
Region Based Anomaly Detection With Real-Time
Training and Analysis

P. Adey, M. Bordewich, T. Breckon
Computer Science, Durham University, UK

{philip.a.adey, toby.breckon, m.j.r.bordewich}@durham.ac.uk

O. Hamilton
Cosmonio

oliver.hamilton@cosmonio.com

Abstract—We present a method of anomaly detection that is
capable of real-time operation on a live stream of images. The
real-time performance applies to the training of the algorithm as
well as subsequent analysis, and is achieved by substituting the
region proposal mechanism used in [9] with one that makes the
overall method more efficient. where they generate thousands of
regions per image, we generate far fewer but better targeted re-
gions. We also propose a ‘convolutional’ variant which does away
with region extraction altogether, and propose improvements to
the density estimation phase used in both variants.

Index Terms—anomaly detection, machine learning, deep
learning, kernel density estimation

I. INTRODUCTION

We consider the problem of detecting abnormal or anoma-
lous events that may occur within a video stream. Here,
abnormal is defined with respect to a reference video stream in
which all events are normal. Anomaly detection has potential
application in the automatic surveillance of CCTV footage, in
scanning for abnormalities on production lines, and in many
other contexts where commonly used image classification and
object detection techniques are unsuitable. These techniques
aim to identify a predefined set of classes for which numerous
training examples exist; whereas in anomaly detection, we aim
to identify an open set of anomalous classes for which few
or no training examples exist. A typical anomaly detection
algorithm is designed to take only normal inputs during
training and to detect deviations from this normality during
analysis.

We present a method of anomaly detection that operates on
a live stream of images in real-time. It is helpful to break the
method down into three phases: exposure, model formation,
and analysis. During the exposure phase the stream contains
only normal events, which the algorithm silently observes.
During the analysis phase the stream may contain anoma-
lous events, which the algorithm aims to detect. The model
formation phase is a period of time between exposure and
analysis in which the algorithm forms its model of normality.
The exposure and model formation phases may be collectively
considered as a training phase.

We require real-time operation during exposure and analy-
sis, with a negligible model formation period. The proposed
method is able to achieve this so long as the number of normal
events observed during exposure remains below an order of

Supported by Cosmonio

magnitude of 105. When this condition is met, the stream is
processed at over two frames per second and the model is
formed in approximately two seconds. These measurements
were taken on a computer with a GTX 1080Ti graphics card.

II. RELATED WORK

Reconstruction based anomaly detection methods learn en-
coding and decoding functions to compress and reconstruct
inputs. Since the functions are trained on normal inputs
only, they should reconstruct anomalous inputs less accurately.
Reconstruction accuracy is taken as a measure of normality.
Hasan et al. [7] use a convolutional autoencoder to encode and
decode stacks of input frames. Ribeiro et al. [23] take a similar
approach, but only use a single frame at a time. They try to
reintroduce the temporal information by fusing the input with
optical flow features. Zhao et al. [28] use three-dimensional
convolutions to preserve temporal information, while Chong
et al. [3] preserve temporal information by performing two-
dimensional convolutions over a sequence of frames before
passing the sequence of resulting feature maps to convolutional
Long Short-Term Memory (LSTM).

Another class of anomaly detection methods uses future
frame prediction. The rationale for this approach is that
prediction accuracy should be superior for normal events, since
they are easier to predict. Medel et al. [20] use a convolutional
LSTM architecture to predict future frames. Mathieu et al. [19]
suggest new loss functions to reduce the blurriness of predicted
frames, and Liu et al. [14] apply them to anomaly detection
using the U-Net [24] architecture.

In sparse coding and dictionary methods, a subset of fea-
tures extracted from the normal source material are used to
form a dictionary of features. Test features are approximated as
sparse linear combinations of the dictionary features, and those
that are anomalous are expected to incur a greater approxima-
tion error. Cong et al. [4] introduce the Multiscale Histograms
of Optical Flow (MHOF) algorithm as a feature extractor. Lu
et al. [15] significantly speed up sparse coding at test time by
learning an optimal set of dictionary elements in advance. Ren
et al. [21] learn a dictionary whose elements are grouped into
separate behaviours. They constrain the selection of dictionary
features to use in a sparse representation by enforcing that they
must all be selected from the same behaviour group. Luo et al.
[16] add temporal coherency by enforcing that neighbouring
frames have similar sparse coefficients.



Generative models have also been applied to anomaly
detection. Schlegl et al. [25] use a Generative Adversarial
Network (GAN) to learn the manifold of normal examples.
Akçay et al. [1] achieve greater efficiency and performance
using a novel encoder-decoder-encoder pipeline, which they
later improve further by the addition of skip connections [2].

III. METHOD

The proposed anomaly detection pipeline is closely related
to that of Hinami et al. [9] and consists of three stages:
region extraction, feature extraction and density estimation.
One image from the stream passes through this pipeline at a
time.

The objective of the region extraction stage is to choose
promising rectangular areas within the image to consider,
when it is not known in advance what kinds of object to expect
(Subsection III-A).

Feature extraction maps the visual data from each extracted
region to a point in a feature space (Subsection III-B). Features
are extracted from a layer within AlexNet [12], which has
been modified following the procedure of Hinami et al. [9]
to perform multi-task classification. We extract features from
the fully-connected 7th layer as in Hinami et al. [9] and
the convolutional 3rd layer. We refer to these as the ‘fully-
connected’ and the ‘convolutional’ variants respectively.

During the exposure phase, this is the end of the path taken
by an image through the pipeline. The extracted features are
stored for use in the model formation phase, and the pipeline
begins again with a new image. Only during the analysis
phase does the pipeline continue on to the density estimation
stage. Here, the probability density of each extracted feature
is estimated using the normality model (Subsection III-C).
A feature whose probability density is less than a certain
threshold is determined to be anomalous.

A. Region Extraction

Hinami et al. [9] use Geodesic Object Proposals [10]
(GOP) and Moving Object Proposals [5] (MOP) to extract
approximately 2,500 regions from each frame. Both the model
formation and the analysis phases are negatively affected when
the number of features extracted during exposure is high. To
cope with this, Hinami et al. [9] divide the input frames into
a grid with 12 cells, and form a separate normality model for
each.

In contrast, the proposed method extracts regions using
a Faster-RCNN [22] model with a ResNet50 [8] backbone.
This model was pretrained on the Microsoft COCO dataset
[13] and obtained from the MaskRCNN-Benchmark project
[18]. Since it is unknown what objects might occur, the post-
processing of the RCNN regions needs to be altered to yield
regions that are more scattered over the input image yet cluster
preferentially around promising targets. We take the raw
object detections from Faster-RCNN and discard those that
are background and those whose class score is less than 0.001.
We then order detections by class score before applying Non-
Maximum Suppression (NMS) with an Intersection over Union

Fig. 1. Examples of regions extracted using two methods. Left: regions
are extracted using a Faster-RCNN model with a ResNet50 backbone and
modified post processing. Right: regions are determined by the receptive fields
of units within the third convolutional layer of AlexNet

(IoU) threshold of 0.5. Note that since we are uninterested
in detecting individual classes, NMS is applied once on all
detections rather than once per class. Typically, this method
produces only tens of regions per frame, which negates the
need to form numerous normality models.

B. Feature Extraction

Hinami et al. [9] pass the extracted regions along with the
input image to a Fast-RCNN [6] model that has an AlexNet
[12] backbone. In one variant of their method, they adapt the
architecture by removing the bounding box regression output
layer and adding two new output layers: one for attribute
labelling and one for action labelling. Attributes are descriptive
labels such as those for describing colour and shape, while
actions include verbs such as ‘playing’ and ‘flying’. These new
output layers are trained using the Visual Genome dataset [11],
while the original object classification output layer is trained
using the COCO dataset [13]. These three outputs receive
activation from a shared fully-connected layer, which is taken
as the feature representation for a region.

The fully-connected variant presented here employs exactly
the same feature extraction stage, except that the feature
extractor is trained using region proposals from the Region
Proposal Network (RPN) of Faster-RCNN [22] rather than
GOP and MOP.

The convolutional variant uses the same model but extracts
features from the third convolutional layer. Specifically, one
feature vector is extracted per spatial location in the layer by
taking the channel activations as vector components. Conse-
quently, the convolutional variant can dispense with the RCNN
region extractor, since each feature vector is already associated
with a spatial location. This method processes frames about
five times faster than the fully-connected variant, since it
does not need to process a separate region extraction stage.
Figure 1 shows an example of the regions produced by the
convolutional variant.

C. Density Estimation

In one variant of their method, Hinami et al. [9] use Kernel
Density Estimation (KDE) to estimate the probability density
function over the feature space. They use a Gaussian kernel
with the band-width determined by Scott’s Rule [26].

The fully-connected layer of AlexNet taken as the feature
representation consists of 4,096 units, which is a feature



space of too high a dimensionality for KDE. To solve this,
Hinami et al. [9] use Principal Component Analysis (PCA) to
compress the features down to 16 dimensions. The code they
provided showed that the 16-dimensional feature vectors are
then normalised before being fed into KDE.

We follow the same procedure except that we report results
on a range of PCA components, finding that 48 components
is optimal for this dataset (Section V-A). Furthermore, instead
of normalising the feature vectors, we scale them down by a
constant factor so that information contained in their lengths
is preserved. The factor chosen is the magnitude of the largest
vector seen during exposure, which is saved so that it may
be used to scale the vectors obtained during the analysis
phase. Scaling rather than normalising significantly enhances
the results that we obtain, bringing them more in line with
those obtained by Hinami et al. [9] (Section V-B).

The third convolutional layer of AlexNet [12] has 192
channels, resulting in an uncompressed feature space with
far fewer dimensions. Nevertheless, the procedure described
above is still performed when using the convolutional variant.

PCA and KDE will cause an increase in the model formation
period and a decrease in the analysis frame rate respectively
if the number of features stored during the exposure phase is
too high. If the number of features approaches 105, then the
performance requirements set out in the introduction, are no
longer satisfied.

The region extraction method of the fully-connected variant
reduces the number of extracted features to an acceptable level,
but the convolutional variant produces too many. Therefore,
throughout the exposure phase of the convolutional variant,
we only accept features that are novel relative to those already
collected. To achieve this, a normality model is formed after
every 25 collected features, and this model is used to measure
the probability densities of subsequent features. We reject
a feature if its log probability density is greater than 13.
The model creation period of 25 is chosen to be small, so
that it can adapt to the changing probability density function
and not give too much weight to the first set of features
that are unconditionally accepted. The rejection threshold of
13 is chosen based on observation of the lower end of log
probability density values for normal inputs.

IV. QUALITATIVE ANALYSIS

The variants described in this paper are tested on the pedes-
trian based UCSD Ped2 dataset [17] using a training stride of
five frames and a testing stride of two frames. Figure 2 shows
examples of success and failure cases of the fully-connected
variant at a log probability density threshold of 12, which
balances the true and false positives. The method is effective
at detecting anomalies based on their appearance, such as the
bikes and the van; however, skateboarders are seldom detected
since they appear similar to the pedestrains who are considered
normal. Such anomalies would benefit from a consideration of
motion, requiring the method to analyse multiple frames at a
time.

Fig. 2. Examples of anomaly detection outputs obtained from the fully-
connected variant. Top: The vehicle is successfully detected. Bottom: The
bike is successfully detected, but the skateboarder is missed.

The convolutional variant behaves similarly, but is less
consistent, resulting in slightly worse performance as shown
in the quantitative analysis in Section V.

V. QUANTITATIVE ANALYSIS

The Area Under the ROC Curve (AUC) is used to measure
the performance quantitatively. The ROC curve is constructed
following the regular definitions of true-positive and false-
positive for pixel-level analysis. When analysing a frame that
contains at least one positive pixel, the algorithm scores a true-
positive if it labels at least 40% of the positive pixels as such.
When analysing a frame that contains no positive pixels, the
algorithm scores a false-positive if it labels any of the pixels
as positive. For reference, Hinami et al. [9] achieve an AUC
of approximately 0.83 when applying KDE on the features
extracted from their multi-task Fast-RCNN model.

A. PCA Components

Figure 3 compares the results obtained when using the fully-
connected variant with varying numbers of PCA components.
Considering that the original feature space has 4,096 dimen-
sions, a reduction down to 16 dimensions is a significant
compression and results in the lowest AUC score. Performance
increases up to 48 components, but plateaus thereafter. It is



Fig. 3. ROC curves obtained from the fully-connected variant with varying
number of PCA components.

then

Fig. 4. ROC curves for the fully-connected variant with features scaled, and
features normalised. 16 PCA components are used as in the original method
of Hinami et al. [9]

reasonable to speculate that the results obtained in Hinami et
al. [9] could be similarly improved via an increase in PCA
components.

B. Normalising vs Scaling Features

We depart from Hinami et al. [9] in the way that we
pre-process the features before density estimation. Figure 4
illustrates the difference resulting from scaling the features
rather than normalising them. This simple alteration makes a
significant difference in our adapted method.

C. Multi-Task AlexNet vs Original AlexNet

Figure 5 compares the results obtained when the features
are instead extracted from the third convolutional layer. The
multi-task model is compared with the default AlexNet model
obtained from the model zoo in TorchVision [27], which is
pretrained on ImageNet. The original AlexNet [12] model
performs significantly better. Given this result, it would be
interesting to compare with the original AlexNet model at the
fully-connected layer.

VI. CONCLUSION

By obtaining features extracted from networks that have
been trained on general recognition tasks, we are able to
perform real-time training and analysis in anomaly detection
tasks. Keeping networks fixed during training and analysis

Fig. 5. A comparison of ROC curves obtained from the convolutional variant.
The two curves are produced as a result of taking the third convolutional layer
from the pretrained AlexNet model at TorchVision [27] and its multi-task
Fast-RCNN adaptation.

avoids the computational cost of adapting network weights,
and there is no need to iterate over training examples multiple
times.

We observe a significant increase in performance when the
number of PCA components is raised above that used by
Hinami et al. [9]. The method is also improved by scaling
the collected features instead of normalising them. Given how
closely related the methods are, it seems likely that the results
obtained by Hinami et al. [9] could also benefit from these
modifications.

REFERENCES

[1] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon.
Ganomaly: semi-supervised anomaly detection via ad-
versarial training. In Asian Conference on Computer
Vision, pages 622–637. Springer, 2018.

[2] S. Akçay, A. Atapour-Abarghouei, and T. P. Breckon.
Skip-ganomaly: skip connected and adversarially
trained encoder-decoder anomaly detection. arXiv
preprint arXiv:1901.08954, 2019.

[3] Y. S. Chong and Y. H. Tay. Abnormal event detection
in videos using spatiotemporal autoencoder. In Interna-
tional Symposium on Neural Networks, pages 189–196.
Springer, 2017.

[4] Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction cost
for abnormal event detection. In Computer Vision and
Pattern Recognition, pages 3449–3456. IEEE, 2011.

[5] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik.
Learning to segment moving objects in videos. In Com-
puter Vision and Pattern Recognition, pages 4083–4090.
IEEE, 2015.

[6] R. Girshick. Fast r-cnn. arXiv preprint
arXiv:1504.08083, 2015.

[7] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury,
and L. S. Davis. Learning temporal regularity in video
sequences. In Computer Vision and Pattern Recognition,
pages 733–742. IEEE, 2016.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Computer Vision and
Pattern Recognition, pages 770–778. IEEE, 2016.



[9] R. Hinami, T. Mei, and S. Satoh. Joint detection and
recounting of abnormal events by learning deep generic
knowledge. In International Conference on Computer
Vision. IEEE, Oct. 2017.

[10] P. Krähenbühl and V. Koltun. Geodesic object pro-
posals. In European Conference on Computer Vision,
pages 725–739. Springer, 2014.

[11] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J.
Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma,
et al. Visual genome: connecting language and vision
using crowdsourced dense image annotations. Interna-
tional Journal of Computer Vision, 123(1):32–73, 2017.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012.

[13] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.
Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco:
common objects in context. In European Conference on
Computer Vision, pages 740–755. Springer, 2014.

[14] W. Liu, W. Luo, D. Lian, and S. Gao. Future frame
prediction for anomaly detection–a new baseline. arXiv
preprint arXiv:1712.09867, 2017.

[15] C. Lu, J. Shi, and J. Jia. Abnormal event detection
at 150 fps in matlab. In International Conference on
Computer Vision, pages 2720–2727. IEEE, 2013.

[16] W. Luo, W. Liu, and S. Gao. A revisit of sparse coding
based anomaly detection in stacked rnn framework. In-
ternational Conference on Computer Vision, Oct. 2017.

[17] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos.
Anomaly detection in crowded scenes. In Computer Vi-
sion and Pattern Recognition, pages 1975–1981. IEEE,
2010.

[18] F. Massa and R. Girshick. maskrcnn-benchmark: Fast,
modular reference implementation of Instance Segmen-
tation and Object Detection algorithms in PyTorch.
https : / / github . com / facebookresearch / maskrcnn -
benchmark, 2018. Accessed: 01/08/19.

[19] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-
scale video prediction beyond mean square error. arXiv
preprint arXiv:1511.05440, 2015.

[20] J. R. Medel. Anomaly Detection Using Predictive Con-
volutional Long Short-Term Memory Units. Rochester
Institute of Technology, 2016.

[21] H. Ren, W. Liu, S. I. Olsen, S. Escalera, and T. B.
Moeslund. Unsupervised behavior-specific dictionary
learning for abnormal event detection. In British Ma-
chine Vision Conference, pages 28–1, 2015.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-
cnn: towards real-time object detection with region
proposal networks. In Advances in Neural Information
Processing Systems, pages 91–99, 2015.

[23] M. Ribeiro, A. E. Lazzaretti, and H. S. Lopes. A
study of deep convolutional auto-encoders for anomaly
detection in videos. Pattern Recognition Letters, 2017.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net: convo-
lutional networks for biomedical image segmentation.
In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–
241. Springer, 2015.

[25] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-
Erfurth, and G. Langs. Unsupervised anomaly detection
with generative adversarial networks to guide marker
discovery. In International Conference on Informa-
tion Processing in Medical Imaging, pages 146–157.
Springer, 2017.

[26] D. W. Scott. Multivariate density estimation: theory,
practice, and visualization. John Wiley & Sons, 2015.

[27] Torch contributors, torchvision. https : / / pytorch . org /
docs / stable / torchvision / index . html, 2019. Accessed:
01/08/19.

[28] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S.
Hua. Spatio-temporal autoencoder for video anomaly
detection. In Multimedia Conference, pages 1933–1941.
ACM, 2017.


