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ABSTRACT 
In order to keep up with the increasing focus on renewable 

energy, the demand for new battery technology and peripherals 
has likewise increased greatly. Given the relatively slow rate of 
change of new battery chemistry and technology, it is the 
peripherals to the batteries that are often relied upon to provide 
this necessary increase in performance. The 18650 battery with 
Lithium-Ion internal chemistry is one of the most widely used 
batteries and is depended upon in many industries to provide 
power portability and storage. Using an extensive freely 
available dataset compromising of the charge cycles of 121 
18650 batteries, this paper evaluates multiple algorithms’ 
effectiveness at predicting the remaining useful cycles of a 
battery from a single discharge curve. Upon evaluation of the 
algorithms, ’Weighted K Nearest Neighbours’ was shown to be 
the most accurate model and was further improved to ensure that 
the maximum accuracy was acquired. Finally, a user interface 
was created to allow for the demonstration of a potential use 
case for the model. This model and user interface show the 
potential for easy testing of batteries to determine the number of 
remaining useful cycles. This makes the possibility of re-
purposing or extending the initial purpose of these batteries 
much greater, which is preferable from both an economic 
standpoint and an ecological one. 
 
1. INTRODUCTION 

As the world becomes more focused on the importance of 
renewable energy generation and consumption in response to the 
threat of climate change, the reliance on batteries has also 
increased. This is predominantly due to the move away from 
non-renewable sources of energy, such as oil, towards renewable 
sources like wind or solar. In order to make best use of the 
efficiency of large scale renewable energy generation, the market 
increasingly relies on batteries to provide portability. Chief 
among this adoption of battery technology is the automotive 
industry, a key driver in the expansion of the battery market.  

As the electric vehicle (EV) market grows, so does the need 
for batteries and new battery technology. Specifically, the EV 
market predominantly uses Lithium-Ion (LI) battery technology 
within its vehicles as this chemistry provides the greatest 
benefits, both in terms of manufacturing scale, general 
availability, and specific energy density [1]. Wagner [2] predicts 
that the demand for batteries will increase from 184 GWhr of 
capacity needed in 2018 to 2623 GWhr in 2030, an increase 
predominantly caused by a 2191 GWhr increase in demand in 
the electric mobility sector.  

As mentioned previously, the most commonly used 
technology available today is based on a LI internal chemistry 
[3] which was initially commercialised in the early 1990s [4]. 
One of the most commonly used battery types is the ’18650’, a 
rechargeable LI-based battery that is used in everything from 
flashlights to the Tesla model ’S’ and ’X’ cars, where (in the 
Model S) 7,104 18650 batteries are used to power the car. In this 
paper the 18650 battery referred to is the APR18650M1A 
produced by A123 Systems [5], a commercially available LI-
based rechargeable battery.  

With this slow progress the industry has turned to other ways 
to maximise the capacity and usefulness of batteries. One 
solution is to ensure that the batteries are efficiently recycled to 
reuse any of the metals contained within. Alternatively, there is 
a large potential for repurposing batteries that are no longer fit 
for their current use. Whilst these end of life operations are 
essential in extending the useful life of a battery, it is also 
important to effectively utilise the battery throughout its ’first 
life’ or initial intended use. Han et al.’s paper [6] splits the design 
of the battery into four stages: the material, electrode, cell, and 
system levels, and explains how the design choices at each stage 
can affect the lifespan of the battery.  

The work within this paper will lie within the system level 
of the battery, which predominantly refers to the mechanical, 
electrical, and thermal related issues of extending the life of the 
battery. A large amount of research is being put towards the 
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battery management system that surrounds the battery, to 
produce both diagnostic and prognostic evaluations of battery 
health. This paper will focus on the prediction of the batteries’ 
remaining useful cycles (RUC), which is defined as the number 
of cycles left until the battery is no longer fit for its initial 
purpose. Other work in this area includes the use of an Unscented 
Kalman filter (UKF) alongside a non-linear time series 
prediction model by Zheng et al. [7] to predict RUL. In the 
development of this method Zheng et al. applies it to the RUL as 
well as the short-term capacity prediction of batteries. 
Alternatively, support-vector machine methods can be used, as 
demonstrated by Wang et al. [8]. In this case working 
temperature and energy efficiency are used as inputs to 
characterise the training dataset. Finally, Wang et al. [9] have 
developed a regression vector machine (RVM) and combined it 
with a battery degradation model. They use RVM to select the 
significant training vector in order to improve the performance 
of the prediction.  

This paper will partly build upon the work done by Severson 
et al. [10] who used data driven methods to predict battery cycle 
life before degradation. Using a large publicly available dataset 
created by Severson et al. [10], this paper details the work done 
to create and test a viable tool for predicting the remaining useful 
cycles of a LI battery. MATLAB was chosen as the preferred 
language for this work due to its multiple features that enable the 
easy processing of complex and noisy data as well as the built-
in applications it provides for both the creation of classification 
algorithms and a user interface (UI). By utilizing the MATLAB 
classification learner [11] it was possible to test multiple 
classification algorithms to determine the most accurate 
algorithm for this scenario. This was chosen as an avenue of 
research due to the lack of comparative work done in the field, 
and while there was potential for loss in accuracy due to a 
broader overview, it was felt that the benefits from the 
comparison would be greater. From here, using the exported 
algorithm a UI was created that allows for the demonstration of 
the algorithm in a practical use case.  

 
2. THEORY 
2.1 Battery Degradation 

In an ideal case, there would be no ageing within the battery 
and the capacity would remain constant, irrespective of the 
number of times the battery is cycled. Obviously there is no ideal 
battery and factors such as loss of anode/cathode active material 
and loss of the electrolyte can cause a decrease in both the 
capacity and the power of the battery. This paper uses capacity 
fade as the metric for determining when the battery is no longer 
fit for purpose.  

Numerous factors affect the rate at which a battery degrades, 
some of which contrast general public belief about what 
contributes to the ageing of batteries. Chief among this confusion 
is the depth of discharge (DoD). Previously, with Nickel-based 
chemistries batteries had ’memories’ and as such needed regular 
100% discharges to maintain their capacity. This is untrue with 
LI batteries, in fact full discharges cause the battery life span to 
drop significantly[12].  

The temperature that the battery is stored at can also have an 
effect on the battery capacity, especially when stored for some 
time at an elevated temperature. Higher temperatures can 
accelerate side reactions within the battery causing layers to form 
on the electrolyte interface that can affect the efficiency of the 
battery. Conversely, low temperatures can slow down the 
transport of lithium ions, and attempts at fast charging at low 
temperatures can cause crowding of lithium ions, which can 
potentially lead to an internal short circuit.  

The last mechanism that can cause a reduction in the life 
cycle of a battery is the voltage that it is charged to, roughly 
speaking a reduction of 0.1V/Cell [12] in charge level can have 
the effect of doubling the cycle life. By overcharging the battery, 
irreversible damage can be caused to both the anode and the 
cathode. Conversely to this, a reduction in charge level will lead 
to a reduction in the capacity the battery holds, with a 70mV 
reduction in charge level reducing the capacity by 10%. This 
leads to the need for a trade-off between the desire to fully charge 
a battery and the need for longevity in charge cycle. Typically 
speaking, consumer products will emphasise the need for full 
capacity at the expense of a diminished cycle life. 

 
2.2 Remaining Useful Cycles Calculation 

The remaining useful life (RUL) of a battery is defined as 
the number of cycles it is able to complete before the capacity 
degrades to a point whereby it is no longer suitable for its initial 
task; at this point, as discussed earlier, the battery can be recycled 
or repurposed. Xing et al. [13] also defines the remaining useful 
life (RUL) as the remaining time or number of cycles before the 
battery’s state of health (SOH) reaches 0%. Estimating the RUL 
of a non-linear system such as LI batteries is a complex task, but 
one that is critical for technology development and efficient 
management of battery systems. Due to the variable nature of 
battery operations, factors such as dynamic ageing mechanisms, 
large device variability, and changeable operating conditions, the 
process of estimating RUL has remained challenging. Despite 
the important nature of RUL estimation there has never been a 
universal best practice for its estimation, and as such, the current 
methodologies differ significantly. Current methods can be 
broadly categorised as follows: [14] adaptive filter techniques 
(AFT), intelligent techniques (IT), stochastic techniques (ST), 
and miscellaneous techniques (MT). The following sections will 
go into some detail about the surrounding technologies that have 
been proposed for RUL calculation to provide an overview of the 
work that has been done in this field.  

1) Adaptive Filter Technique: An adaptive filter is a digital 
filter where the coefficients change with the aim of making the 
filter converge to an optimal state. The criterion for optimisation 
is a cost function, which most commonly is the mean square of 
the error between the output of the adaptive filter and the desired 
signal. The desired signal in this case being the remaining useful 
life prediction or some form of it. Similarly to the previously 
mentioned work by Zheng et al.[7], Miao et al. [15] uses an 
unscented particle filter (UPF) technique. Particle filters are 
known as an effective method for sequential signal tracking, 
however their accuracy is low, making them unsuitable for RUL 
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prediction. To solve this issue, Miao proposes using a UPF and 
applying it to a degradation model based on LI batteries. Whilst 
adaptive filter techniques can be useful and certainly provide 
accurate health prognostics they can also be prone to errors 
caused by variable currents and temperatures.  

2) Intelligent Techniques: Intelligent techniques (IT) 
encompass a wide range of methods for pattern finding and data 
processing and as such multiple solutions appear underneath this 
banner. Artificial neural networks have been used notably by 
Zhang et al. [16], specifically using a long short-term memory 
(LSTM) recurrent neural network (RNN). Finally, Chen et al. 
[17] combines an adaptive bathtub-shaped function (ABF) with 
an artificial fish swarm algorithm (AFS). The ABF is utilised to 
model the normalised battery cycle capacity prognostic curves, 
before the AFS is then used to determine the optimal parameters 
for the ABF. These methods use a simple algorithm to predict 
the complex non-linear system of battery degradation and deliver 
more accurate results than adaptive filter techniques. 
Unfortunately, the methods were found wanting when analysing 
the uncertainty in the measurement results.  

3) Stochastic Technique: Due to the complex nature of 
battery capacity degradation and the scenarios that batteries are 
often placed in, stochastic optimisation is well suited to the 
process of determining RUL. In 2014 Tang et al. [18] developed 
a method using the Weiner process with measurement error to 
predict RUL. The prediction of the RUL is done through 
truncated normal distribution, with uncertainty and drift 
parameters employed. Finally, maximum likelihood estimation 
is used to improve the estimation efficiency of the parameters. 
Furthermore, this model has been validated using numerous case 
studies, proving it to be a viable method for RUL estimation. As 
noted before, the stochastic process is well suited to assessing LI 
battery degradation, potentially more so than the previously 
mentioned methods. However, when the algorithm begins to 
consider the influence of random current and time-varying 
challenges, the method can struggle to produce accurate results. 
    4) Miscellaneous Techniques: Due to the wide ranging 
methods of producing the RUL there are some that don’t fall 
under aforementioned categories, below are some of note. Using 
a naive Bayes (NB) based LI battery degradation model Ng et al. 
[19] created a model that was able to outperform SVM both in 
terms of accuracy and reliability. Severson et. al. [10], were able 
to use machine learning tools and multiple early cycles to 
accurately predict RUC to within 15% error on average, with the 
inclusion of further data reducing this error to 8%. 

 
2.3 Research Method 

The following sections will detail the theory behind the 
approach taken in this paper to determine RUL from a discharge 
curve. The previous sections cover a variety of methods to do so; 
however, aside from the creators of the original dataset, none 
were able to make use of such an extensive dataset. In the process 
of determining the direction of the research, the decision was 
made to make use of the tools available in the form of the 
MATLAB classification learner to perform a comprehensive 
look at the models available for classification of the discharge 

curves. Upon extracting the discharge curves from Severson et 
al.’s [10] data, the next step was to create identifying features 
that could be used for classification. 
 
2.4 Curve Identification 
   In order to classify the discharge curves, values were 
calculated from the curves themselves in order to identify them. 
The decision behind creating these identifiers was to reduce 
computational complexity as true time series analysis can be 
difficult, especially given the number of discharge curves 
available for classification. As such the decision to represent the 
curves using a number of key features was chosen and proved to 
be effective. Figure 1 displays every 20th discharge curve for the 
first battery in the dataset and shows a typical voltage against 
time discharge graph shape for a LI battery.  

 

 
 
Figure 1: Every 20th discharge curve from Battery 

 
As shown, the total discharge time varies by 150s between 

the shortest and longest discharges. The lower the number of 
previous discharges, the longer the discharge time, with this 
decreasing as the battery ages. This is demonstrated in the Figure 
by the colour gradient, which begins in red at 860s with the first 
discharge from the battery and increments as the cycle count 
increases before finally coming back to red with the last curves 
before failure at approximately 700s. Figure 1 is similar to all the 
other battery discharges from the dataset, so any comment on this 
specific set of curves is relevant to any battery from the dataset. 
The first feature was simply the time taken for a full discharge 
from 3.6V to 2V. Given that all batteries discharged at the same 
rate, this was a useful indicator of how far the battery had 
degraded. As is clear from Figure 1, the discharge time increases 
with battery age, making the total discharge time a good 
indicator of RUC. The second indicator was the time taken to 
reach the ’half-way’ point of the voltage discharge. All batteries 
discharged from 3.6V to 2V, making the half-way mark 2.8V. 
This measure was used as it was felt that it was necessary to have 
a measure of the discharge at a ’halfway point’ to contrast against 
the total time measure previously discussed. However, simply 
halving the overall time obviously produced the same 
distribution, therefore the relation to ’halfway point’ of voltage 
proved a distinct feature.  

Whilst using the total discharge time provided a feature with 
a strong correlation to RUC, it relied on a single measurement, 
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namely the final time measurement. In order to combat the 
potential for error with this feature and represent each curve as a 
whole, a mean value of the product of each time and voltage 
measurement was used as another feature. This reduced the 
effect that outliers had in the feature, and meant that every 
reading could be represented by a single figure for each curve. 
The equation for this feature is shown below. 

 

𝑀௝ =  
∑(௧೔∗௏೔)

ே
              (1) 

 
Where N is the number of voltage measurements taken during 
each discharge (the time was noted every time a voltage was 
taken so the number of voltage and time measurements will 
always be equal), Mj is simply the end result for each curve, with 
j indicating the individual curve, and i representing each 
measurement.  
    The next feature of the curves was influenced by the general 
shape of the discharge curves, as shown in Figure 1. The section 
of curve from roughly 100 to 500s represents a relatively 
constant voltage of around 3.2 − 3V , but it can be seen that the 
length of this period of constant voltage is one of the main factors 
in the length of discharge as it is this period that varies between 
curves more than anything else. By subtracting the time taken to 
reach 3.2V from the time taken to reach 2.6V, it is possible to 
obtain an accurate estimation of the length of the constant 
voltage period. Using a wide window allowed this constant 
voltage period to be calculated for all the different batteries, 
which displayed very similar shapes but over slightly different 
voltage ranges. This measure of using larger ranges than needed 
is continued throughout to account for the different scales of the 
discharge curves for each battery. The next feature also takes the 
same window of voltage and uses the gradient as calculated 
according to equation 2. 
 

𝐺௜ =  
௒೔శభି௒೔

௑೔శభି௑೔
               (2) 

 
    This is a simple calculation of the gradient between two 
points, and was used to work out the maximum gradient in the 
window from 3.2 to 2.6V for each curve. The relevant feature 
that is extracted from this is the time at which this maximum 
gradient occurs. As Figure 1 shows, the largest gradient will 
inevitably occur at the end of this window and provides a time 
value that decreases as the battery ages, giving a strong 
correlation across all the batteries.  
    The final extracted feature also uses equation 2 to calculate 
the gradient, and in a similar fashion calculates it over a window 
of voltage. In this case the window is from 3 to 2.2V and once 
the gradient between each point in this range is calculated, they 
are then averaged. As is evident from Figure 1, as the battery 
ages, the section of the curve in this range becomes less steep, 
giving another good indication of the age of the battery. This 
feature was chosen simply through closer observation of the 
curve, with the reduction in average gradient not being 
immediately observable in the raw data. 
 

2.5 Matlab Classification Learner 
    The aim of the model is to classify the curves according to 
the remaining useful cycles that they represent. However, given 
that the longest battery cycled approximately 2250 times, this 
created an issue with the number of possible classes to sort the 
curves into. Having 2250 potential classes caused memory issues 
within the classification learner that on multiple occasions 
caused the program to crash, or caused it to ’fail’ the training of 
the model. To solve this issue, the RUC for each curve was 
rounded to the nearest 10. By rounding the RUC value for each 
curve, the total class number was also reduced by a factor of 10, 
ensuring that the models no longer failed and computational 
times were greatly reduced. This had the consequential effect of 
speeding up the iteration time, allowing for more changes to be 
made to the final model. The MATLAB Classification learner 
offers a variety of potential models to train, and whilst they were 
predominantly used during the evaluation process this section 
will briefly go into detail about the various algorithms available 
within the program. 
 
• Tree Classification: A classification tree is built using binary 
recursive partitioning, an iterative process that, during the 
training process, splits the data into partitions, and then on each 
branch further partitions the data. During prediction the data is 
fed into the tree and is appropriately partitioned before finally 
being assigned a class.  
• Discriminant Analysis: During discriminant analysis it is 
assumed that different classes create data based on different 
Gaussian distributions. Discriminant analysis is used to reduce 
the dimensionality of a dataset and is often used as a pre-
processing step; however, as is shown, it is possible to use it for 
multi-class classification.  
• Support Vector Machine (SVM): The goal of an SVM 
algorithm is to create hyperplanes in an N-dimensional space 
(where N is the number of features) that distinctly classifies the 
data points. This means multiple hyperplanes are to be created to 
classify the data, and as such, each hyperplane is chosen on the 
maximum margin it leaves between data points, with larger 
margins being preferable.  
• K Nearest Neighbours was the algorithm chosen for further 
work as it was the most accurate, and as such, it is discussed in 
much finer detail in the next section. 
 
2.6 Weighted K Nearest Neighbours 

K nearest neighbour (k-NN) classification is the algorithm 
that is used for the prediction of remaining useful cycles. It was 
chosen as the best option using the MATLAB Classification 
Learner; however, this process will be discussed in future 
sections. k-NN classification is widely considered to be one of 
the most fundamental and simple classification methods and is 
often used as the first algorithm when there is little knowledge 
of the distribution of the data. Its relative simplicity allows for 
less computation and faster run times, making it a popular 
choice. It was created as a way to perform discriminant analysis 
when the parametric estimates of probability densities are either 
unreliable, unknown, or difficult to determine. k-NN is a 
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’supervised’ classification method due to the fact that it uses the 
class labels of the training data. This is opposed to ’unsupervised’ 
methods, which employ clustering and do not use the class labels 
of the training data. In order to classify the data, the algorithm 
first splits the samples into training and test sample categories, 
in this case xi and x respectively. From here the classes for the 
training and test samples can be established with ω being the true 
class of the training sample and 𝜔ෝ indicating the predicted class 
for the test sample. 

𝜔,ෞ  𝜔 = 1. 2, … , Ω          (3) 
 
    where Ω is the total number of classes. During the training 
phase only the true class of ω for each training sample is used; 
however, when testing, the 𝜔ෝ  is predicted. The ’k’ in k-NN 
denotes the number of neighbours that are used in the 
classification of the sample. For example, when k = 1 the 
predicted class (𝜔ෝ) of the test sample x is set equal to the true 
class ω of its nearest neighbour, as shown below. 
 

𝜔ෝ = 𝑚𝑖𝑛. 𝑑𝑖𝑠𝑡. (𝜔)          (4) 
    When k increases above 1 the predicted class of the test 
sample is set to the most frequent true class among the k nearest 
training samples. This gives the decision rule, 

𝐷 ∶ 𝑥 →  𝜔ෝ               (5) 
 
    With each x, the test sample being predicted is the 
calculated 𝜔ෝ . In order to establish the ’nearest neighbour’ to 
each point there are a variety of possible distance metrics that 
can be used. The classification learner offers many options for 
the distance metric when optimising the model. Given that these 
are all different in their calculation, this paper briefly covers the 
final choice, the City Block distance metric. This method is a 
special case of the ’Minkowski’ metric [20], the formula for 
which is shown in equation 6, 
 

𝐷 (𝑥, 𝑦) =  ඥΣௗ|𝑥ௗ − 𝑦ௗ|𝑝
೛

         (6) 
 

In the case of the City Block metric, p = 1, making the 
calculation for distance using the City Block method simply the 
sum of the absolute difference of the Cartesian coordinates. The 
term ’weighted’ stems from a slight variation to the normal k-
NN algorithm. Upon determining the ’k’ nearest neighbours the 
algorithm then weights each point according to its distance from 
the point to be predicted. This weighting often takes the form of 
an inverse or squared inverse rule, as shown below. 

𝑊௜ =  
ଵ

ௗ௜
 𝑜𝑟 

ଵ

ௗ௜మ           (7) 

 
    With W being the weight assigned to each point, and d 
representing its calculated distance from the predicted point. 
From here the total weight of each class is summed and the 
highest weighted class within the ’k’ nearest neighbours is 
predicted as 𝜔ෝ. Weighting the predictions can mean that within 
the subset of ’k’ nearest neighbours it is no longer the most 
frequent class that is chosen, but the class with the highest 
weight.  

In order to improve the accuracy of the predictions the input 
features can be transformed prior to analysis. Given the 
difference in average values between the features (as displayed 
in Table I) it is clear that the input would benefit from 
standardisation. This is the process of removing scale effects 
caused by different measurement scales, or in the case of this 
paper reducing the large difference in values of the curve 
identifiers for the discharge curves. The process of 
standardization transforms the initial feature values into z-scores 
using the values of mean and standard deviation over all input 
samples, as given below 

 

𝑧௜௝ =
௫೔ೕିఓೕ

ఙೕ
             (8) 

 
    In this relationship xij is the value for the ith sample and the 
jth feature, µj is the average of all xij for feature j, and σj is the 
standard deviation of all xij over all input samples. Once the 
standardization has taken place the range and scale of the z-
scores should be similar, providing that the distributions of the 
input features were also similar.  
    The final aspect of creating the algorithm in MATLAB was 
to use cross-validation when assessing the performance. 
Generally speaking, if predictions are made using any of the 
training sets, it will be expected that the algorithm will be more 
likely to correctly predict these classes and as such this will result 
in false increases in accuracy when evaluated. In order to ensure 
any evaluation of accuracy was reliable, cross-validation was 
used. In the method followed by this report, 5-fold validation was 
used within the MATLAB classification learner, which meant 
splitting the data into five equally sized partitions. From here, 
partitions 1 to 4 are used for training while partition 5 is used for 
testing. This is repeated as partitions 1 to 3 and 5 are now used 
for training and partition 4 is used for testing. Eventually all 
partitions will be used to test, ensuring the accuracy given is as 
reliable as possible. 
 
3.  METHOD 
 
3.1 Initial Data Collection 
    Commercially available high-power LFP/graphite A123 
APR18650M1A cells were used to create the dataset, the cells 
having a nominal capacity of 1.1Ah and a nominal voltage of 
3.3V [21]. The cells were cycled in cylindrical fixtures with 4-
point contacts on a 48-channel Arbin LBT battery testing cycler. 
Throughout the tests, the temperature was kept at a steady 30◦C 
using an environmental chamber. In order to create differing 
conditions, the cells were cycled with various fast charging 
policies. Cells were charged from 0% to 80% state of charge 
(SOC) using various single-step and two-step charging policies. 
The batteries exhibited charging times in the region of 540 to 
800s during this period. From 80% to 100% SOC the batteries 
were uniformly charged at 1C (Constant Current - Constant 
Voltage) CC-CV charging step to 3.6V. From here all cells were 
discharged using CC-CV at 4C down to 2.0V. These voltage cut-
offs were recommended by the manufacturer. The capacity of 
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each battery was calculated as a function of voltage and 
evaluated for each cycle, and the batteries were stopped cycling 
when the capacity reached 80% of the original capacity or 
0.88Ah. This was chosen as the cut-off point or point of ’failure’ 
as this is a regularly used industry value for establishing when a 
battery is no longer fit for purpose. This paper notes that this 
work is unaffected by the decision to make 80% the actual 
’failure’ point as this number is arbitrary. It simply limits the 
model to only being able to predict remaining useful cycles in 
the region of 80-100%. In the process of writing the code, steps 
were taken to ensure that the code was written in such a way as 
to make altering the model to predict remaining useful cycles in 
a larger region as easy as possible. It is unfortunately impossible 
to predict remaining useful cycles outside of this range as the 
data used didn’t supply discharge curves beyond when the 
battery reached 80% capacity. Should such data become 
available it would be simple to retrain the model and allow it to 
predict the remaining useful cycles until capacity reaches 
anywhere in the region the data provides. 
 
3.2 Data Processing 
    Once the data had been created it was necessary to 
thoroughly process it in order for it to be compatible with 
MATLAB’s classification learner [11]. Given that all the 
discharges were over the same voltage range, it was possible to 
apply the code and filters identically across all the batteries. As 
mentioned previously, each battery was charged under differing 
policies meaning that it was unsuitable to use the charge curves 
when training the algorithm as it would create too much 
variability.  
    The first operation was to separate the discharge curves 
from the rest of the cycle as the dataset didn’t separate them. The 
code in Figure 2 shows the process of removing all the charge 
readings by finding the first point at which the data begins to 
drop below 3.6V, indicating the beginning of the discharging 
process. The actual value used to determine when the discharge 
started within the code was 3.5995V, the last value greater than 
3.5995V being counted as the first value of the discharge curve. 
This measure was due to the battery being left at 3.6V for a 
period of time meaning that the discharge curve began with a flat 
line when using 3.6V as the cut-off for the beginning of the 
curve. It was through trial and error that 3.5995V was found to 
reliably give the correct start point of the discharge curve.  

As shown in the code, the curve was then cut to ensure that 
it finished at 2V. This was due to the testing sometimes having 
been extended into the next charging cycle and as such leaving 
incorrect curves. Finally, each curve was evaluated to ensure it 
fell within the expected time parameters. At this point the time 
data was still in minutes, therefore anything that took over 100 
minutes to discharge was discarded as an outlier curve and set to 
zero. From here they were no longer included in the calculation 
and as such could not incorrectly influence the training of the 
algorithm.  
 
 
 
 

%discurves is the variable that contains the original data 
%check to find where the battery begins to discharge 
Chk = discurves(a).cycles(b).V >= 3.5995; 
Index1 = find(chk); 
Vstart = max (index1); 
%include all data from start of discharge 
for i=1: length(discurves(a).cycles(b).V) – Vstart 
allV1(i) = [discurves(a).cycles(b).V(Vstart)]; 
allt1(i) = [discurves(a).cycles(b).t(Vstart)]; 
Vstart = Vstart +1; 
end 
chk = allV1<2; 
index1 = find(chk); 
Vend = min(index1); 
 %remove any excess data after V=2 
for i=1:Vend 
   allV2(i) = allV1(i); 
%set t=0 for the beginning of discharge 
allt2(i) = allt1(i)-allt1(1); 
end 
discurves(a).cycles(b).V =allV2’; 
discurves(a).cycles(b).t = allt2’; 
clearvars – except batch_combined discurves a b; 
%check for whole curves that were incorrectly recorded and remove these 
tf3 = (100 < discurves (a). cycles(b).t); 
tf3 = mean (tf3); 
if tf3>0 
  discurves (a).cycles(b).V =zeros; 
  discurves(a).cycles(b).t =zeros; 
end 
clear tf3; 

Figure 2: Discharge curve separation 
 

    When inspecting the curves after the first round of 
processing it was noted that, due to measurement faults, some of 
the curves had very few readings in comparison to the vast 
majority. Similarly to the previously mentioned curves that took 
too long to discharge, these curves were set to zero and ignored 
in any further work. It was felt that replicating these curves 
would be contradicting the final aim of using single curves as an 
input into the algorithm, hence why the outlier curves were 
removed as opposed to filling the data by using extrapolation 
from previous and subsequent curves. From here the time data 
was converted to seconds. Whilst this made the values much 
larger as they had previously been in minutes, having all data in 
SI units was deemed to be more important, and it was noted that 
the standardisation of values that was discussed earlier would 
render this the correct choice. Finally, each curve was filtered 
using a Savitzky-Golay (SG) filter in order to smooth the data 
and remove any unwanted noise. Given that experimental data is 
subject to noise, this greatly increased accuracy of any 
predictions. The SG filter is a digital filter that can be applied to 
increase the precision of the data without distorting the trend of 
the discharge curve in the first place. The filter uses convolution 
to fit sub-sets of adjacent data points with a low-degree 
polynomial by the method of linear least squares, giving a 
smoother discharge curve with less noise. This filtering would 
eventually be applied to each input curve when making 
predictions. 
 
3.3 Feature Extraction 
    Following on from the processing of the discharge curves, 
it was necessary to extract the features discussed earlier in order 
to train the model. This section describes the features that were 
chosen to represent each curve when classifying. Those were 
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chosen as part of a testing process that involved plotting the 
feature against the remaining cycles to determine the amount of 
correlation between the two. Features that exhibited higher 
correlation were then chosen for training the model. Figure 3 
displays the relationship between one of the features and the 
remaining useful cycles. As is clear from the graph when the 
remaining useful cycles are lower, e.g. in the region of 0-500 
remaining cycles, the relationship is much stronger with a small 
change in remaining cycles, exhibiting a much greater change in 
maximum gradient in comparison to earlier cycles. This 
relationship between RUC and the trends of the features will be 
discussed in later sections. 
 

 
Figure 3: Maximum gradient against remaining useful cycles 
 

Figure 4 displays the first two processes to extract the data. 
Line 3 of the code in Figure 4 displays the simple mean 
calculation. Given the large number of curves, wherever possible 
it was decided that the feature extraction should be 
computationally simple in order to reduce processing time, even 
so the program still takes upwards of 10 minutes to run. The next 
process was to create the two ’windows’ of voltage that were 
used when extracting features. In this case the windows spanned 
from 3.2 to 2.6V and from 3.0 to 2.2V. Figure 5 shows the 
creation of the 3.2 to 2.6V window. When creating this window 
the code uses the number of the voltage measurement to indicate 
the start and end of the window, shown in Figure 5 as Vhf1 and 
Vhf2. For example, if the voltage drops below 3.2V on the 100th 
measurement of voltage Vhf1 would equal 100. The creation of 
this voltage window is identical to the creation of the 3.0 to 2.2V 
window, hence why it is not included. Figure 5 also displays the 
creation of the feature (Tdiff) displaying the period of time that 
the curve remained at a ’constant’ voltage on line 17.  
 
%calculation of the mean of the product of V and t coordinates 
Tmn = mean (discuves(m).cycles(i).t.* discurves(m).cycles(i). V); 
 
%establishing total discharge time 
Tmax = max(discurves(m).cycles(i).t); 
 
%establishing the reading whereby the voltage reached 2.8V 
chk = discurves(m).cycles(i).V <= 2.800; 
index1-find(chk); 
Vhf = min(index1); 
clear chk index1; 

Figure 4 Process to extract battery data 
 
 

 

%creating the window from 3.2V to 2.6V 
chk = discurves(m).cycles(i).V <= 3.200 ; 
index1 = find (chk); 
Vhf1 = min(index1); 
Tstart(i) = discurves(m).cycles(i).t(Vhf1); 
 
clear chk index1; 
 
chk = discurves(m).cycles(i).V <=2.600; 
index1 = find(chk); 
Vhf2 = min(index1); 
Tstart2(i) = discurves(m).cycles(i).t(Vhf2); 
 
clear chk index1; 
 
Tdiff = Tstart2(i) – Tstart(i); 

Figure 5 Creation of voltage measurement windows 
 
The final aspect to the feature extraction was to acquire the 

gradient between subsequent points on each discharge curve, the 
process for which is shown in Figure 6. The ’for loop’ in Figure 
6 shows the process for calculating the gradient between two 
points. On the occasion that the voltage had been recorded as the 
same number twice, the loop simply takes the next point to 
calculate the gradient from in order to avoid a zero value. 
Appendix A-E displays the ‘for loop’ used to calculate the 
position of the maximum gradient, using a simple increment 
system that evaluates the most recent gradient calculation against 
the highest value before replacing if the new value is higher. As 
mentioned previously the process for extracting the mean 
gradient in the 3.0 to 2.2V window was almost identical. Finally, 
the data was placed in a ’Table’ type variable, as shown in Table 
1, as this was the format the classification learner required. 
 
%calculating the maximum gradient 
for x=Vhf1:Vhf2 
   x1=discurves(m).cycles(i).t(x); 
   x2=discurves(m).cycles(i).t(x+1); 
   y1=discurves(m).cycles(i).V(x); 
   y2=discurves(m).cycles(i).V(x+1); 
 
   if y2==y1 

y2 = discurves(m).cycles(i).V(x+2); 
x2 = discurves(m).cycles(i).t(x+2) 
end 
dydxcnt = (y2-y1)/(x2-x1); 
if dydxcnt <=dydxmax 
 dydxmax = x; 
end 

end 

Figure 6 Feature extraction to acquire the gradient between 
subsequent points on each discharge curve 
 

Table 1: Example input table showing the first 3 rows. 
RUC dydx 

Max 
t Max Vhf t Diff t Mean Dydx Mean 

1850 845.7 864.9 817.3 804.8 1326.5 -0.0049 
1850 846.2 865.9 817.8 805.2 1329.2 -0.0047 
1850 846.6 866.6 818.1 805.6 1331.2 -0.0046 
… … … … … … … 

 
The headings of the table are as follows:  
• ’RUC’ is the remaining useful cycles before the battery reaches 
80% capacity 
• ’dydx Max’ is the time in seconds at which the maximum 
gradient occurs in the window of 3.2 to 2.6V  
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• ’t Max’ is the total discharge time in seconds  
• ’Vhf’ is the time at which the voltage reaches 2.8V or half-way 
through discharging in seconds  
• ’t Diff.’ is the time period in seconds between the voltage 
reaching 3.2 and 2.6V  
• ’t Mean’ is the mean of the product of each time and voltage 
coordinate  
• ’dydx Mean’ is the mean gradient between 3.0 to 2.2V 
 
3.4 Model Creation and Optimisation 

    Once each curve had the features extracted and 
appropriately formatted it was possible to use MATLAB’s 
classification learner (MCL) [11] to create and optimise the 
model. Before its input to the MCL, the data was split on a 7 : 3 
ratio to create Training and Testing inputs, to ensure that any 
accuracy claims were as valid as possible and that the model was 
able to train on separate data. From here all models were trained 
using the same ’Training’ dataset, with the ’Testing’ dataset 
being used exclusively for evaluation. The whole process of 
model optimisation was somewhat iterative in that any time a 
new feature was created or considered, it would be tested using 
the MCL, specifically its ’Quick to Train’ option. This option 
meant that it was possible to train the input data on a variety of 
k-NN and decision tree algorithms that were computationally 
inexpensive and gave quick results, indicating the effect of the 
new feature or alteration to the data processing on the model 
accuracy. Whilst this presented a limited view of the other 
potential models that could be trained, through testing it was 
clear that any changes on the accuracy of these models were 
indicative of similar changes to any of the models that took 
longer to train. This meant that the process of improvement was 
quick and made it possible to make numerous changes without 
losing large amounts of time to re-train the models to see the 
changes in accuracy. It should be noted that the ’accuracy’ metric 
within the MCL is fairly simplistic, simply indicating the overall 
number of correct predictions as a percentage of the total 
predictions. Whilst this doesn’t offer an overall view of model 
performance, throughout the course of experimentation it was 
validated to provide a satisfactory overview of performance that 
was indicative of the model performance in other metrics, hence 
why it was confidently used throughout as a judge of a model’s 
accuracy. Once the features had been finalised through testing, 
all models that the MCL offered were trained on the data to 
establish which gave the greatest accuracy. Once weighted k-NN 
had been arrived at as giving the greatest accuracy, the 
parameters of the k-NN model were altered using the MCL’s 
built in tools. In order to establish the best possible accuracy, the 
parameters were altered in the following order: 
 
1) Principal Component Analysis (PCA). PCA is a procedure that 
uses transformation of the observations into a set of values that 
are linearly uncorrelated, called principal components. MCL 
allows for this to be easily used, but given the large reduction in 
accuracy when turned on, it was decided that it would be not be 
employed.  

2) Standardisation. As discussed earlier, this was a key factor in 
improving accuracy due to the wide range of feature values, 
demonstrated in Table 1. Standardisation was used throughout 
the refining of the k-NN model.  
3) Distance Weight. This value changed little when varying the 
choice between ’Inverse’ and ’Squared Inverse’, however there 
was a noticeable drop in accuracy when using ’Equal’ weighting 
as this meant that the k-NN was no longer ’Weighted’ in any way.  
4) Distance metric. As discussed earlier this had some effect but 
after some experimentation it was observed that the ’City Block’ 
metric was the most accurate.  
5) ’k’ Value. The lower the ’k’ value the more likely the 
prediction is to be correct, however it is more susceptible to 
outliers, therefore it is important to find a balance. 
 
These factors were altered one at a time from the default settings 
of ’Weighted KNN’ in the MCL. The default settings were: k = 
10, the distance metric was Euclidean, the distance weighting 
was ’Squared Inverse’, and PCA was turned off. From here the 
model was exported allowing it to be used for further predictions 
and testing for accuracy. 
 
 
4. RESULTS AND DISCUSSION 

 
4.1 Machine Learning Results 

The first investigation using the MCL was to see which 
model produced the most accurate results. During testing only 
the ’Quick to Train’ models were used, however once the input 
features had been finalised all the models were trained. The 
predominant method of evaluating the performance of the 
models will be using the ’Accuracy’ value provided by the MCL, 
which is shown as 

       

𝐴𝑐𝑐. =  
஼௢௥௥௘௖௧ ௣௥௘ௗ௜௖௧௜௢௡௦

்௢௧௔௟ ௣௥௘ௗ௜௖௧௜௢௡௦
           (9) 

    Within the MCL, the models were grouped into categories. 
For example, both ’Weighted k-NN’ and ’Fine k-NN’ fell under 
the ’k-NN’ denomination. As such, when evaluating 
performance this report only includes the most accurate from 
each category of model or, in the case of the ’k-NN’ category, the 
three most accurate models as a point of comparison. Table 2 
displays the model categories, with the most accurate specific 
model in brackets, as well as the accuracy for each model. 

Table 2: Accuracies of tested models. 
Model Accuracy (%) 
Tree (Fine) 10.9 
Discriminant (Linear*) 6.5 
SVM (Linear*) 12.4 
Fine KNN 25.4 
Weighted KNN 26.2 
Medium KNN 22.1 

    As is clear from Table 2 there are some models that were far 
better suited to the task of classifying the curves. ’*’ indicates 
where other models in the category failed and it was impossible 
to test them. This paper did not have access to hardware that 
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might have been able to handle the complexity of these failed 
models. Whilst this is regrettable it is believed that the low 
accuracies in the less complex tests are indicative of the 
accuracies these more complex models would have achieved and 
therefore doesn’t affect the final outcome. 
 
4.2 Final Algorithm Optimisation 

The next process was to optimise the Weighted k-NN model 
to ensure that it was producing as accurate predictions as 
possible. Table 3 displays the effects of changing the model 
variables, as discussed in Section 3.4. Whilst some of the effects 
were small, it built confidence in the model as a whole.  

As is clear, altering the variables had little effect when 
increasing the accuracy of the model, indicating perhaps that the 
majority of the accuracy came from initial model choice and the 
input features used for classification. Given that the use of the 
City Block metric was the only variable to increase accuracy, it 
remained in the final model as a chosen metric. 
 

Table 3: Effects of variable changes on model accuracy. 
Variable Altered Value Accuracy (%) 
‘k’ Value 1 25.4 
 2 25.4 
 3 25.7 
 5 26.0 
 10* 26.2 
 20 26.1 
 50 25.7 
PCA OFF* 26.2 
 ON 19.8 
Distance Weight Equal 10.1 
 Inverse 25.3 
 Squared Inverse* 26.2 
 Euclidean 26.2 
 Chebychev 23.0 
 Mahalanobis 18.5 
 Cosine 14.3 
 City Block 29.1 

’*’ Indicates where this value was the default for k-NN 
 

4.3 Final Algorithm Accuracy 
    The model’s accuracy was somewhat difficult to categorise 
due to the large number of classes. To give an example of why 
this was an issue, when working out classification accuracy, if 
the model was out by 1 class or 10 cycles this would be counted 
as an incorrect prediction. However, if the total cycle life for this 
battery was 1000 cycles this could mean the prediction was only 
incorrect by approximately 1%. As such, while classification 
accuracy has been included in the final figures it should not be 
regarded as being completely representative of the accuracy of 
the model. Table 4 displays various accuracy metrics to give a 
comprehensive overlook of the model’s performance. 

 
 

 
 
 

 

Table 4: Final model accuracy 
Accuracy Test Accuracy 
Classification Accuracy* 7.844% 
Classification Accuracy 0.8310% 
Mean Percentage Error* 14.64% 
Mean Percentage Error 14.64% 
Mean Relative Difference* 21.73% 
Mean Relative Difference 21.95% 
Adjusted R Squared* 0.5200 
Adjusted R Squared 0.5200 

 
’*’ Indicates where the actual value used in the accuracy 
calculation is rounded to the nearest 10, as all the class 
predictions are to the nearest 10. Percentage error was calculated 
as, 

𝑀𝑒𝑎𝑛%𝐸𝑟𝑟𝑜𝑟 =  
⌈஺௖௧௨௔௟ ோ஼௅ି௉௥௘ௗ௜௖௧௘  ோ஼௅⌉

்௢௧௔௟ ஻௔௧௧௘௥௬ ஼௬௖௟௘௦
∗ 100     (10) 

 
Relative Difference was calculated as, 
 

𝑀𝑒𝑎𝑛𝑅𝑒𝑙. 𝐷𝑖𝑓𝑓. =  
|஺௖௧௨௔௟ ோ஼௅ି௉௥௘ௗ௜௖௧௘  ோ஼௅|

୫ୟ୶(஺௖௧௨௔௟ ோ஼௅,௉௥௘ௗ௜௖௧௘ௗ ோ஼௅)
∗ 100  (11) 

    As is clear, the classification accuracy is low, however due 
to the high number of classes this was to be expected. The other 
metrics for determining accuracy, however, create much more 
confidence in the accuracy of the predictions. It is clear that the 
k-NN model could be feasibly used for rapid consumer testing 
of the RUC of a battery, simply by obtaining one discharge curve. 
The use of a single discharge curve as opposed to many, while 
still maintaining a similar accuracy, is an important step in the 
classification of RUC. Particularly in comparison to work done 
by Severson et. al. [10] it can be seen that the average error of 
this model is almost identical when using a single curve. 
 
4.4 Use Case and User Interface 

As mentioned above, the use case for this model would be 
within the consumer environment, whereby a user might require 
a fast and relatively accurate estimate of the number of cycles 
left on their battery. As part of proving this use case, a workable 
UI was created to demonstrate this, a screen-shot of which can 
be seen in Figure 7. The viability of this UI was proved in its 
simple interface that was tested among numerous peers who did 
not have a scientific background as a potential use case. In all 
cases it was reported that the UI was intuitive and provided the 
information required. Appendix F displays the UI during a 
potential user interaction. The graph has been toggled to 
currently display the raw input curves that were fed to the model 
before any refining. The table on the left hand side of the screen-
shot displays the results from a random selection of 25 curves 
from the training dataset, hence why the actual RUL is known 
and the percentage error is able to be calculated. If a user were 
to input their own curves the table would simply display the 
predictions of RUL for each curve. 
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Figure 7 Battery testing user interface 
 

5. CONCLUSIONS 
This paper investigates the viability of using classification 

algorithms for the identification of remaining useful cycles of a 
Lithium-Ion battery from a singular discharge curve. Using the 
built in features within the MATLAB platform, the large dataset 
from Severson et al. [10] was processed and the discharge curves 
were extracted from the cycle data. From here the data was 
filtered before six features were extracted from each discharge 
curve and used to classify the remaining cycle life of the battery. 
Using MATLAB’s built in classification learner, various 
classification models were trained using the extracted data and 
evaluated against each other using the accuracy value provided 
by the learner. After evaluation, Weighted k Nearest Neighbours 
emerged as the most consistently accurate model and was chosen 
for further improvement. The parameters of the k-NN model 
were then altered in order to determine the most accurate 
combination of parameters. After this modification the model 
was extracted for both further accuracy testing and the creation 
of a user interface for demonstration of the viability of the model 
as a commercial and private tool. The final model accurately 
classified discharge curves 7.84% of the time, but given the large 
number of potential classes the other indicators of model 
accuracy, such as a mean percentage error of 14.6%, gave a 
greater indication of the potential and accuracy that this model 
has. Further investigations into classifying the discharge curves 
when taking into account multiple consecutive discharges 
reduced this percentage error to 12.1%. The UI was created using 
MATLAB’s app designer and ensured an intuitive demonstration 
of the usefulness and accuracy of this model. 
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