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ABSTRACT
Indoor home scene coloring technology is a hot topic for home
design, helping users make home coloring decisions. Image based
home scene coloring is preferable for e-commerce customers since
it only requires users to describe coloring expectations or manipu-
late colors through images, which is intuitive and inexpensive. In
contrast, if home scene coloring is performed based on 3D scenes,
the process becomes expensive due to the high cost and time in
obtaining 3D models and constructing 3D scenes. To realize image
based home scene coloring, our framework can extract the coloring
of individual furniture together with their relationship. This allows
us to formulate the color structure of the home scene, serving as
the basis for color migration. Our work is challenging since it is not
intuitive to identify the coloring of furniture and their parts as well
as the coloring relationship among furniture. This paper presents a
new color migration framework for home scenes. We first extract
local coloring from a home scene image forming a regional color
table. We then generate a matching color table from a template
image based on its color structure. Finally we transform the target
image coloring based on the matching color table and well maintain
the boundary transitions among image regions. We also introduce
an interactive operation to guide such transformation. Experiments
show our framework can produce good results meeting human
visual expectations.

CCS CONCEPTS
•Human-centered computing→ Scenario-based design; Interac-
tion design theory, concepts and paradigms;

KEYWORDS
Indoor home scene, coloring expectation, color structure, color
migration, interactive operation.

1 INTRODUCTION
Image is a most popular and cost-effective type of media for e-
commerce applications to present their products. By presenting
images of various home scene coloring design, interior decorators
can effectively convey ideas of good designs and pleasing color com-
binations to their customers. Typically, a design comprises style
and color, determining how well a set of collocated furniture goes
well with each other aesthetically. Human perception on object
attractiveness is mainly influenced by color [Peters 2007]. While
different color combinations impose distinct effects to each per-
son, they also implicitly define home style. In general, style, color
and furniture location forms determining factors of how a person
perceives home scene design.

Home scene coloring research follows two major directions: 3D
model based and image based color migration. 3D model based
methods explore color scheme according to the coloring of indi-
vidual home scene objects, which is well defined as each object
is an independent entity from each other. However, a 3D scene
is often expensive to obtain in terms of time and modeling effort.
In contrast, image based color migration methods require extract-
ing meaningful regions (or objects) in order to work out region
based local coloring. This is typically challenging since regions or
their boundaries are not natively defined in an image. To produce
aesthetic coloring designs, color structure transformation is also
required for both 3D model and image based methods. Existing
methods often perform global color migration without considering
spatially local color properties and interactions, leading to unde-
sirable local color distortion. In addition, the relationship between
colors and furniture parts in a home scene image is difficult to
establish.

Our work presents a novel framework for migrating colors from
a template image of natural or interior scenery, which represents
user coloring expectation (or design), to a home scene image. We
also involves user intervention to assist object segmentation, ad-
dressing the color distortion problem. Judging from intuitiveness
and simplicity, our work is favorable to both professional interior
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decorators and non-professional users. Our main contributions in-
clude: 1) a color migration framework for home scene images based
on template coloring transformation, 2) meaningful regional color
structure extraction, 3) new color table matching strategy, and 4)
multi-subgraph based color reconstruction.

Figure 1: Input image (left). Our results (Coloring 1 and
2) based on natural and interior scenery templates, respec-
tively.

2 RELATEDWORK
Home scene color processing spans multiple directions, including
color organization processing, dominant colors extraction, color
table strategy, and color transfer. Existing work focuses on process-
ing a home scene according to certain color schemes rather than
migrating colors of a home scene image by observing their spatial
relationships.

2.1 Color Organization Processing
Color organization of indoor home scenes is an important research
topic in computer graphics and vision, including 3Dmodel based [Chen
et al. 2016, 2015; Zhang et al. 2017; Zhu et al. 2017] or image
based [Nguyen et al. 2014; Tanaka et al. 2010; Wang et al. 2012]
approaches. 3D model methods cannot be directly adopted to sup-
port color migration for home scene images since they rely on
pre-defined home scene object (or furniture) definitions, which are
not available in images. Regarding existing work,Wang et al. [Wang
et al. 2012] proposed an emotion-based image colorization system,
which required users to interactively segment the grayscale image
of an indoor scene and associate the scene with a set of labeled
furniture images, which are externally collected. This work is hard
to generalize for color migration. [Nguyen et al. 2014; Tanaka et al.
2010] performed global image color transformation based on cer-
tain color space constraints, e.g., hue histogram normalization and
scene illumination. In contrast, transforming colors by considering
the relationship among furniture regions and their coloring in a
home scene image are categorized as local color transformation,
which is a challenging problem.

2.2 Dominant Colors Extraction
The overall perceived hue of an image can be well represented by
some dominating hues. Examining dominant colors is popularly
done by color clustering [Bezdek 1981; Chang et al. 2015; Weeks
and Hague 1997]. However, it fails to maintain relative coloring of
local image regions, matching with their physical characteristics.
Alternatively, machine learning can be used to extract primary
color, modeling how people perceive image color theme. Lin et
al. [Lin and Hanrahan 2013] used a regression model to train a

model for characterizing human-extracted themes and performed
image theme extraction. Such an approach processed image col-
oring globally, failing to account for color relationships among
furniture items.

2.3 Color Table Strategy
Several online communities devoted to share and create color themes,
including Adobe Kuler [a13 [n. d.]] and COLOURloverss [a14 [n.
d.]]. Most of their themes are extracted from images and use a small
fixed number of colors, making them cannot be used directly to
transform colors of home scene images, because such images gener-
ally possess more colors. Generating a color theme from an image
may serve as a good reference for recognizing physical beauty of
the image or restoring color relationships of the image. [Birren 1969;
Itten 1973] have confirmed that different color combinations impose
distinct feelings for each human viewer. Color harmonic model [Ou
and Luo 2006] was then developed to evaluate whether a color pair
is harmonic. This evaluation was only valid within a controlled
environment, not being generalizable. [Cohen-Or et al. 2006] en-
hanced image color harmony by shifting hue values of image colors
to fit a best harmonic scheme, while considering spatial coherence
among colors of neighboring pixels. Alternatively, [O’Donovan
et al. 2011] proposed a data-driven model to evaluate the harmony
of color combinations by scoring 5 colors from a color group. Both
methods only globally evaluated image coloring and depended on
some fixed, small-sized color tables, being difficult to generalize
for processing home scene images, which may comprise a much
larger set of colors. Also, local region coloring of such images may
possess physical significance due to furniture collocation, which
cannot be properly handled bymerely using a high-scoring, globally
harmonic color table.

2.4 Color Transfer
Color transformation reconstructs target image coloring by some
mapping rules. [Reinhard et al. 2001] proposed to adjust input im-
age color statistics according to a template image under the lab
color space, modifying the input image look and feel. Color transfer
by [Tai et al. 2005] was performed by matching probabilistically
segmented color regions and inter-region smoothness against the
template and target images, where spatial correspondence among
regions were optionally enforced. Some color transfer methods
use nonlinear histogram matching [Neumann and Neumann 2005;
Papadakis et al. 2011; Pouli and Reinhard 2011] to handle global
color migration. Alternatively, [Chang et al. 2015] used an improved
k-means clustering to extract a color palette of a few representa-
tive colors from an image, allowing users to change some palette
colors for modifying image coloring, while preserving luminance
monotonicity and adjusting color change to be within the gamut
boundary. All these methods mainly concerned color relationship
within an image based on certain color statistics without observing
their spatial correlation to the scene objects, local color distortion
may be resulted when they are adopted for home scene color trans-
fer.



3 OVERVIEW
Our framework accounts for both home scene content and human
perception characteristics:

3.1 Color Guidance
To allow faithful transformation of user expectation into a home
scene coloring design, we formulate three constraints to guide color
migration: 1) maximizing the variety of template image colors for
transferring to a target image, 2) aligning the proportions of differ-
ent colors between template and target image, and 3) maintaining
color relationship of a target image.

3.2 Interactivity
A critical success factor of image based home scene color migration
is to identify semantic information of local scene regions. We also
need to account for user aesthetic preferences. To accommodate
these, our framework involves user invention to form an additional
guidance for color migration.

Figure 2: Our color migration framework.

Fig 2 illustrates the workflow of our framework with examples.
It accepts a template image of user coloring expectation through
natural (A) or indoor (B) scenery, transforming home scene im-
age (target) coloring to produce image RA or RB, respectively. Our
framework comprises regional dominant color extraction, match-
ing color map generation, and multi-target collaborative migration.
Specifically, regional dominant color extraction involves users to
conduct home scene image segmentation, generating a color struc-
ture to formulate color-to-furniture relationship. Based on this color
structure and a template image, we generate a matching color table
with a simulated annealing algorithm, and perform color migration
based on this table. Since we conduct color migration based on
image segmentation, boundaries among image regions are prone to
voids, we then introduce an operation to fix such boundary artifacts.
Algorithm 1 shows how the above workflow is implemented.

4 BASIS OF HOME SCENE COLORING
4.1 Color Features
Uniquely, our method allows coloring design to be expressed by
natural or indoor scenery, where their color transitions are gradual
and discrete, respectively. Taking human perception in account, it

Table 1: Algorithm 1

Algorithm 1:
Begin: Input:target I,template T;
Phase 1: Regional main color extraction

//Target image subgraph segmentation
segmentation(I)->sub_I;
//color table extraction
[tarC,temC]=extraction(sub_I,T);
//Template image color table extension
NtemC=expand (temC);

Phase 2: Color strategy
interact;//color interactive choice
//Foreground color chart generation
For Temperature conditions(t>0.001) do

For The number of iterations do
Tmp=Adjust(create(NtemC));
Calculated(tarC, Tmp);

End For
//update the temperature
F_C= Tmp;
Update t;

End For
//Background part brightness adjustment
B_C ->Adaptive(I,T, F_C);
Phase 3: Multi-Subgraph Color Reconstruction
NI=combination (transfer(sub_I,F_C, B_C));

is natural to divide a home scene into foreground and background
objects. Foreground objects usually comprise furniture, placing in
certain designated indoor positions. Their placement and coloring
are local, representing user design preferences. Examples include
table and chair (movable), or window and door (at fixed position).
Background objects refer to fixed house parts, such as wall and
floor, with colors widely spanning across a significant scene portion.
For a home scene, there may be some restricted features, including
outdoor scenery, indoor plants, collectables, etc., with unchangeable
coloring, which should be excluded from color migration.

4.2 Hierarchical Color Structure
Many existing work only cast the color transformation/migration
problem as dominant colors discovery and replacement, solving
them by color clustering algorithms and constraints. Scene object
relationships and their relevance to scene coloring are usually ig-
nored. In contrast, we use a hierarchical color structure to faithfully
transform user expectation into home scene coloring design.

The color structure comprises three levels: 1) L1 globally cat-
egorizes a scene into foreground and background objects, 2) L2
maintains scene objects under each of the above category, allow-
ing relationship among different furniture items to be represented,
3) L3 maintains the color components within each furniture item.
Fig 3 illustrates the color structure of a home scene example. With
L1, we maintain B and F, representing the number of colors in the
background and foreground objects, respectively. BF represents re-
stricted scene features. With L2, we maintain B =

{
B1,B2, ...,Bn

}
and F =

{
F1, F2, ..., Fn

}
, representing the individual background



Figure 3: Color structure relationship.

and foreground object items, respectively. The color composition of
these items is maintained under L3, e.g. Fi =

{
c1, c2, ..., cn

}
denotes

the color set
{
c1, c2, ..., cn

}
formulating item Fi .

4.3 Color Map
Color map comprises a finite number of colors representing im-
age content. Existing work store their color clustering results as
a color map. Replacing some colors in a color map can change
image tone or style. This operation generally cannot accommo-
date color change to regional image contents, due to lacking scene
structure correspondence. To maintain color relationship, we ar-
gument color map with a two-level color relationship. For a color
mapM =

{
c1, c2, ..., cn

}
, we average all color items cn to produce

a mean color MM, the color map representative. As shown in Fig 4
(a), the first level color relationship is modeled by the distances
between MM and each color map element, representing how im-
age coloring spreads out from the representative. The second level
color relationship is formed by the distances between each pair of
color map elements, defining spatial relationship among all color
elements. Rule (1) shows the metric formulating the two-level color
relationship.We evaluate color distance by using Euclidean distance
under the standard CIELab color space.{

mean (M) → ci i, j ∈ n and i , j
ci → c j i, j ∈ n and i , j

(1)

5 OUR APPROACH
5.1 Regional Dominant Color Extraction
5.1.1 User Assisted Segmentation. To faithfully transform user ex-
pectation into home scene coloring design, we account for the
scene furniture and their color relationship. Despite native color
clustering may extract such information, noisy results (Fig 6, mid-
dle) are likely obtained for an input image (Fig 6, left), due to color
or illumination variation appearing on individual furniture item.
To properly extract dominant furniture coloring, we incorporate
user intervention to assist color segmentation. We adopt an in-
teractive segmentation algorithm [Price et al. 2010] to divide a
furniture item into parts by color and edge thresholds, which were
implicitly defined by regions-of-interest indicated through user
drawing strokes. As in Fig 5, a user can draw simple strokes over
a furniture item to indicate foreground and background objects.
For example, by drawing red and white strokes over a sofa (Fig 5,
top-left), foreground and background objects (Fig 5, bottom-left)
can be extracted, respectively. Other sub-diagrams of Fig 5 depicts

M

MM

(a) Color Relationship

M TML TL

(b) Luminance Map

T

M

(c) Matching Color Table (d) Brightness Adjustment

Figure 4: Color table strategy

how different stroke inputs generate different foreground and back-
ground objects. Allowing multiple stroke drawing interactions can
further assist complicated scene or furniture item partitioning.

Figure 5: Interactive segmentation.

Figure 6: Color extraction comparison.

5.1.2 Color Extraction: After segmentation, a hierarchical color
structure can be generated. For each furniture item, a subgraph
is generated to represent color parts constitute a furniture item.
This corresponds to L2 and L3 of the hierarchical color structure,
where L3 color nodes can be directly obtained from the segmenta-
tion parts. Finally, L1 can be naturally formed by the foreground



and background object categorization. To allow each furniture item
to be processed as an independent entity during color migration,
we derive a dominant color for each furniture item. This matches
well with practical sense as each furniture item usually comes with
a theme coloring defining its tone or style. We perform k-means
clustering to determine the dominant color for each subgraph ex-
tracted, and utilize the resulting dominant colors to generate the
home scene color mapC =

{
c1, c2, ..., ck

}
. An example of our color

extraction result is shown in Fig 6 (right). Our method explicitly
works out the correlation between home scene structure and col-
ors. Alternatively, if only simple color clustering results (e.g. Fig 6,
middle) are used for color replacement, confusing results may be
produced. For instance, by replacing the white color of the sofa
seats at the right side in the home scene, part of the ceiling color
(white) will also be replaced unexpectedly.

5.2 Matching Color Map Generation
According to the input home scene color map produced, we de-
termine a set of colors from the template image, using them to
generate a matching color map. We cast this process as a combina-
torial optimization problem constraining by both user interaction
and visual color difference.

We uniquely allow users to express coloring expectation with a
template natural or indoor scenery. If the template image is a home
scene, color migration is quite straightforward as both template
and target images comprise similar color structures. Such a benefit
may no longer stand when natural scenery is used, as significant
image parts may possess gradual color changes while scene objects
could be ill-defined due to flexible shapes and motions, e.g. cloud
and tree leaves. To overcome this, we migrate color separately for
foreground and background objects.

5.2.1 Optimization strategy. For foreground scene portion of color
migration, colors of foreground objects can usually accept a wider
change in intensity values. We obtain a color map from the tem-
plate image. By simulated annealing, we align the color maps of
template and target images by minimizing the distances between
their corresponding elements. We add a luminance map to avoid
unnecessary iterations, as the initial configuration of a simulated
annealing process is typically generated randomly, making the
process inefficient.

5.2.2 Matching Color Map. Given a template image, we apply
clustering to generate a template color map C =

{
c1, c2, ..., cn

}
,

where n is the number of colors representing foreground objects.
An example of color map (T) is shown in Fig 8. We further perform
a detailed clustering on top to generate an extended color map
ET = ci j , i = 1...a, j = 1...n, comprising more fine-grained color
elements, where ci j represents the color of block i and point j in
the image. An example based on color map T is shown in Fig 4 (c)
(histogram at upper part), which also shows the color distribution.
This offers users a finer control on the kind of results to produce.
In practice, when we pick colors for migration using this extended
color map, we should avoid choosing more than one color element
from each block.

5.2.3 Luminance Map. Brightness relationship among colors of
each image region is critical to color migration. It helps us single

out color redundancy and improve color migration quality. We
generate luminance maps to track the brightness information of
the color maps. Fig 4 (b) shows the luminance maps ML and TL,
generated for M (target color map) and T (template color map),
respectively.

5.2.4 Simulated Annealing. We account for color contribution and
structure formatching to supportmeaningful colormigration. Color
contribution corresponds to the percentage of pixels within an im-
age space of a certain color. We measure color contribution sepa-
rately for foreground and background image portions. For a tar-
get image and a template image, their color contribution maps
are RM =

{
r1, r2, r3..., cn

}
and RT =

{
t1, t2, t3..., tn

}
, respectively,

where n is the number of color elements in their corresponding
color maps. Measuring how well two color maps matched w.r.t.
color contributions is evaluated by:

Ep =
n∑
1

|ri − ti | (2)

Color structure is formulated by the two-level color relationship
as described in Section 4.3, and mathematically defined by Rule 1.
We may express the rule in an abstracted form asV = (α , β), where
α and β encompass the rules ofmean (M) → ci and ci → c j , respec-
tively. Color structure implicitly encodes how colors using for con-
structing a color map vary from each other as well as group repre-
sentative. We evaluate color structure difference byVs = |VT −VM |,
whereVT andVM represent the color structure for the template and
the target images, respectively. However, the values representing
color structure difference are much larger than the color contri-
bution difference. Hence, we perform Z-score normalization as
follows:

c∗ =
c − µ

δ
(3)

where c∗ is the normalized value, c is the origin value on Vs , µ and
δ are the sample data mean and standard deviation, respectively.
The similarity degree of the parallax relationship between the two
color maps is determined by the root mean square error of the
normalized values:

Ec =

√∑n
i=1 |c

∗ |

n
(4)

The color map matching effect is quantified as the energy value
E, where E = Ep + Ec . Minimizing E is a combinatorial problem,
addressing via simulated annealing approaches. Based on the target
color map, an optimized matching color map is constructed from
the template image. We stop iterating when the temperature drops
to 0.001. Our tests set the maximum number of iterations to 100.

5.2.5 Brightness Adjustment. A background object of a home scene
may likely comprise a simple color with brightness being adjustable,
such that lighting conditions of a home scene can been taken into
account. To support color migration for a background object, we
allow a user to perform color selection indicating which representa-
tive color from the template image should be migrated to the target
home scene. We also maintain the brightness relationship, where
the brightness adjustment is done by:

Itl −Ctl
Ptl − Itl

=
Iml −Cml
Pml − Iml

(5)



While we migrate a color, we also adjust the brightness accordingly.
As illustrated in Fig 4 (d), Itl and Iml are the average brightness
of the target image and the template image, respectively. Ptl is the
original brightness value of the background of the target image.
Pml is the adjusted background brightness after color migration.

5.3 Multi-Subgraph Color Reconstruction
Our framework involves color structure, well matching indoor
home scene nature, which comprises discrete furniture items. The
color migration process is supported by a matching color map
(ref. Section 5.2.1), which comprises a confined set of dominant
colors. On the contrary, since we apply segmentation to obtain
such a color structure, representing each furniture item with a
subgraph structure to support color migration, undesired holes may
be induced between subgraphs. We propose a color reconstruction
method to fix the problem.

As we have segmented a home scene according to the furniture
settings, each target image pixel is effectively being classified to
a cluster. When color migration occurs, the color of each cluster
center of the target image will be replaced by an appropriate dom-
inant color from the matching color map. This effectively offsets
the center of each cluster, and that all cluster members should be
updated accordingly to retain the visual representation of all home
scene furniture. With this goal, we update the color of each cluster
members by offsetting its value with its original distance to the
cluster center before color migration. To facilitate this, the number
of elements in the matching color map

{
T1,T2, ...,Tj

}
of a template

image and that in the target color map
{
C1,C2, ...,Cj

}
must be

agreed, i.e. i = j.
There are two main causes of the hole problem, either due to

non-overlapping or partial overlapping of segmented target image
regions. For holes caused by non-overlapping regions, we can fix
them by identifying their existence through edge detection because
such holes will appear along the boundaries of image regions. We
perform this by adopting an edge detection algorithm [Xu et al.
2012]. The probability of a pixel being a boundary point is deter-
mined by the edge intensity of the pixel, which is the color value
of a detected edge. Since an edge can be roughly classified as a
vertical or a horizontal one, we apply the rules as in Eq 6 and Eq 7
to evaluate the possibility of an edge being holes:

Vertical: {
max (ϕ (w1) , (ϕ (h2) , (ϕ (w2)) == (ϕ (h2)
max (ϕ (w1) , (ϕ (h2) , (ϕ (w2)) , (ϕ (h2) (6)

Horizontal:{
max (ϕ (l1) , (ϕ (h2) , (ϕ (l2)) == (ϕ (h2)
max (ϕ (l1) , (ϕ (h2) , (ϕ (l2)) , (ϕ (h2) (7)

whereϕ (ni ) represents the color value of a particular image pixel as
an edge pixel and n represents the set of pixels under consideration.
If the max value of ϕ (ni ) is equal to ϕ (h2), the pixel of h2 is an
edge pixel. Fig 7 provides a graphical illustration of example holes
and their types.

Holes that are edge pixels in the image are repaired using bound-
ary point matching. Let k is an image boundary pixel and its sur-
rounding pixels are {kt ,kb ,kl ,kr }. Color similarity (min (E)) be-
tween the pixel of the same position in the original target image and

its surrounding pixels is calculated, i.e.,
{
ki

Emin
→ k, i ∈ (l , r , t ,b)

}
.

The algorithm obtains the pixel position with the most similar color
to the hole color and fills the hole in the reconstructed target image.
In contrast, a non-edge hole will be repaired by the mean color of
pixels {kt ,kb ,kl ,kr }.

6 EXPERIMENT RESULTS
6.1 Our Results
Our framework is unique as besides considering color structure to
assist color migration, it also incorporate user interaction to allow
user expectation to be faithfully expressed during the process. Here
we present our results.

6.1.1 Natural Scenery as Template. Using natural scenery as tem-
plate image for color migration is challenging, as it is difficult to
obtain a satisfactory result due to their complication in image con-
tent and coloring. We demonstrate our results with using natural
scenery as the template images to express user coloring expectation.
As shown in Fig 8, with each of three different input home scenes
(I), we apply two different template images (T) to generate color mi-
gration results (R1, R2 and R3), where R1, R2 and R3 are obtained by
selecting different regions of interest. Results show that dominant
colors from template images can always be satisfactorily migrated
to home scene images and the visual appearance of all furniture
items can still be properly retained without any distortion.

6.1.2 Indoor Home Scene as Template. It is quite natural to use the
coloring design of another home scenery image to express how color
change should be happened for an indoor environment. As in Fig 9,
given an input home scene (I), we apply two different template home
scene images (T) and obtain two results (R) accordingly. Particularly,
user interaction is also involved to indicate some specific regions
of interest for customizing color migration.

6.2 Comparisons
6.2.1 Methods. Fig 10 shows color migration results generated by
our framework and relevant existing work. Given an input home
scene image (I), a template image of natural scenery (T) is used to
guide color migration. While the results from our method is labeled
as OU, the results from [21, 35, 36] are labeled as R, X, F, respectively.
Each column shows the inputs and outputs based on different input
home scene image and template image. In general, our framework
can generate faithful results, as color changes are essentially be
done based on scene objects (furniture items). In contrast, color
migration results generated from all existing work we compared
exhibit artificial changes, e.g. with gradual color changes over the
ceiling, and the overall image tone has been globally changed. All
these color change effects are not practical for interior coloring
design.

6.2.2 User Study against Designer’s Work. A user study was con-
ducted to evaluate our work according to their intuitive visual
perception. We invited 20 users to evaluate 5 sets of images (S1 to
S5). Each image set consisted two parts of coloring results. One part
was generated by performing color migration with our framework
(OURS), while the other part contained color transformation results



Figure 7: Example of holes (left); Scene edge detection (middle); Hole judgment diagrams (right), for vertical (A) and horizontal
(B) holes, respectively.

Figure 8: Color Migration with Natural Scenery as Template Images.

produced by interior decoration designers (ARTS). Participants de-
scribed their perception on these results using a five-point (1-5)
rating system. We depict the user study results by averaging user
ratings separately for these two parts of coloring results. As in
Fig 11, results produced by our framework are mostly compara-
ble with those produced by designers. In S1, our generated output
was better perceived by participants comparing with the designer
output.

6.2.3 Computational Performance. Our frameworkwas implemented
by MATLAB running on a computer with an Intel Core i5 3.30GHz
CPU and 16GB RAM. The preparatory work of interactive seg-
mentation took about 1 hour for each image. The color migration
operation with our framework can typically be finished within
about 5 minutes per image.



Figure 9: Color Migration by Picking Coloring from Other
Home Scenes.

Figure 10: Comparison Results.

7 CONCLUSION
We have introduced a new color migration framework, allowing
natural scenery to be used as the template for users to express their
coloring expectation. We also allow user invention to be involved
to customize color migration results. Because we have developed
a hierarchical color structure to match with native home scene
composition, i.e., natively forming by collocated furniture, we can
produce faithful and practical color migration results. In future
work, we like to allow using multiple template images to govern
color migration. We also like to investigate how machine learning
can assist home scene segmentation and coloring.

Figure 11: Comparison of Our and Designer’s Outputs.
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