.09 093 093 092
Inception V1-OnFire \\ 0.96 0.10 0.94 0.93 0.93
Inception V3-OnFire \\ 0.95 0.07 095 095 09%4
Inception V4-OnFire \\ 0.95 0.04 096 0.97 0.96
NasNet-A-OnFire ~ 0.92 0.03 094 096 0.95
ShuffleNetV2-OnFire 093 0.05 094 094 0095

Both the architectures achieve a FPR less than or equal to
the minimum FPR in the current state-of-the-art approaches
[21], (Table [upper) with ShuffleNetV2-OnFire achiev-
ing FPR: 0.05 and NasNet-A-OnFire with FPR: 0.03 (com-
pared to Inception V4-OnFire with FPR: 0.04). The
overall accuracy remains consistent with both proposed archi-
tectures achieving A: 0.95. Although there is a slight decrease
in TPR for both architectures (Table lower), still it achieves
comparable TPR with prior works considering the compact-
ness and reduced complexity of the architectures as presented
in Tables [V] and [VI] NasNet-A-OnFire offers the best perfor-
mance in terms of FPR (FPR: 0.03), however ShuffleNetV2-
OnFire achieves better TPR with 0.93. ShuffleNetV2-OnFire
outperforms InceptionV3-OnFire at FPR (FPR: 0.05 vs
0.07) and accuracy (A: 0.95 vs 0.94), both being the smallest
architectures (Table [VI).

2) Superpixel Localisation: For superpixel based fire de-
tection, NasNet-A-OnFire achieves the highest TPR with 0.98
(Table [[VHower) outperforming the prior work achieving TPR:
0.94 (InceptionV3-OnFire/InceptionV4-OnFire , Table
upper). However NasNet-A-OnFire suffers from a high FPR
of 0.15 compared to InceptionV3-OnFire/InceptionV4-OnFire
[22]] with FPR: 0.07 and FPR: 0.06 respectively. ShuffleNetV2-
OnFire achieves a lower FPR (FPR: 0.08, Table |I_VHower),
which is comparable to prior work [21], and achieves a
similar accuracy (A: 0.94). Both of our architectures achieve a
higher F-score (F: 0.98) and Precision (P: 0.99) outperforming

prior work [21]], [22].

TABLE IV
LOCALISATION RESULTS USING WITHIN FRAME SUPERPIXEL APPROACH.
UPPER: PRIOR WORKS. LOWER: OUR APPROACHES.

Architecture TPR FPR F P A

InceptionV 1-OnFire |21 092 0.17 09 0.88 0.89
InceptionV3-OnFire 22 094 0.07 094 093 094
InceptionV4-OnFire E 0.94 0.06 094 094 094
NasNet-A-OnFire 0.98 0.15 098 0.99 0.97
ShuffleNetV2-OnFire 094 0.08 097 099 094

Qualitative  examples of fire localisation, using

ShuffleNetV2-OnFire, are illustrated in Figure Each
example presents challenging scenarios that could lead to
false positive detection. These examples demonstrate the
robustness of the proposed architecture for the fire detection
task in various challenging scenarios.

OnFire on two challenging scenarios: (A) image containing a fireman wearing
an outfit similar colour to the fire and (B) image containing a red colour truck
(fire = green, no-fire = red).

3) Architecture Simplification vs Speed: Table [V] presents
the computational efficiency and speed for full-frame clas-
sification using different architectures. ShuffleNetV2-OnFire
improves on the computational efficiency by 7.8 times achiev-
ing 608.97 compared to InceptionV1-OnFire achieving
77.9 while running on CPU configuration. It also improves
on classification speed (fps: 40) compared to FireNet
(fps: 17), while having 437x fewer number of parameters (C:
0.156 million), and achieving a higher accuracy (A: 95%).
Whilst computing on a GPU configuration, the inference time
increases further for ShuffleNetV2-OnFire achieving 69 fps,
and NasNet-A-OnFire achieves 35 fps (Table M-lower). Over-
all ShuffleNetV2-OnFire is the best performing architecture
for full-frame binary classification in terms of accuracy and
efficiency (A:C: 608.7), outperforming prior works [21].

TABLE V
COMPUTATIONAL EFFICIENCY FOR FULL-FRAME CLASSIFICATION.
Architecture C A(%) A:C fps
FireNet [E|] 68.3 91.5 1.3 17
InceptionV 1-OnFire 1.2 93.4 77.9 8.4
NasNet-A-OnFire 3.2 95.3 29.78 7
ShuffleNetV2-OnFire 0.156 95 608.97 40
NasNet-A-Mobile (GPU) 3.2 95.3 29.78 35
ShuffleNetV2-OnFire (GPU) 0.156 95 608.97 69
TABLE VI
COMPUTATIONAL EFFICIENCY FOR SUPERPIXEL LOCALISATION.
Architecture C A(%) A:C fps
InceptionV3-OnFire [22 0.96 94.4 98.09 13.8
InceptionV4-OnFire [22 718 956 1337 12
NasNet-A-OnFire (GPU) 3.2 97.1 30.34 5
ShuffleNetV2-OnFire (GPU) 0.156 94.4 605.13 18

In Table we present the computational efficiency of
superpixel localisation (all superpixels are processed for each
frame) running on a GPU configuration. Although NasNet-
A-OnFire achieves the highest accuracy obtaining A: 97.1,
however it operates at the lowest fps (fps: 5). ShuffleNetV2-
OnFire, consists of only 0.156 million parameter, provides the



maximal throughput of 18 fps, outperforming InceptionV3-
OnFire [22] (fps: 13.8), as presented in Table [VIHower. We
also measure the runtime of our proposed architectures on
low-powered embedded device (Nvidia Xavier-NX [30]) as
presented in Table The PyTorch implementation operates
at a lower speed (fps: 6 & 18) compared to standard CPU/GPU
implementation. However, conversion to 16-bit floating point
numerical accuracy (via TensorRT, FP16) improves the infer-
ence time by ~3-6 times, achieving fps of 35 (NasNet-A-
OnFire) and 49 (ShuffleNetV2-OnFire), without compromis-
ing the performance accuracy.

TABLE VII
RUNTIME (FPS) COMPARISON OF {fire, no-fire} CLASSIFICATION ON
DIFFERENT HARDWARE DEVICES.

. CPU GPU Xavier-NX
Architecture PyTorch  PyTorch PyTorch  TensorRT
NasNet-A-OnFire 7 35 6 35
ShuffleNetV2-OnFire 40 69 18 49

IV. CONCLUSION

We propose a compact and reduced complexity CNN ar-
chitecture (ShuffleNetV2-OnFire) that is over six times more
compact than the prior works [21], [22] for fire detec-
tion with a size of ~0.15 million parameters. This signifi-
cantly outperforms prior works by operating over ~2 times
faster. Proposed CNN architectures (NasNet-A-OnFire and
ShuffleNetV2-OnFire) are not only compact in size but also
achieve similar performance accuracy with 95% for full-frame
and 94.4% for superpixel based fire detection. Subsequently,
implementation on low-powered devices (achieving 49 fps)
makes our architectures suitable for various real-world applica-
tions. Overall, we illustrate a strategy for simplifying the CNN
architectures through experimental analysis and filter pruning
while maintaining the accuracy and increasing the computa-
tional efficiency. Future work will focus on additional synthetic
image data training via Generative Adversarial Networks.
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