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Abstract. In this article we raise some new questions about positive definite functions on

free groups, and explain how these are related to more well-known questions. The article is

intended as a survey of known results that also offers some new perspectives and interesting

observations; therefore the style is expository.
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1. Introduction

Fix r ≥ 1 and write F = Fr for a free group on r generators {x1, . . . , xr}. A central role in

this paper will be played by the automorphism group Aut(F) of F. It was proved by Nielsen

[Nie24] that Aut(F) is generated by the following elementary Nielsen moves:

• For σ an element of the symmetric group Sr, we have ασ ∈ Aut(F) where

(1.1) ασ(x1, . . . , xr)
def
= (xσ(1), . . . , xσ(r)).

• We have ι ∈ Aut(F) where

(1.2) ι(x1, x2, . . . , xr) = (x−1
1 , x2, . . . , xr).

• We have γ ∈ Aut(F) where

(1.3) γ(x1, x2, . . . , xr) = (x1x2, x2, . . . , xr).

The other central concept of this paper is a positive definite function on a group.

1
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Definition 1.1. Let Γ be any discrete group. A function τ : Γ→ C is called positive definite

if for any finite subset S ⊂ Γ, the matrix

[τ(γ′γ−1)]γ,γ′∈S

is positive semi-definite. In other words, for any vector (αγ)γ∈S ∈ CS we have∑
γ,γ′∈S

τ(γ′γ−1)αγ′αγ ≥ 0.

If Γ is a discrete group, the group Aut(Γ) acts by precomposition on the collection of

positive definite functions on Γ, giving rise to the notion of Aut(Γ)-invariant positive definite

functions. Explicitly, a positive definite function τ is Aut(Γ)-invariant if

τ(α(γ)) = τ(γ), ∀γ ∈ Γ, ∀α ∈ Aut(Γ).

In this paper we are mainly interested in the case Γ = F. Positive definite functions on

free groups, without the Aut(F)-invariance condition, have been the subject of various in-

vestigations [DMFT80, Boż86, BT06], stemming in part from a fundamental construction of

Haagerup in [Haa79]. See also the monograph [FTP83].

Our aim here is to explain what is known about Aut(F)-invariant positive definite functions

on F, and identify some important questions about them.

Example 1.2. Let τλ(e) = 1 and τλ(w) = 0 for w 6= e. One can directly verify that this is a

positive definite function on F, and that τλ is Aut(F)-invariant.

Example 1.3. Let τtriv(w) = 1 for all w ∈ F. This is another Aut(F)-invariant positive

definite function on F.

A rich family of examples that are the subject of much ongoing work arise from word maps.

Throughout the rest of this paper, G will always refer to a compact topological group, and µ

will be its probability Haar measure. In this paper, all topological groups are assumed to be

Hausdorff 1. Denote Gr
def
= G×G× . . .×G︸ ︷︷ ︸

r times

. Any w ∈ Fr gives rise to a word map

w : Gr → G

defined by substitutions. For example, if r = 2 and w = x2
1x
−2
2 , then w(g1, g2) = g2

1g
−2
2 . A

related concept is that of the w-measure on G. The w-measure is the law of the random

variable obtained by picking r independent elements of G according to the Haar measure, and

evaluating the word map w at this random tuple. More formally, the w-measure on G is the

pushforward measure

µw = w∗(µ
r),

where µr is the Haar measure on Gr. Word maps and measures give rise to Aut(F)-invariant

positive definite functions on F as follows:

1It is convenient to assume this so that we can identify Borel measures on G or Gr with elements of the
continuous linear dual of continuous functions, without getting into technicalities.
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Example 1.4 (Compact group construction). Let G be a compact topological group and

π : G → U(V ) be an unitary representation of G, with V a finite dimensional vector space

over C. We define

τG,π : F→ C

by

τG,π(w)
def
=

∫
g∈G

tr(π(g))dµw =

∫
g∈Gr

tr(π(w(g)))dµr(g).

In other words, this function maps w ∈ F to the expected value of the character of π under

the w-measure µw. This is a positive definite function on w as follows. Suppose S ⊂ F and

we are given αw ∈ C for each w ∈ S. Then∑
w,w′∈S

τG,π(w′w−1)αw′αw =
∑

w,w′∈S
αw′αw

∫
g∈Gr

tr(π([w′w−1](g)))dµr(g)

=

∫
g∈Gr

tr(AgA
∗
g)dµr(g),(1.4)

where a superscript ∗ means conjugate transpose and

Ag =
∑
w∈S

αwπ(w(g)) ∈ End(V ).

Hence the quantity (1.4) is an integral of traces of non-negative operators and hence must be

non-negative.

Moreover, τG,π is Aut(F)-invariant. This will follow from the following lemma that is

folklore2. In this paper, all proofs are given in the Appendix, and we mark all statements

with proofs in the Appendix by a ?.

Lemma 1.5. ? The action of Aut(F) by precomposition on Hom(F, G) ∼= Gr preserves the

Haar measure µr.

The following two corollaries are immediate consequences of Lemma 1.5.

Corollary 1.6. If G is a compact topological group, w ∈ F, and α ∈ Aut(F), then the

w-measure µw on G is equal to the α(w)-measure µα(w) on G, namely,

µw = µα(w).

Corollary 1.7. If G is a compact topological group and π is a finite dimensional unitary

representation of G, the positive definite function τG,π on F given in Example 1.4 is Aut(F)-

invariant.

Note that this family of positive definite functions on F coming from compact groups,

includes, in particular, those coming from finite groups.

2See for example [Gol07] where a version is stated without a proof in the second sentence, and the unpublished
paper [MP16, Section 2.5].
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Remark 1.8. We point out that the construction given in Example 1.4 also works if µr is

replaced by any Aut(F)-invariant Borel measure on Gr. These measures are by no means

classified, and we will return to this point later in Question 6.4.

In light of Corollary 1.6, the following conjectures have been put forward:

Conjecture 1.9. Suppose w1, w2 are in F. If the w-measures µw1 and µw2 are the same on

all compact groups G, does it follow that w2 ∈ Aut(F).w1?

It has even been conjectured that:

Conjecture 1.10 (Shalev). If the w-measures µw1 and µw2 are the same on all finite groups

G, then w2 ∈ Aut(F).w1.

See [AV11, Question 2.2] where Conjecture 1.10 was posed as a question; the conjecture

was made by Shalev in [Sha13, Conj. 4.2]. Of course Conjecture 1.9 is a direct consequence

of Conjecture 1.10. In this paper we introduce the following related (weaker) question:

Question 1.11. Do Aut(F)-invariant positive definite functions on F separate Aut(F)-

orbits? In other words, if w1, w2 are in F and τ(w1) = τ(w2) for all Aut(F)-invariant positive

definite functions τ on F, does it follow that w2 ∈ Aut(F).w1?

An affirmative answer to Question 1.11 could be viewed as an orbital analog of the Gelfand-

Raikov Theorem [GR43]: for any locally compact topological group G, the positive definite

functions on G separate elements of G. Indeed, Question 1.11 could be asked for any locally

compact topological group, but we restrict our attention here to the important special case

of free groups.

To compare Question 1.11 and Conjectures 1.9 and 1.10, we introduce some equivalence

relations on F. For w1, w2 ∈ F we say

• w1
Aut(F)∼ w2 if w2 ∈ Aut(F).w1

• w1
FinGrp∼ w2 if µw1 = µw2 on any finite group.

• w1
CptGrp∼ w2 if the measures µw1 = µw2 on any compact group.

• w1
PosDef∼ w2 if τ(w1) = τ(w2) for all Aut(F)-invariant positive definite functions τ

on F.

For w1, w2 ∈ F, we have

(1.5) w1
Aut(F)∼ w2 =⇒ w1

PosDef∼ w2 =⇒ w1
CptGrp∼ w2 =⇒ w1

FinGrp∼ w2.

The first and last implications above are obvious. The second implication follows immediately

from the following lemma.

Lemma 1.12. ? For any compact topological group G, and w ∈ F, the w-measure µw on

G is determined uniquely by the map π 7→τG,π(w) where π runs over irreducible unitary

representations of G and τG,π are the functions constructed in Example 1.4.
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Remark 1.13. Section 8 in [PP15] discusses a few other related equivalence relations between

words, where the focus is on word measures on finite groups and the profinite topology on the

free group.

Notation. We write e for the identity element of a group. If A and B are elements of the

same group, then [A,B] = ABA−1B−1 is their commutator. If H is a group, then [H,H]

denotes its commutator subgroup. We write ∅ for the empty set.

Acknowledgments. BC was supported by JSPS KAKENHI 17K18734 and 17H04823. DP

was supported by the Israel Science Foundation (grant No. 1071/16).

2. A survey

In this section we give a brief survey describing current knowledge about word measures

on groups and Conjectures 1.9 and 1.10.

It has been known for a while that several properties of free words can be detected in finite

quotients of free words and therefore also in word measures on finite groups. For example, if

a word w ∈ F is not an n-th power (namely, if there is no u ∈ F with w = un) then there

is a normal subgroup N E F such that wN is not an n-th power in Q = F/N – this result

is attributed to Lubotzky in [Tho97]. It follows that if w1 is an n-th power and w2 is not,

then for some finite group Q, there is an element q ∈ Q which is not an n-th power, such that

q ∈ w2 (Qr) but q /∈ w1 (Qr). Thus w1

FinGrp

6∼ w2. Consult [HMP19] for a different argument

yielding this last result.

Similarly, Khelif [Khe04] shows that if w ∈ F is not a commutator of two words, then its

image in some finite quotient of F is a non-commutator. It follows that if w1 is a commutator

and w2 not, then w1

FinGrp

6∼ w2.

However, the first significant progress on Conjecture 1.10 came from an important special

case. If w ∈ Aut(F).x1, then w is called primitive. A word is primitive in Fr if and only if

it is a member of a generating set of Fr of size r. Since it is clear that µx1 = µ, i.e. Haar

measure on G, for any compact G, it follows from Corollary 1.6 that if w is a primitive word

then µw = µ on any compact G, and in particular, on any finite G. The following theorem,

asserting the converse, was conjectured to hold independently by several people including

Avni, Gelander, Larsen, Lubotzky, and Shalev:

Theorem 2.1 (Puder-Parzanchevski). If w ∈ Fr and µw = µ on every finite group, then w

is primitive.

Theorem 2.1 was first proved by Puder [Pud14, Theorem 1.5] when r = 2 and then proved

for general r ≥ 3 by Puder and Parzanchevski in [PP15, Theorem 1.4’]. Both papers rely on a

careful analysis of the functions τG,π constructed in Example 1.4 when G = Sn, the symmetric

group on n letters, and π is the standard n-dimensional representation of Sn by 0-1 matrices.
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Theorem 2.1 can be restated as the implication

w
FinGrp∼ x1 =⇒ w

Aut(F)∼ x1

and therefore establishes a basic instance of Conjecture 1.10.

The word x1, and by extension, the primitive words, have the property that whenever

π is an irreducible representation of the compact group G, the values τG,π(x1) of Example

1.4 are given by a very simple formula. Indeed, suppose that π is an irreducible unitary

representation. Then

(2.1) τG,π(x1) =

1 if π is the trivial representation

0 otherwise.

This is a direct consequence of Schur orthogonality.

There is another type of words with a similarly general exact expression for τG,π(w), namely,

surface words. An orientable surface word is one of the form

sg = [x1, x2] · · · [x2g−1, x2g]

where we assume g ≥ 1 and r ≥ 2g (recall that r is the rank of the free group F = Fr). A

non-orientable surface word is one of the form

tg = x2
1 · · ·x2

g

where g ≥ 1 and r ≥ g. The reason for this naming is that the one-relator groups

Γg = 〈F2g | sg〉 , Λg = 〈Fg | tg〉

are respectively, the fundamental groups of a closed orientable surface of genus g, and a closed

non-orientable surface of genus g (the connected sum of g copies of the real projective plane

P2(R)).

Frobenius [Fro96] proved the following result for finite groups, but the same proof applies

to compact groups in general.

Theorem 2.2. Suppose that π is an irreducible representation of the compact group G on the

vector space V . Then

τG,π ([x1, x2]) =
1

dimV
.

An analogous result was later proved by Frobenius and Schur [FS06].

Theorem 2.3. Suppose that π is an irreducible unitary representation of the compact group

G on the vector space V . Then τG,π(x2
1) is in {−1, 0, 1} and is called the Frobenius-Schur

indicator of π, denoted by FS(π). The Frobenius-Schur indicator is also given by

FS(π) =


1 if π is equivalent to a real representation

0 if tr(π) is not real

−1 if tr(π) is real, but π is not equivalent to a real representation.
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One also has the following basic observation.

Lemma 2.4. ? If w1, w2 ∈ F, and w1 and w2 are generated by disjoint sets of the xi, then

µw = µw1 ∗ µw2 .

where ∗ denotes convolution. Hence for π irreducible

τG,π(w) =
1

dimV
τG,π(w1)τG,π(w2).

From Lemma 2.4 and Theorems 2.2 and 2.3 it immediately follows that for irreducible π

(2.2) τG,π(sg) =
1

(dimV )2g−1
,

and

(2.3) τG,π(tg) =
FS(π)g

(dimV )g−1
.

By Lemma 1.12, this fully describes the word measures µsg and µtg on all compact groups.

The following theorem was suggested as a line of inquiry at the 27th International Conference

in Operator Theory in Timişoara, and has since been established to hold [MP19c].

Theorem 2.5 (Magee-Puder). If w ∈ Fr and µw = µsg on every compact group, then (r ≥ 2g,

and) w ∈ Aut(Fr).sg. In other words,

w
CptGrp∼ sg =⇒ w

Aut(Fr)∼ sg.

If w ∈ Fr and µw = µtg on every compact group, then (r ≥ g, and) w ∈ Aut(Fr).tg. In other

words,

w
CptGrp∼ tg =⇒ w

Aut(Fr)∼ tg.

One may view this as a converse to the results of Frobenius and Schur: the formulas (2.2)

and (2.3) uniquely characterize the orbits of sg and tg. The proof of Theorem 2.5 involves an

analysis of the values τG,π(w) where G, π are one of the following:

• G = U(n), the group of n × n complex unitary matrices, and π is the n-dimensional

defining representation of U(n). This relies on the results of the paper [MP19a].

• G = O(n), the group of n × n real orthogonal matrices, and π is the n-dimensional

defining representation of O(n). The necessary analysis here comes from the work

[MP19b].

• G = Sn,m or G = S1 o Sn a generalized symmetric group, namely, the group of all

n × n complex matrices such that any row or column contains exactly one non-zero

entry, and the non-zero entries are taken from the mth roots of 1 or from the entire

unit circle S1. The representation π is the standard one given by the definition of the

group as a matrix group. The necessary analysis here is developed in [MP19c].

Independently, Hanany, Meiri and Puder obtained the following result [HMP19]:
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Theorem 2.6 (Hanany-Meiri-Puder). Let w0 = x m
1 or w0 = [x1, x2]m for some m ∈ N. If

w ∈ Fr induces the same measure as w0 on every finite group, then w ∈ Aut(Fr).w0. In other

words,

(2.4) w
FinGrp∼ w0 =⇒ w

Aut(Fr)∼ w0.

In particular, Theorem 2.6 strengthens Theorem 2.5 in the case w0 = [x1, x2]. It is an

interesting question whether Theorem 2.5 can be proved for general g using only finite groups

G. The proof of Theorem 2.6 relies on the results of Lubotzky [Tho97] and Khelif [Khe04]

mentioned above, as well as on further developing the analysis of word measures on Sn from

[PP15]. In fact, it is shown in [HMP19] that whenever (2.4) holds for some word w0 ∈ F, it

also holds for every power of w0.

Rational Functions. A recurring theme in many of the works mentioned above is that for many

“natural” families of groups and representations {(Gn, πn)}n≥N0
, the function τGn,πn (w) is

given by a rational function in n. For example, if std is the defining n-dimensional represen-

tation of U (n), then for n ≥ 2

τU(n),std

(
[x1, x2]2

)
=
−4

n3 − n
.

Indeed, this phenomenon occurs for natural series of representations of Sn [Nic94, LP10]

and for the defining representations of generalized symmetric groups [MP19c]. Using the

Weingarten calculus developed for computing integrals over Haar-random elements of classical

compact Lie groups [Wei78, Col03, CŚ06], it is shown to hold also in the case of natural

families of representations of U (n) [Răd06, MŚS07] and of O (n) and Sp (n) [MP19b]. The

same phenomenon also occurs for natural families of representations of GLn (Fq), where Fq is

a fixed finite field [PW19].

These rational expressions depend on w, of course, but are Aut(F)-invariant. This means

that they should have an “Aut(F)-invariant” interpretation, not relying on combinatorial

properties of w, but rather on properties of w as an element of the abstract free group (with

no given basis). Finding such interpretation for at least some of terms of the rational functions

is one of the main results of [PP15] in the case of Sn, of [MP19a] in the case of U (n), of [MP19b]

in the cases of O (n) and Sp (n) and of [MP19c] in the case of generalized symmetric groups.

One plausible strategy for proving Conjectures 1.9 and 1.10 is to gather a list of invariants

of words which can be determined by word measures on groups, and then prove that this

list separates Aut(F)-orbits. We have already mentioned above two invariants that can be

determined by word measures on finite groups: whether w is an n-th power, and whether w

is a simple commutator. Now we turn to a result of a similar type, but with a richer invariant

that is detected. Given w ∈ F, we define the commutator length of w, denoted cl(w), to be

the minimum g for which we can solve the equation

w = [u1, v1] · · · [ug, vg]
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for ui, vi ∈ F. If it is not possible to write w as the product of commutators (i.e., if w /∈ [F,F])

then we say cl(w) =∞. There is a related concept of stable commutator length. The stable

commutator length of w, denoted scl(w), is defined by

scl(w)
def
= lim

m→∞

cl(wm)

m
, if w ∈ [F,F],

or ∞ otherwise. The existence of this limit follows from the subadditivity in m of cl(wm).

Stable commutator length is an important object in geometric group theory and the theory

of the free group: see the book of Calegari [Cal09a]. One of the fundamental results about

scl is due to Calegari [Cal09b]:

Theorem 2.7 (Calegari). If w ∈ F then scl(w) ∈ Q ∪ {∞}.

The function scl : F→ Q∪ {∞} takes on infinitely many values when r ≥ 2. For example,

it is a result of Culler [Cul81] that cl([x1, x2]n) = bn2 c+ 1 and hence

scl([x1, x2]k) = lim
m→∞

cl([x1, x2]km)

m
= lim

m→∞

bkm2 c+ 1

m
=
k

2
.

It is even known, by Calegari [Cal11], that if r ≥ 4, scl(Fr) contains a rational with any given

denominator. The following theorem is proved in [MP19a, Cor. 1.11].

Theorem 2.8 (Magee-Puder). For w ∈ F, knowing the word measure µw on every U(n)

determines scl(w). As a consequence, for w1, w2 ∈ F,

w1
CptGrp∼ w2 =⇒ scl(w1) = scl(w2).

The proof of Theorem 2.8 can be reinterpreted as the establishment of the following equality:

scl(w) = −1

2
sup
k≥0

lim
n→∞

log
∣∣∣τU(n),Symk(std)(w)

∣∣∣
log (nk)

where Symk(std) is the symmetric kth power of the standard representation of U(n).

3. The GNS construction

In this section and the next one, we allow Γ to be any countable discrete group. The

collection of positive definite functions τ on Γ form a convex cone that we will denote by

P(Γ). The importance of positive definite functions on groups comes from their role in the

Gelfand-Naimark-Segal (GNS) construction [GN43, Seg47]:

Theorem 3.1 (GNS construction). If τ : Γ→ C is a positive definite function with τ(e) = 1,

then there is a GNS triple (πτ ,Hτ , ξτ ) where

• Hτ is a Hilbert space with inner product 〈•, •〉τ ,

• πτ : Γ→ U(Hτ ) is a homomorphism from Γ to the group of unitary operators U(Hτ )

on Hτ ,

• ξτ ∈ Hτ is a unit cyclic vector for the unitary representation πτ , meaning that the

linear span of {πτ (g)ξτ : g ∈ Γ } is dense in Hτ , and
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• we have τ(g) = 〈πτ (g)ξτ , ξτ 〉τ for all g ∈ Γ.

The GNS triple associated to τ is unique up to unitary equivalence: if (πτ ,Hτ , ξτ ) and

(π′τ ,H′τ , ξ′τ ) are two GNS triples, then there is a unitary intertwiner u : Hτ → H′τ such

that u(ξτ ) = ξ′τ and for all g ∈ Γ, πτ (g) = u−1π′τ (g)u.

Conversely, if π : Γ → U(H) is a unitary representation of Γ on a Hilbert space H, and

ξ ∈ H is a unit vector, then

τ(w) = 〈π(w)ξ, ξ〉

is a positive definite function on Γ with τ(e) = 1. Moreover, if ξ is cyclic then the GNS triple

(πτ ,Hτ , ξτ ) is equivalent, in the sense described above, to (π,H, τ).

Example 3.2 (Regular representation). The function τλ introduced in Example 1.2 is ob-

tained as a matrix coefficient in the regular representation of F. Indeed let λ : F→ U(`2(F))

denote the left regular representation. Then

τλ(w) = 〈λ(w)δe, δe〉 = δwe ∀w ∈ F.

Conversely, the GNS triple associated to λ is, up to isomorphism, (λ, `2(F), δe).

Example 3.3 (Trivial representation). The function τtriv introduced in Example 1.3 is ob-

tained as a matrix coefficient in the trival representation triv : F → U(C). Indeed, 1 ∈ C is

a cyclic vector for this representation. Thus

τtriv(w) = 〈triv(w)1, 1〉 = 〈1, 1〉 = 1 ∀w ∈ F.

Example 3.4 (Compact group construction, continued). Let τG,π be the positive definite

function constructed in Example 1.4. Recall that π : G→ U(V ) is a finite dimensional unitary

representation of the compact group G. In this case, τG,π arises as a matrix coefficient in a

subrepresentation of the direct integral3

ΠG,π =

∫ ⊕
Gr

Πgdµ
r(g)

where Πg : F → U(End(V )), Πg(w).A = π(w(g))A. The inner product on End(V ) is given

by 〈A,B〉 = tr(AB∗). The representation is generated by the cyclic vector

ξ =

∫ ⊕
Gr

IdEnd(V )dµ
r(g)

and H is the closed linear span of {ΠG,π(w)ξ : w ∈ F}. Then we have

〈ΠG,π(w)ξ, ξ〉 =

∫
Gr

tr(π(w(g)))dµr(g) = τG,π(w).

Example 3.5 (Characteristic subgroup construction). We now turn to yet another type of

examples of Aut(F)-invariant positive definite functions on F. Let Λ ≤ F be a characteristic

subgroup, meaning that α(Λ) = Λ for any α ∈ Aut(F). As conjugation by elements of F gives

3The direct integral of representations is a generalization of the direct sum that uses a topological space with
a Borel measure to index the summation, instead of a discrete set. For details see [Mac76, §2.4].



AUTOMORPHISM-INVARIANT POSITIVE DEFINITE FUNCTIONS ON FREE GROUPS 11

automorphisms, Λ is necessarily normal in F. Some examples of characteristic subgroups of

F include

• The commutator subgroup [F,F].

• Groups in the derived series of F, for example, [[F,F], [F,F]].

• Groups in the lower or upper central series of F.

• If H is any group, the intersection of all kernels of homomorphisms F→ H (this may

be trivial).

Note that Aut(F) acts by automorphisms on the group F/Λ. We obtain an Aut(F)-invariant

positive definite function on F denoted by τΛ and given by

τΛ(w) = δwΛ,e =

1 if w ∈ Λ

0 if w /∈ Λ.

Indeed, τΛ arises from the GNS triple (π,H, ξ) where H = `2(F/Λ), π is the quasi-regular

representation, and ξ = δe ∈ `2(F/Λ). It is clear that τΛ is Aut(F)-invariant since Λ is

characteristic in F.4

Evidently, the subgroup of F generated by an Aut(F)-orbit is characteristic. Therefore,

the construction of Example 3.5 allows us to make a little progress on Question 1.11.

Proposition 3.6. ? If w1, w2 ∈ F and the orbits Aut(F).w1 and Aut(F).w2 generate different

subgroups of F then

w1

PosDef
6∼ w2.

We stress, however, that in general different Aut(F)-orbits in F may generate the same

subgroup. This is illustrated in the following two examples:

Example 3.7. While Aut(F).w and Aut(F).w−1 generate the same subgroup, there is no

reason for w and w−1 to be in the same orbit. For example, w = x2y2xy−1 is not in the same

orbit as its inverse.

Example 3.8. Let r = 2 and w = x2
1x

3
2. Let Λ be the group generated by Aut(F2).w. Then

Λ also contains w′ = x−2
2 x3

1, since (x1, x2) 7→ (x−1
2 , x1) is in Aut(F2). However,

ww′ = x2
1x2x

3
1

is in Λ, and is primitive, since x2
1x2x

3
1 and x1 generate F2. Since Λ is characteristic, all

primitive elements must be in Λ, and in particular, x1 and x2 are in Λ, so Λ = F2. However,

w itself is not primitive: this can be inferred from Whitehead algorithm [LS77, Chapter I.4],

or from the fact that τS3,std (w) = 1.5 6= 1 = τSn,std (x1). I.e., Aut(F).w 6= Aut(F).x1, but

Aut(F).x1 and Aut(F).w generate the same group.

4More generally, if T is any positive definite function on F/Λ, then τ(w)
def
= T (wΛ) will be a positive definite

function on F. It will be Aut(F)-invariant if T is invariant under the induced action of Aut(F) on F/Λ. Since
classifying these T in general seems hard, we do not pursue this in detail here.
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Before moving on, we address the following question. What does the GNS construction tell

us about Aut(Γ)-invariant positive definite functions? We will denote by P1(Γ) the elements

τ of P(Γ) with τ(e) = 1. Suppose that τ is an element of P1(Γ)Aut(Γ), the elements of P1(Γ)

which are invariant under Aut(Γ). In this case, one can extend τ to a positive definite function

τ+ on the semidirect product Γ o Aut(Γ) by the formula

τ+(γ, α)
def
= τ(γ).

Lemma 3.9. ? If τ ∈ P1(Γ)Aut(Γ), then τ+ is a positive definite function on Γ o Aut(Γ).

Let (πτ+ ,Hτ+ , ξτ+) be the associated GNS triple to τ+. Since 〈π(e, α)ξτ+ , ξτ+〉 = 1, the

cyclic vector ξτ+ is an invariant vector for the embedded copy of Aut(Γ) in ΓoAut(Γ) under

α 7→ (e, α). The map τ 7→ τ+ gives a linear embedding of P1(Γ)Aut(Γ) into P1(Γ o Aut(Γ)).

Example 3.10 (Compact group construction, continued). Recall the notations of Examples

1.4 and 3.4. Let H0 denote the Hilbert space

H0 =

∫ ⊕
Gr

End(V )dµr(g).

We will describe a unitary representation of F o Aut(F) on this Hilbert space as follows. A

vector in H0 is (an equivalence class) of an L2 function g 7→ Bg for g ∈ Gr and Bg ∈ End(V ).

We define for (w,α) ∈ F o Aut(F)

Π0(w,α){g 7→ Bg} = {g 7→π(w(g))Bα−1(g)}.

It is straightforward to check this this gives a unitary representation of F o Aut(F) on H0,

using Lemma 1.5. Now let Π+
G,π,H

+
G,π be the subrepresentation of Π0 generated by the vector

ξ+
G,π =

1√
dimV

∫ ⊕
Gr

IdEnd(V )dµ
r(g).

Let τ̃G,π = 1
dimV τG,π ∈ P1(F)Aut(F). Now one has

τ̃+
G,π(w,α) = 〈Π0(w,α)ξ+

G,π, ξ
+
G,π〉 =

1

dimV

∫
Gr

tr(π(w(g)))dµr(g) = τ̃G,π(α).

Thus we have constructed an explicit model for the GNS triple associated to τ̃+
G,π.

4. Extremal functions

To study P(Γ) it is convenient to introduce an operator algebra. We begin with C[Γ], the

group algebra of Γ. We define a norm on C[Γ] by

‖a‖ = sup
π
‖π(a)‖
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where π ranges over all cyclic ∗-representations5 of C[Γ]. The completion of C[Γ] with respect

to this norm is a C∗-algebra called the (full) group C∗-algebra of Γ, denoted by C∗(Γ).

Any τ ∈ P(Γ) extends to a continuous linear functional τ on C∗(Γ) with ‖τ‖ = τ(e).

Therefore P1(Γ) linearly embeds into the unit ball of the linear dual of C∗(Γ). The set P1(Γ)

is closed in the weak-∗ topology and hence by the Banach-Alaoglu Theorem, P1(Γ) is weak-∗
compact. Since P1(Γ) is also obviously convex, the Krein-Milman Theorem tells us that P1(Γ)

is the (weak-∗) closed convex hull of its extreme points that we will denote by hullext[P1(Γ)].

The classical relevance of the extreme points is the following result from [Seg47]:

Theorem 4.1. For τ ∈ P1(Γ), τ ∈ ext[P1(Γ)] if and only if the GNS representation πτ is

irreducible.

We may improve on the fact that P1(Γ) = hullext[P1(Γ)] by means of Choquet theory.

Since Γ is countable, C∗(Γ) is separable, so P1(Γ) is metrizable. Choquet’s Theorem [Phe66,

pg. 14] gives in the current context the following.

Theorem 4.2 (Choquet’s Theorem for P1(Γ)). If τ ∈ P1(Γ), there is a (regular) Borel

probability measure ντ supported on ext[P1(Γ)] such that for any g ∈ Γ,

τ(g) =

∫
τ̃(g)dντ (τ̃).

In this case, we say that ντ represents τ .

Recall we have seen as a consequence of the Krein-Milman Theorem that P1(Γ) = hullext[P1(Γ)].

Note that P1(Γ)Aut(Γ) is a weak-∗ closed subset of P1(Γ), since it is the intersection over

α ∈ Aut(Γ) and g ∈ Γ of the sets of τ ∈ P1(Γ) such that

τ(α(g))− τ(g) = 0,

each of which is the vanishing locus of a weak-∗ continuous function on P1(Γ). Hence

P1(Γ)Aut(Γ) is compact, and also convex, so the Krein-Milman Theorem gives

P1(Γ)Aut(Γ) = hullext[P1(Γ)Aut(Γ)].

This reduces Question 1.11 to the question of whether the functions in ext[P1(F)Aut(F)] sep-

arate Aut(F)-orbits. It also raises the interesting question of when our known examples of

elements of P1(F)Aut(F) are extremal.

Theorem 4.3. ? Recall the notations from Example 1.4. Let π be an irreducible unitary repre-

sentation of the compact group G. Then the function τ̃G,π = 1
dimV τG,π is in ext[P1(F)Aut(F)]

if and only if the action by precomposition of Aut(F) on Gr ∼= Hom(F, G) is ergodic with

respect to the Haar measure µr.

5A ∗-representation (π, V ) of C[Γ] consists of a Hilbert space V and a C-algebra homomorphism π from C[Γ]
to the bounded endomorphisms B(V ) of V that also respects the star operations. The star operation on C[Γ]
takes

∑
aγγ to

∑
aγγ

−1 and the star operation on B(V ) is conjugate transpose. The ∗-representation (π, V )
is cyclic if V contains a vector v such that π(C(Γ)).v is dense in V .
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Fortunately, the action of Aut(F) on Gr has already been investigated by different re-

searchers. The following theorem was proved by Goldman [Gol07] when G is a Lie group with

simple factors of type U(1) or SU(2), and extended by Gelander in [Gel08] to the following.

Theorem 4.4 (Goldman, Gelander). Let G be a compact connected semisimple Lie group

and suppose that r ≥ 3. Then the action of Aut(Fr) on Gr is ergodic with respect to the Haar

measure µr.

Theorem 4.4 together with Theorem 4.3 allow us to produce many elements of ext[P1(F)Aut(F)]

using compact groups. The situation for finite groups is less clear. One important point is

that when G is a finite non-trivial group, the action of Aut(F) on Gr will never be ergodic

with respect to the Haar measure µr. The reason is that the subset

Epi(F, G) = {φ ∈ Hom(F, G) : φ(F) = G } ⊂ Hom(F, G)

is clearly invariant, and its complement has positive measure. Nonetheless, one could alter

the definitions of τ̃G,π to use the uniform measure on Epi(F, G) in place of µr. If Aut(F)

acts transitively on Epi(F, G), this will yield elements of ext[P1(F)Aut(F)]. However, it is a

well-known open problem whether this is the case even for simple G:

Conjecture 4.5 (Wiegold’s conjecture). If G is a finite simple group, and r ≥ 3, then

Aut(Fr) acts transitively on Epi(Fr, G).

The reader is invited to see the article of Lubotzky [Lub11] for a survey of Wiegold’s

conjecture and related questions. We also mention that it is proved in [HMP19] that two

words induce the same measure on every finite group if and only if they induce the same

measure on every finite group via epimorphisms.

5. A toy problem

One of the philosophies of Voiculescu’s Free Probability Theory introduced in [Voi91] is

that one passes from classical probability problems involving commuting random variables to

problems involving non-commutative random variables [VDN92, NS06, MS17]. In the same

spirit, we may view the setup of the current paper as arising from a process by which one

replaces

Zr  F

Aut(Zr) = GLr(Z) Aut(F).

In the setting of GLr(Z) acting on Zr, we understand all the questions of this paper, and as

we will see, they are connected to classical results concerning Borel measures on tori that are

instructive to recall.

First we consider the extreme points of P1(Zr). If τ ∈ ext[P1(Zr)], then the associated

GNS triple (πτ ,Hτ , ξτ ) has πτ irreducible, so as Zr is abelian, Hτ is one-dimensional, and
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〈πτ (x)ξτ , ξτ 〉 = exp(2πiθτ .x) for some

θτ = (θτ1 , . . . , θ
τ
r ) ∈ [0, 1)r,

where tτ .x is the standard scalar (dot) product. Hence the correspondence τ 7→ θτ identifies

ext[P1(Zr)] with the torus Tr = (S1)r. The weak-∗ topology on ext[P1(Zr)] corresponds to

the standard metric topology on Tr.
By Choquet’s Theorem (Theorem 4.2) in this context, there is a regular Borel measure ντ

on ext[P1(Zr)] = Tr such that for any x ∈ Zr

τ(x) =

∫
ext[P1(Zr)]

τ̃(x)dντ (τ̃) =

∫
Tr

exp(2πiθ.x)dντ (θ).

In other words, τ(x) is simply the Fourier transform of ντ evaluated at x.

In this case, as Zr is abelian, it is a consequence of the Stone-Weierstrass Theorem that

ντ is uniquely determined by τ . It now follows that if τ is GLr(Z)-invariant, so too is ντ .

This reduces the classification of GLr(Z)-invariant positive definite functions on Zr to the

classification of GLr(Z)-invariant Borel probability measures on Tr. Moreover, the extreme

points ext[P1(Zr)GLr(Z)] correspond to extremal invariant measures, which by standard facts

[Phe66, Prop 12.4] are the ergodic ones. One has the following classification of such measures

by Burger [Bur91, Prop. 9]6.

Proposition 5.1. Any GLr(Z)-invariant ergodic Borel probability measure on Td is either

Lebesgue measure, or atomic and supported on a finite GLr(Z)-orbit.

This can be read as a full classification of ext[P1(Zr)GLr(Z)]. While an analogous classifica-

tion of ext[P1(F)Aut(F)] seems out of reach, it suggests that it would be interesting to pursue

(see §6). Even further, we can show the following.

Theorem 5.2. ? For Zr, GLr(Z), in place of F, Aut(F), the hierarchy in (1.5) completely

collapses. More concretely, for x = (x1, . . . , xr), y = (y1, . . . , yr) ∈ Zr, x ∈ GLr(Z).y if and

only if there is a finite abelian group G with uniform measure µ such that µx = µy, where e.g.

µx = x∗µ
r is the pushforward of µr on Gr under the map

x : (g1, . . . , gr) 7→ x1g1 + · · ·+ xrgr.

6. Further open questions

Our discussion above leads to a possible alternative approach to Conjectures 1.9 and 1.10.

This consists of the following program:

I: Resolve Question 1.11, i.e. show that the elements of ext[P1(F)Aut(F)] separate Aut(F)-

orbits.

II: Prove that the elements of ext[P1(F)Aut(F)] can be approximated in a suitable way by

elements arising from finite or compact groups via the construction given in Example

1.4.

6Although [Bur91, Prop. 9] states the result for SLr(Z), it also holds for GLr(Z).
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Whether or not step II above can be accomplished is of independent interest. The following

question is enticing:

Question 6.1. Is it possible to classify the elements of ext[P1(F)Aut(F)] in a way that gener-

alizes Proposition 5.1?

As mentioned above, Question 6.1 may be very hard or impossible. It would be nice to

reduce Question 6.1 to a question about the classification of Aut(F)-invariant ergodic measures

as in Proposition 5.1. The problem with this is that the measure on ext[P1(F)] that represents

an element of ext[P1(F)Aut(F)], given by Theorem 4.2, may not be unique; however we do not

know whether this is the case in practice. Therefore one has the technical question:

Question 6.2. Is there some τ ∈ ext[P1(F)Aut(F)] that is not represented by a unique regular

Borel probability measure ντ supported on ext[P1(F)]?

Setting aside the technical issue presented in Question 6.2, one can still ask about the

classification of Aut(F)-invariant ergodic measures.

Question 6.3. Classify the Borel probability measures supported on ext[P1(F)] that are in-

variant and ergodic for the action of Aut(F).

One specific instance of Question 6.3 that is much more approachable is the following.

Question 6.4. Let G be a compact topological group. For simplicity, one might like to assume

that G is a connected compact semisimple Lie group. What are the Aut(F)-invariant and

ergodic Borel measures on Gr?

Note that Theorem 4.4 classifies, under certain hypotheses, the Aut(F)-invariant and er-

godic Borel measures on Gr that are absolutely continuous with respect to the Haar measure,

and Question 6.4 removes this assumption.

Short of classification results, one may hope for other statements that would accomplish

step II above. For example,

Question 6.5. Is it possible that the weak-∗ closure of the functions τ̃G,π (cf. Examples 1.4,

3.4, 3.10) contains ext[P1(F)Aut(F)]?

Again, Question 6.5 may be very difficult. However, considering Question 6.5 leads us to

realize that we do not even know very basic things about ext[P1(F)Aut(F)]. Note that by (2.1),

all the examples of elements τ ∈ ext[P1(F)Aut(F)] given in this paper, other than τtriv, have

the property that τ(x1) = 0. This invites the following basic and intriguing question.

Question 6.6. Is there a τ ∈ ext[P1(F)Aut(F)] with τ 6= τtriv such that τ(x1) 6= 0?

Also with Question 6.5 in mind, if τ is a weak-∗ limit of functions τ̃Gi,πi with dim(πi)→∞
as i→∞, then by Theorem 2.2, τ([x1, x2]) = 0. This suggests that it might be helpful to ask

the converse.
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Question 6.7. If r ≥ 2 and τ ∈ ext[P1(F)Aut(F)] with τ([x1, x2]) = 0, is τ a weak-∗ limit of

the functions τ̃G,π?

Finally, turning to Question 1.11 in view of step I above, we propose the following.

Question 6.8. Find new constructions of Aut(F)-invariant positive definite functions on F.

Appendix A. Proofs of background results

In some of our proofs we use the following simple fact.

Lemma A.1. If G is a compact topological group with probability Haar measure µ, (π, V ) is

an irreducible unitary representation of G, and A ∈ End(V ), then∫
G
π(g)Aπ(g)−1dµ(g) =

tr(A)

dimV
IdV .

Proof. The left hand side is invariant under conjugation by elements π(g) with g ∈ G, so

by Schur’s Lemma is a scalar multiple of the identity. The trace of the matrices inside the

integral is constant and equal to tr(A), and so the result of the integral is a scalar multiple of

the identity with trace tr(A). �

Proof of Lemma 1.5. It is enough to show that µr is invariant under the Nielsen generators

given in (1.1), (1.2), (1.3). The measure µr is determined by the formula, for any continuous

f : Gr → C, ∫
Gr
f(g)dµr(g) =

∫
G
. . .

∫
G
f(g1, . . . , gr)dµ(g1) . . . dµ(gr).

For σ ∈ Sr we have∫
Gr
f(ασ(g))dµr(g) =

∫
G
. . .

∫
G
f(gσ(1), . . . , gσ(r))dµ(g1) . . . dµ(gr)

=

∫
G
. . .

∫
G
f(g1, . . . , gr)dµ(g1) . . . dµ(gr)

=

∫
Gr
f(g)dµr(g)

by Fubini’s Theorem. We have∫
Gr
f(ι(g))dµr(g) =

∫
G
. . .

∫
G
f(g−1

1 , . . . , gr)dµ(g1) . . . dµ(gr)

=

∫
G
. . .

∫
G
f(g1, . . . , gr)dµ(g1) . . . dµ(gr)

=

∫
Gr
f(g)dµr(g)
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since µ is invariant under pushforward by g 7→ g−1 (that is a result of the bi-invariance and

uniqueness of Haar measure). Finally, we have∫
Gr
f(γ(g))dµr =

∫
G
. . .

∫
G
f(g1g2, . . . , gr)dµ(g1) . . . dµ(gr)

=

∫
G
. . .

∫
G
f(g1, . . . , gr)dµ(g1) . . . dµ(gr)

=

∫
Gr
f(g)dµr(g)

by the right-invariance of Haar measure. �

Proof of Lemma 1.12. Let C(G) denote the Banach space of continuous complex valued

functions on G with supremum norm. Since Gr and G are compact and Hausdorff, and

w : Gr → G is continuous, µr is a regular Borel probability measure, and so too is the

pushforward measure µw = w∗µ
r. Hence by the Riesz-Markov Theorem µw is uniquely

determined by the formula∫
g∈G

f(g)dµw(g) =

∫
(g1,...,gr)∈Gr

f(w(g1, . . . , gr))dµ
r(g1, . . . , gr), ∀f ∈ C(G).

Since the linear span of matrix coefficients of irreducible unitary representations is dense in

C(G) by the Peter-Weyl Theorem, it follows that µw is determined by the integrals∫
(g1,...,gr)∈Gr

〈π(w(g1, . . . , gr))v1, v2〉dµr(g1, . . . , gr).

where π : G → U(V ) is an irreducible unitary representation of G and v1, v2 ∈ V . On the

other hand, we have∫
(g1,...,gr)∈Gr

〈π(w(g1, . . . , gr))v1, v2〉 dµr(g1, . . . , gr)

=

∫
h∈G

∫
(g1,...,gr)∈Gr

〈π(w(hg1h
−1, . . . , hgrh

−1))v1, v2〉dµr(g1, . . . , gr)dµ(h)

=

∫
h∈G

∫
(g1,...,gr)∈Gr

〈π(h)π(w(g1, . . . , gr))π(h)−1v1, v2〉dµr(g1, . . . , gr)dµ(h)

=

∫
(g1,...,gr)∈Gr

〈
(∫

h∈G
π(h)π(w(g1, . . . , gr))π(h)−1dµ(h)

)
v1, v2〉dµr(g1, . . . , gr)

=
〈v1, v2〉
dimV

∫
(g1,...,gr)∈Gr

tr(π(w(g1, . . . , gr)))dµ
r(g1, . . . , gr)

=
〈v1, v2〉
dimV

τG,π(w),

where the third equality used Fubini’s Theorem and the fourth equality used Lemma A.1.

This shows that µw is determined by the values τG,π(w) with π irreducible. �

Proof of Lemma 2.4. Suppose for simplicity that w1 is generated by x1, . . . , xs and w2 is

generated by xs+1, . . . , xr. Let (w1, w2) be the map that takesGr → G×G, (w1, w2)(g1, . . . , gr) =
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(w1(g1, . . . , gs), w2(gs+1, . . . gr)). Let ν be the pushforward of µr under (w1, w2). By Fubini’s

Theorem, the pushforward of a product measure under a product of two continuous maps is

the product of the pushforward measures of the two maps. Since µr is the product measure

of µs and µr−s on Gr = Gs ×Gr−s, we obtain ν = µw1 × µw2 . Furthermore, the word map w

is obtained by the composition

Gr
(w1,w2)−−−−−→ G×G mult−−−→ G

where mult(g1, g2) = g1g2. This shows that µw = mult∗[ν] = mult∗[µw1 × µw2 ] = µw1 ∗ µw2 .

If µ1 and µ2 are two conjugation invariant measures on G and (π, V ) is an irreducible

representation of G then

µ1 ∗ µ2[tr(π)] =

∫
g2∈G

∫
g1∈G

tr(π(g1g2))dµ1(g1)dµ2(g2)

=

∫
h∈G

∫
g2∈G

∫
g1∈G

tr(π(hg1h
−1)π(g2))dµ1(g1)dµ2(g2)dµ(h)

=

∫
g2∈G

∫
g1∈G

tr

((∫
h∈G

π(h)π(g1)π(h)−1dµ(h)

)
π(g2)

)
dµ1(g1)dµ2(g2)

=
1

dimV

∫
g2∈G

∫
g1∈G

tr(π(g1))tr(π(g2))dµ1(g1)dµ2(g2)

=
1

dimV
µ1[tr(π)]µ2[tr(π)],

where the second last equality used Lemma A.1. Here we use the notation µ[f ] for the integral

of a function f with respect to a measure µ. The stated formula for τG,π(w) now follows from

µw = µw1 ∗ µw2 and the fact that µw1 and µw2 are conjugation invariant. �

Proof of Proposition 3.6. Let Λ1 and Λ2 be the characteristic subgroups of F generated

by Aut(F).w1 and Aut(F).w2 respectively. Suppose Λ1 6= Λ2. Then at most one of the

intersections

Aut(F).w2 ∩ Λ1, Aut(F).w1 ∩ Λ2

is non-empty. Indeed if Aut(F).wi∩Λj 6= ∅ for i 6= j then since Λj is characteristic, this implies

Aut(F).wi ⊂ Λj and so Λi ⊂ Λj . So suppose without loss of generality that Aut(F).w2∩Λ1 =

∅. Then (recalling the notation from Example 3.5) τΛ1(w2) = 0 but τΛ1(w1) = 1 showing

w1

PosDef
6∼ w2. �

Proof of Lemma 3.9. Consider a finite sequence of elements {(γi, αi)}Ni=1 ⊂ Γ o Aut(Γ).

We need to prove that the matrix A with

Aij
def
= τ+((γi, αi)(γj , αj)

−1)
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is positive semidefinite. To this end,

Aij = τ+((γi, αi)(γj , αj)
−1)

= τ+((γi, αi)(α
−1
j (γ−1

j ), α−1
j ))

= τ+((γi[αiα
−1
j ](γ−1

j ), αiα
−1
j ))

= τ(γi[αiα
−1
j ](γ−1

j ))

= τ(α−1
i (γi)α

−1
j (γ−1

j )) = τ(α−1
i (γi)α

−1
j (γj)

−1).

In other words, Aij is the matrix associated to τ and the sequence {α−1
i (γi)}Ni=1 and so is

positive semidefinite, since τ is positive definite. �

Proof of Theorem 4.3. We use the notation from Example 3.10. Suppose first that the

action of Aut(F) on Gr ∼= Hom(F, G) is not ergodic, so that there exists a Borel set E ⊂ Gr

such that α(E) = E for all α ∈ Aut(F) and 0 < µ(E) < 1. Then letting

τ1(w) =
1

µ(E) dimV

∫
g∈Gr

tr(π(w(g)))1E(g)dµr(g),

τ2(w) =
1

(1− µ(E)) dimV

∫
g∈Gr

tr(π(w(g)))(1− 1E(g))dµr(g),

we have that τ1 and τ2 are in P1(F)Aut(F), as the measure 1E(g)dµr(g) is Aut(F)-invariant.

On the other hand

τ̃G,π =
µ(E)

2
τ1 +

1− µ(E)

2
τ2,

so in this case, τ̃G,π is not extremal in P1(F)Aut(F).

Now, for the other direction, suppose that π is irreducible and that the action of Aut(F)

on Gr is ergodic, but for the sake of a contradiction, suppose that τ̃G,π = tτ1 + (1 − t)τ2

with t ∈ (0, 1) and τ1, τ2 ∈ P1(F)Aut(F), with τ1 not a positive multiple of τG,π. Under our

assumptions we have

τ̃+
G,π = tτ+

1 + (1− t)τ+
2

with τ+
1 , τ

+
2 ∈ P1(F o Aut(F)), and τ+

1 not a multiple of τ̃+
G,π. By standard facts [BdlHV08,

Prop. C.5.1], this means that Π+
G,π is reducible as a unitary representation of F o Aut(F).

Therefore (see [BdlHV08, Proof of Theorem C.5.2]) there is some projection P that commutes

with all the elements Π+
G,π(w,α), Pξ+

G,π 6= 0, and

τ+
3 (w,α) =

〈
Π+
G,π(w,α)

Pξ+
G,π

‖Pξ+
G,π‖

,
P ξ+

G,π

‖Pξ+
G,π‖

〉

is in P1(FoAut(F)) with τ+
3 6= τ̃+

G,π (i.e.
Pξ+G,π
‖Pξ+G,π‖

6= ξ+
G,π). It follows that Pξ+

G,π is an invariant

vector for Aut(F) under Π0. However, when restricted to Aut(F), the representation Π0 is

simply the representation of Aut(F) on the End(V )-valued L2 functions on Gr acting by



AUTOMORPHISM-INVARIANT POSITIVE DEFINITE FUNCTIONS ON FREE GROUPS 21

permutations of Gr. Since Aut(F) acts ergodically on Gr, we must have

Pξ+
G,π

‖Pξ+
G,π‖

=

∫ ⊕
Gr
Bdµr(g),

where B ∈ End(V ) is a constant with tr(BB∗) = 1. But this means in turn, using the

invariance of Haar measure under conjugation,

τ+
3 (w,α) = τ+

3 (w, e) =

∫
Gr

tr(π(w(g))BB∗)dµr(g)

=

∫
(g1,...,gr)∈Gr

(∫
h∈G

tr
(
π(w(hg1h

−1, . . . , hgrh
−1))BB∗

)
dµ(h)

)
dµr(g1, . . . , gr)

=

∫
(g1,...,gr)∈Gr

(∫
h∈G

tr
(
π(h)π(w(g1, . . . , gr))π(h)−1BB∗

)
dµ(h)

)
dµr(g1, . . . , gr)

=
1

dimV

∫
(g1,...,gr)∈Gr

tr(π(w(g)))tr(BB∗)dµr(g)

=
1

dimV

∫
(g1,...,gr)∈Gr

tr(π(w(g)))dµr(g) = τ̃+
G,π(w,α).

The second last equality used Lemma A.1. This is a contradiction. �

Proof of Theorem 5.2. If x ∈ GLr(Z).y then it is easy to check that µx = µy on any finite

abelian group.

The other direction is the more interesting one. Assume that x /∈ GLr(Z).y. The orbit

of x = (x1, . . . , xr) is parametrized by the modulus of the greatest common divisor of the xi

(which we take to be ∞ if x = 0), and similarly for y.

Thus our assumptions entail, by switching x and y if necessary, that there is a prime p

and an exponent f such that x ≡ 0 mod pf and y 6≡ 0 mod pf . This means that for any

g = (g1, . . . , gr) ∈ (Z/pfZ)r, x1g1 + · · ·+ xrgr = 0, so the x-measure on Z/pfZ is an atom at

0. On the other hand, y 6≡ 0 mod pf implies there is some g = (g1, . . . , gr) ∈ (Z/pfZ)r such

that y1g1 + · · ·+ yrgr 6= 0, so the y-measure on Z/pfZ is not supported at 0 ∈ Z/pfZ. This

proves the x- and y-measures on Z/pfZ are distinct.

�
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