
Automatic Subject-based Contextualisation of
Programming Assignment Lists

Samuel C. Fonseca
Institute of Computing
Federal University of

Amazonas
Manaus, Brazil

scf@icomp.ufam.edu.br

Filipe Dwan Pereira
Department of Computer

Science
Federal University of Roraima

Boa Vista, Brazil
filipe.dwan@ufrr.br

Elaine H. T. Oliveira
Institute of Computing
Federal University of

Amazonas
Manaus, Brazil

elaine@icomp.ufam.edu.br

David B. F. Oliveira
Institute of Computing
Federal University of

Amazonas
Manaus, Brazil

david@icomp.ufam.edu.br

Leandro S. G. Carvalho
Institute of Computing
Federal University of

Amazonas
Manaus, Brazil

galvao@icomp.ufam.edu.br

Alexandra I. Cristea
Department of Computer

Science
Durham University

Durham, United Kingdom
alexandra.i.cristea@durham.ac.uk

ABSTRACT
As programming must be learned by doing, introductory
programming course learners need to solve many problems,
e.g., on systems such as ’Online Judges’. However, as such
courses are often compulsory for non-Computer Science (non-
CS) undergraduates, this may cause difficulties to learners
that do not have the typical intrinsic motivation for pro-
gramming as CS students do. In this sense, contextualised
assignment lists, with programming problems related to the
students’ major, could enhance engagement in the learning
process. Thus, students would solve programming problems
related to their academic context, improving their compre-
hension of the applicability and importance of programming.
Nonetheless, preparing these contextually personalised pro-
gramming assignments for classes for different courses is re-
ally laborious and would increase considerably the instruc-
tors’/monitors’ workload. Thus, this work aims, for the first
time, to the best of our knowledge, to automatically clas-
sify the programming assignments in Online Judges based
on students’ academic contexts by proposing a new context
taxonomy, as well as a comprehensive pipeline evaluation
methodology of cutting edge competitive Natural Language
Processing (NLP). Our comprehensive methodology pipeline
allows for comparing state of the art data augmentation,
classifiers, beside NLP approaches. The context taxonomy
created contains 23 subject matters related to the non-CS
majors, representing thus a challenging multi-classification
problem. We show how even on this problem, our compre-
hensive pipeline evaluation methodology allows us to achieve

an accuracy of 95.2%, which makes it possible to automati-
cally create contextually personalised program assignments
for non-CS with a minimal error rate (4.8%).

Keywords
non-CS majors, NLP, contextually personalised assignment
lists

1. INTRODUCTION
Introductory Programming (often known under the label of
‘CS1’) classes are now-a-days often compulsory for under-
graduate courses that do not have computing as their ma-
jor [10, 15, 20, 23]. CS1 is delivered to students majoring
in, e.g., mechanical engineering, economics, etc. - whom we
collectively name here ‘non-CS students’. It is common in
such cases to find students with difficulty in interpreting as-
signment texts, due to the lack of affinity with the area of
the problem [22]. As a result, many of these students may
be discouraged by CS1, as they fail to see the purpose that
programming can have in their professional lives [10,17,23].

Moreover, programming must be learned by doing and, hence,
learners need to solve many problems [11,17–19,27]. In this
sense, ‘Online Judge’ systems can influence positively the
learning process of non-CS students [12, 18, 20, 25], as sys-
tems which allow students to submit programming assign-
ments and provide real-time automatic code correction. As
Programming Online Judges (POJ) have large numbers of
problems registered in their problem banks [25], in principle,
there would be plenty of problems to select from, for both
students as well as teachers, allowing for a mass personalisa-
tion - where one teacher could cater in parallel for the needs
of many students. Nonetheless, the problems available on
these systems often are collected or scraped from various
environments that do not provide labelling [27], and thus
it is laborious to find appropriate problems for non-CS stu-
dents. This is more so the case, as the number of program-
ming exercises is constantly increasing [25, 27]. Therefore,



the automatisation of the categorisation of problems based
on subject matter is becoming vital, to support instructors
who teach computer programming disciplines. To illustrate,
undergraduate students of Economics would be more famil-
iar with an if-then-else problem using terms such as“interest
rates” or “importation of goods” instead of a problem on the
“growth of cells”, which may be completely out of their com-
fort zone. Thus, we raise the following research question:

How can we extract the subject matter from programming
problem statements, to automatically match programming
assignment lists to non-CS courses?

Our main contributions with this paper are thus:

• Proposing a new, wholistic methodology pipeline for
the POJ contextual labelling problem, allowing to com-
pare a variety of cutting edge shallow and deep learn-
ing models, to experiment with the most recent data
augmentation techniques (with or without augmenta-
tion), NLP (based on BERT, Word2Vec, Glove), clas-
sifiers (based on BERT, Random Forest, SVM, XG-
Boost, GaussianNB, GradientBoosting, ExtraTree, Se-
quential DNN, CNN, RNN) and validation.

• Extracting, for the first time, to the best of our knowl-
edge, automatically and precisely, subject matters re-
lated to non-CS courses; we do this by using cutting
edge NLP techniques on the statements of assignments
available in a home-made online judge CodeBench1

used with fifteen non-CS major programmes.

• Proposing a subject-based contextualisation taxonomy
to map subject matters to non-CS courses, where CS1
is compulsory.

• We thus are enabling the contextual personalisation of
programming assignment lists for non-CS courses.

2. RELATED WORK
There are many studies tackling the challenge of teaching
introductory programming to non-CS students, based on a
variety of angles. To illustrate, [10] employed collaborative
scenarios to enhance teaching and learning programming
in non-CS courses, whist [23] used an approach involving
games and media. [15, 24] show that English-like (natural
language) syntax can help non-CS students overcome the
difficulties in learning programming syntax. Furthermore,
a recent study [21] explains that effective motivational edu-
cational design can enhance introductory programming stu-
dents and teacher engagement. Despite these works repre-
senting a move towards improving non-CS students engage-
ment, linking text collections to general or domain-specific
knowledge is essential [1,5]. More specifically, [14] argue that
students’ experiences of the learning context have important
implications for teaching and learning. Nevertheless, none of
these aforementioned studies take the context of the problem
into account. Especially untouched is the issue of contextu-
alisation of the problem statements, ensuring that problems
introduce only the degree of difficulty required to progress

1http://codebench.icomp.ufam.edu.br/index.php

in the programming knowledge and not additional complex-
ity from strange contexts for the current learner (such as a
geology context for economy students, etc.).

Online judges (POJ) are increasingly being used to support
introductory programming (CS1) classes. Via such envi-
ronments, teachers can provide problems to be solved and
students can submit their code and receive immediate feed-
back [9, 18, 25]. One of the issues of these systems is that,
in general, the problems available are not categorised based
on subject matter, topics, context, major, etc. In this sense,
there are two recent works [3, 27] which tackle the problem
of topic extraction from such problems. In these studies,
topic extraction is used for grouping problems in terms of
their related programming knowledge components, concepts
or skills. For example, a problem that can be solved by us-
ing graph algorithms, such as breadth-first search, flood-fill
or topological sort, can be classified into the graph category.
Notice however that the target audience of these studies are
more experienced POJ users. Instead, here we are not in-
terested in categorising problems based on advanced topics.

In fact, we tackle, for the first time, to the best of our knowl-
edge, the challenge of extracting the subject matter from
programming problem statements available in POJ systems
used in introductory programming, in order to improve the
teaching and learning process of CS1 for non-CS courses, by
matching problems to non-CS majors.

3. EDUCATIONAL CONTEXT
In this paper, we use as study base, as said, the CodeBench
Online Judge environment, which is self-designed and im-
plemented, as it allows us the freedom to add the changes
inspired by our research results. Thus, we analyse here run-
ning the Introductory Programming (CS1) course at the
Federal University of the Amazonas, via this self-designed
POJ, which is delivered to 15 non-CS undergraduate degrees
across the university. These courses are divided into 5 ma-
jor areas: Mathematics, Physics, Engineering, Statistic and
Geology. Three of the degrees belong to Mathematics, 2 to
Physics, 8 to Engineering, 1 to Statistics and 1 to Geology.
Figure 1 illustrates this configuration.

As Figure 2 illustrates, during the CS1 course, students in
our environment typically solve 7 assignment lists with prob-
lems of increasing difficulty, using the Python programming
language. They are allowed to solve the problems with an
unlimited number of submission attempts, as long as they
meet the deadline for solving all problems on a given list.
The exercise lists always precede an exam on the same pro-
gramming topic, both carried out in the Online Judge. Each
list has an average of 10 questions, and the tests have 2 ques-
tions. We call a list together with its exam a ’session’, where
each session addresses a specific programming topic. Alto-
gether, the course thus is formed of 7 sessions, that is, 7
programming topics are covered during CS1. Each session
lasts on average 2 weeks.

During the 7 sessions, students work on the following pro-
gramming topics: Sequential, Composite conditional struc-
tures, Chained conditional structures, Repeating structures
by condition, Repeating structures by count, Vectors and
Strings and Matrices. Before the 7 sessions, students have a



Mathematics

Physics

Statistic

Geology

Engineering

bachelor

applied

licenciate

bachelor

Statistic

Geology

Chemistry

Oil and gas

Materials

Mechanics

Production

Electrical/Electrotechnical

Electrical/Electronics

licenciate

Electrical/Telecommunication

Figure 1: non-CS undergraduate courses at the Fed-
eral University of the Amazonas

Session 1
Topic: Sequential 

Session 2
Topic: Composite 

conditional 
structures

Session 3
Topic: Chained 

conditional 
structures

Session 4
Topic: Repeating 

structures by 
condition

Session 5
Topic: Repeating 

structures by 
count

Session 6
Topic: Vectors 

and Strings

Session 7
Topic: Matrices

Sessions

Each session

Assingment lists
10 questions

Test
2 questions

1

2

3

4

5

6

7

Figure 2: CS1 course configuration

first week to get used to the Python programming language,
where they learn about Variables and Single Operations.

Whilst, in our online judge, problems are well structured
based on these programming topics as above, they lack a
clear division based on the contexts (here, related major ar-
eas) in which the problems are to be delivered. Please also
note that, although the sessions are ordered by their increas-
ing difficulty, the topics they are addressing are somewhat
unrelated. Moreover, this increase in difficulty is typical for
any CS1 course, be it offline or online.

Thus, our POJ is generic enough and is hence a good envi-
ronment in which to research approaches to automatic clas-
sification by contexts, based on the statements, to build
context-based personalised assignment lists, towards ulti-

mately enhancing the engagement of non-CS students in
their learning process.

4. DATA
The database in our Online Judge system consists of 986
programming problems in the CS1 discipline. As said, the
statements in the database were initially not categorised by
context; thus, we proceeded to create a labelled corpus, by
manually classifying the contexts of each statement, to fur-
ther use to carry out the experiments.

As labels, we adopted in this research contexts extracted
from Zanini and Raabe’s definitions [26], which show that
the context of problems plays an important role for novice
programming students. Their study manually analysed the
contexts of 428 programming problems statements used in
introductory programming (as in our case) offered to 51 un-
dergraduate courses. As a result, they found 20 possible
contexts for these problems, as follows: mathematical, com-
mercial, person, school, human resources, research, bank-
ing, physics, production, sport, computational, traffic, date
and time, environment, tax, safety, consumption, popula-
tion, others, and gamble.

We thus started with their proposed labels to annotate our
problems. However, there were some groups of statements
that could not be mapped over the above contexts. More-
over, the context “others” is too general and provides no real
information. Given that, we removed the context “others”
and propose here some additional contexts, as part of our
contribution, in order to annotate our larger set of state-
ments. As a result of the above process, we produced a
total of 23 contexts, which we grouped together in a new
CS1 Context Taxonomy, which is described in Table 1. This
includes the following contexts, as contributions of our re-
search: Games, Movies and Series, Chemistry and Geogra-
phy. In addition, the table shows the number of statements
for each context labelled and used in this research, the de-
scription of the contexts as well as the undergraduate courses
that may have a high connection with the context.

It is worth noting that we performed a statistic test that
measures inter-annotator agreement to validate if our anno-
tation process was conducted properly. To do so, we used
Cohen’s kappa (k) [4], which shows the level of agreement
between two annotators on a classification task. As a result,
we achieved a k = 0.961, which is considered almost perfect
agreement [2].

5. METHODOLOGY
Figure 3 illustrates the proposed evaluation methodology
pipeline used in the experiments of our research. We cre-
ate here a unique, comprehensive pipeline, studying various
combinations of the most popular and successful bleeding
edge state-of-the-art techniques for natural language pro-
cessing (NLP). The following subsections explain each step
of our methodology.

5.1 Data augmentation
The data augmentation stage consists of balancing the train-
ing data by paraphrasing it, using the pre-trained model
BERT [6]. Importantly for our task, this allows for contex-



Context Focus of the Statement non-CS
course

N

Mathematical resolution of purely mathematical problems, without this be-
ing applied to another context

Mathematics
and Engineer-
ing

261

Commercial handling of products, goods, such as buying and selling, cal-
culation of commission, provision of services

Economy 120

Games game application, be it a virtual game or even a table game;
for example, in the database there are games of naval battles,
as well as video games

Digital games
courses

96

School to solve a school problem, such as averaging, passing or fail-
ing verification

Pedagogy 79

Traffic related to the driver, car, mileage, accidents All courses 43
Sport some activity involved with sport, such as running, football,

classification
Physical edu-
cation

42

Physics resolution of purely physical problems, without this being
applied to another context

Physics and
Engineering

36

Banking related to bank transactions, investment, balance, with-
drawal, deposit, stock exchange

Economy 35

Human Resources problem related to human resources, such as salary calcula-
tion, data related to employees, calculation of bonuses, re-
cruitment and selection of employees

Sociology and
Psychology

35

Movies and TV
Shows

problem situation in a film or TV shows. To illustrate, there
are questions from the movie Harry Potter about potion cal-
culation

All courses 30

Population problems on population data, such as birth rate, mortality
rate, population growth; referring to either human or animal
population

Statistic 25

Chemistry purely chemical problems, without this being applied to an-
other context

Chemical en-
gineering

23

Person problems with elements directly related to a person, like
weight, height, sex

All courses 22

Date and time calculation of date or time, calculation of day, verification
of month, conversion of hours, minutes and seconds, time
interval

All courses 21

Safety control access, password verification, data security, encryp-
tion, validation

Software engi-
neering

20

Research providing statistical data of opinion polls Statistic and
Journalism

18

Environment relating to environmental issues, such as pollution, temper-
ature

Environmental
engineering

18

Health related to issues of fighting diseases Medicine 17
Consumption calculation of water, electricity or telephone-related con-

sumption
Economy 16

Geography resolution of purely geographical problems, without this be-
ing applied to another context

Geology 11

Production related to the production of products, the quantity produced,
production value, origin of the products

Production
engineering

7

Computational computational issues, such as conversion of binary, decimal,
hexadecimal numbers, ASCII table

Computer en-
gineering

6

Tax calculation of taxes, such as income tax Economy 5

Table 1: Our proposed CS1 Context Taxonomy and Data Set description, with respective non-CS undergrad-
uate course name and Number of items per Context, N

tual paraphrasing. Figure 4 illustrates a paraphrasing pro-
cess based on a fragment of a statement from the category
“Computational”.

Figure 4 shows a new generated sentence with clear seman-
tics for a human reader. Still, generated text sometimes

misses such a clear structure. Nevertheless, our goal here is
not to generate new sentences which could be meaningful for
learners. Instead, we aim at creating artificial statements,
which are not to be presented to humans, but will be used
to expand the minority classes, providing variations to the
predictive models (see bias-variance trade-off [8]). In other



Text 
Representation

With 
contextual 
paraphrase

Data 
augmentation Classifiers

RandomForest
SVM
NB

XGBoost
ExtraTree

GradientBoosting

Validation

StratifiedKFoldPROBLEMS 
STATEMENTS

Without 
contextual 
paraphrase

Pre-processing

Stop words removal
Lemmatization

BERT

SNN

Word embedding

GLOVE

W2V

CNN
RNN+CNN

Embedding layer

Figure 3: Proposed Automatic Contextualisation Research Methodology Pipeline

Original text

Applying 
paraphrase

New text

Write a program that prints the following 
message on your computer screen: Hello world

Consider some code that prints the above 
message on your machine: Hello world

Figure 4: Paraphrasing Example using BERT [6]

words, despite this irregularity in the semantic sense of the
statement, it is possible to perceive that the new instance
generated belongs to the same class from which it was de-
rived from and, therefore, it may represent a useful addition
for the learning algorithm (which is later, as can be seen,
confirmed by the results).

Nonetheless, as can be seen, despite the potential of such
contextual paraphrasing, the new statements repeat some
words from the original and keep almost the same number
of tokens, which is a limitation of this method. As such,
to prevent overtraining on artificial data (instances created
using contextual paraphrases), we have set a limit of, at
most, quadrupling the base of minority classes. We estab-
lished this limit after some empirical experiments. That is,
a statement is allowed to generate at most 4 new samples in
the training base, as long as the new number of statements is
below the number of instances of the majority class. Hence,
this process may not render a perfectly balanced training
base. To illustrate, imagine that the majority class has 10
questions on the training set, while the minority class has

1 question; with this paraphrasing algorithm, it is possible
to extend the minority class for up to 5 questions (4 new
samples + original statement).

In this work, experiments were carried out with and with-
out paraphrasing, in order to analyse how the balancing by
paraphrasing can influence the results.

5.2 Pre-processing
As we used reliable data (problems statements created di-
rectly by instructors/monitors), there was no need in our
data processing of performing orthographic corrections, ex-
panding contractions and other common data-cleaning steps.
However, all our problem statements were originally in the
Portuguese language. As there are many tools available for
processing text written in English, we opted to translate our
statements first into English, by using the googleTrans2 li-
brary. Subsequently, we proceeded in applying our pipeline
processing on the English text obtained, with and with-
out the use of stop-words removal and lemmatisation, using
spacy3. As a result, we observed empirically that these two
techniques were useful for data filtering in our pre-processing
step. Next, we show how we further prepare the text for the
machine learning algorithms.

5.3 Text Representation
The machine learning algorithms take as input a sequence
of text to learn the structure of text, just like a human does.
However, we need to convert the data in numerical form. As
such, we represent our text data as a sequence of numbers
(see Keras Tokenizer function4). Moreover, the ML algo-
rithm expects each training instance to have the same length
(same number of tokens). Thus we padded with zeros at the
end sequences that are shorter than the maximum length

2pypi.org/project/googletrans/
3spacy.io
4keras.io/preprocessing/text/



sequence. To do so, we applied the Keras padding module5

over the sequences.

In addition, two different state-of-the-art NLP techniques
for vector representation of words are used for competing
against each other: googleNews-Vectors (W2V)6 and Glove
[16] word embeddings. Moreover, for the BERT classifier,
we used its own layer of word embeddings. Similarly, for the
other deep learning models, we used the word embeddings
layers as provided by the Keras library7. The purpose of
this step is to compare the NLP techniques in terms of per-
formance with our data set. Therefore, we created a process
to obtain the best model for automatic categorisation of con-
texts of programming questions for our educational context.
The process allowed us thus to carry out experiments with
advanced Deep Learning methods, and to compare not only
those approaches with each other, but also with classical
approaches, such as shallow learning models.

5.4 Classifiers
For deep learning models we used: a) Convolutional Neural
Networks (CNN) which have a convolutional layer, followed
by three dense layers; b) Recurrent Neural Networks (RNN),
with a recurring layer using a Long Term and Short term
memory (LSTM) followed by three dense layers; c) RNN and
CNN (RNN+CNN) stacked with the same configurations as
those of the items a and b; d) Sequential Neural Network
(SNN) with two dense layers and e) BERT for classification
(notice that we used BERT for two purposes: i) perform
contextual paraphrasing; ii) multi-classification).

As we are tackling a multi-classification problem, the final
layer for each neural network was represented by a softmax
layer [13]. For all deep learning models, the configurations
used above represent the default recommended ones from
the literature [13].

Additionally, we used the following classical, shallow clas-
sifiers, with the word embeddings from googleNews-Vectors
and Glove: Random Forest Classifier (RFC), Support Vec-
tor Machine (SVM), Extremely Randomised Tree Classifier
(ETC), Gaussian Naive Bayes (GNB), XGBoost (XGB) and
Gradient Boosting Classifier (GBC).

5.5 Validation
To validate the models, we employed the stratified valida-
tion with 10 folds. This method divides the base into k
partitions, using k − 1 for training and 1 for testing. After
that, the accuracy of the test partition is calculated. This
process is repeated k times, until all partitions have been
used as a test. Finally, the average of the accuracy obtained
in the tests is computed. It is noteworthy that each fold was
divided proportionally to the number of statements present
in each class in the database [13]. We implemented it using
the StratifiedKFold from scikit-learn. Notice that we per-
formed the data augmentation only on the training sets of
each training fold. Thus, there were no paraphrased texts
in the test sets.

5keras.io/preprocessing/sequence/
6code.google.com/archive/p/word2vec/
7keras.io/

To evaluate our models, we used the F1-score, as this metric
combines precision and recall in an harmonic mean. This is
useful because it gives much more weight to low values than
a regular mean, which treats all values equally. Moreover,
we used the weighted F1-score, which takes into account the
proportion of each class.

6. RESULTS AND DISCUSSION
We built a total of 34 predictive models. Figure 5 illus-
trates all the results obtained by all models applied in this
research. From this figure, we can notice that paraphrasing
improved the (weighted) F1-score in all models. To illus-
trate this boosting, the model GLOVE + SVM achieved a
F1-score of 86%, without paraphrasing. Whereas with the
paraphrasing, the model achieved 94%, an increase of 8%.
To validate that, we performed the McNemar’s hypothesis
statistical test, which is recommended to compare machine
learning models [7]. We compared the models with or with-
out the contextual paraphrasing. As a result, we confirmed
that the paraphrasing statistically boosts all models, even
after Bonferroni correction (p − values � 0.05/2). Table 2
shows the classification performance of the models in terms
of macro and weighted precision, recall and F1-score. More-
over, this table shows the accuracy of each model.

From a visual inspection of Figure 5, we can argue that
the best model found is the BERT classifier with use of the
contextual paraphrasing (BERT + PAR), as the model has
the highest median and a low standard deviation. Moreover,
this model achieved the highest recall, F1-score and accuracy
(Table 2). To validate that, we also performed McNemar’s
test. As a result, we confirmed our previous deduction as
BERT + PAR statistically outperforms all the other models,
even after Bonferroni correction (p−values � 0.05/33). As
such, in Figure 6, we show the performance of this model
for each context, as a heat-map plot. The rows represent
the actual values, while the columns depict the predicted
contexts.

Figure 6 illustrates that, in general, our best model is capa-
ble of recognising problems from each context with a high
recall. Indeed, there are predictions in some classes with-
out miss-classification such as Computational, Sports, etc.
However, we can see some cases where the model made mis-
takes. For example, the model gets confused between the
classes Production and Commercial. This may have hap-
pened because some problem statements could have come
from a production context, but with focus on sales, which
would be further related to the Commercial context. More-
over, there are some problems that are actually from the
context Production, classified by our best model as Date and
time. This was an unexpected result for us. After visual in-
spection, we noticed that some of these problems linked the
efficiency of a company to the time-scale (e.g., how long a
process took determined its efficiency). This is a possible
explanation for such confusions within our model.

Coupled with that, according to Table 1, it is possible to
notice that the class Computational has only a few state-
ments. Despite this low number of problems in this context,
our model is able to recognize this minority class with no
errors (100% of precision and recall). Still, the class Tax
presents the lowest number of problems in our database.



BE
RT

BE
RT

+
PA

R
CN

N
CN

N+
PA

R
GL

OV
E+

ET
C

GL
OV

E+
ET

C+
PA

R
GL

OV
E+

GB
C

GL
OV

E+
GB

C+
PA

R
GL

OV
E+

NB
GL

OV
E+

NB
+

PA
R

GL
OV

E+
RF

GL
OV

E+
RF

+
PA

R
GL

OV
E+

SN
N

GL
OV

E+
SN

N+
PA

R
GL

OV
E+

SV
M

GL
OV

E+
SV

M
+

PA
R

GL
OV

E+
XG

B
GL

OV
E+

XG
B+

PA
R

RN
N

RN
N+

PA
R

W
2V

+
ET

C
W

2V
+

ET
C+

PA
R

W
2V

+
GB

C
W

2V
+

GB
C+

PA
R

W
2V

+
NB

W
2V

+
NB

+
PA

R
W

2V
+

RF
W

2V
+

RF
+

PA
R

W
2V

+
SN

N
W

2V
+

SN
N+

PA
R

W
2V

+
SV

M
W

2V
+

SV
M

W
2V

+
XG

B
W

2V
+

XG
B+

PA
R

0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

 (w
ei

gh
te

d)

Figure 5: All results (F1-score)

But even so, our model achieved a recall of 80% in this con-
text. Consider that the instances missclassified from the Tax
context were allocated to Commercial, which makes sense,
as, in some cases, these two contexts are related.

Although the model achieved a high recall (95%) in the
context of Games, instances that the model was not able
to recognise were spread through multiple contexts (Com-
mercial, Date and time, Physics, Tax, and Mathematical).
The 2% error between Games and Tax can be explained by
statements of games that comprise tariffs, e.g., when buy-
ing a certain product within the game. For example, there
are statements in our data set that discuss buying products
for a character, such as a battle suit. Further, the error
of 1% with the class Commercial could be due to a rea-
son similar to that of the class Tax. To illustrate, within a
game, some statements comprise the purchase of products.
Regarding the class Date and time, an explanation would
be statements that address some mission that the character
needs to accomplish in a specific time. Regarding the error
in the classes Physics and Mathematical, it may be due to
statements in games that contain speed calculation.

Another important analysis to be done occurs in the class
Research. The model achieved a recall of 94%, whereas 6%
of errors occurred in the class Person. One possible reason is
that surveys are conducted based on a group of people. Also,
there are statements in our database that contain research
carried out on some characteristics of people, such as age
group, education, etc.

Another interesting outcome relates to the following classes:
Banking and Commercial. Note that both presented confu-
sion errors between each other, that is, the class Commercial
presented wrong predictions in the class Commercial and
vice-versa. This is justified because both classes deal with
statements that involve money.

Furthermore, a similar situation occurs for the classes Health
and Population. Here, errors could be due to statements
addressing, e.g., the growth of a virus or bacteria. Thus,
results may highlight relations between these contexts.

Another interesting analysis relates to the majority class of
our data set, that is, the class Mathematical. Note that it
was possible to obtain here a 99% recall. Even more impor-
tantly, note that few classes have errors in this class, that is,
although we are dealing with the majority class, our model
can differentiate, with high precision, all classes, against this
one. To illustrate, only the following classes had a confu-
sion error with respect to this class: Games, Geography and
Commercial. Regarding the error presented in the predic-
tion of the class Games, it is an error that could be justified
by questions that deal with any type of calculation, given
that any form of calculation can be directly related to the
mathematical context. For the Geography class, the error
could be justified, as we have noticed the existence of state-
ments that deal with map scale conversion. Regarding the
class Commercial, the error could be justified by calculating
the price of a certain product.

Nevertheless, we had unexpected outcomes as well. For ex-
ample, it was arguably to be expected that the Physics class
presented errors in the Mathematical class, given that state-
ments that address a physical contextualisation deal with
mathematical calculations. However, this does not happen.
Thus, our model clearly differentiates here between even
small details present in the statement of each context.

In other words, although there is an error in the classification
of some instances in the classes, most of these errors can
be easily justified. This may suggest that the statements
worked on in this research have multi-contextualisation, that
is, a statement can address more than one context. However,
what happens in practice is that one context is predominant,
and the prediction of our model reflects this. Still, it is



Table 2: Classification performance of the predictive models (Pr: precision; Re: recall; F1: F1-score; Acc:
accuracy).
Model Pr(Macro) Pr(weighted) Re(Macro) Re(weighted) F1(Macro) F1(weighted) Acc
GLOVE+RFC 95% 88% 78% 87% 84% 87% 86.8%
GLOVE+RFC + PAR 94% 92% 86% 92% 89% 91% 91.6%
GLOVE+ETC 95% 90% 80% 88% 86% 88% 88.3%
GLOVE+ETC+PAR 95% 93% 87% 92% 90% 92% 92.3%
GLOVE+XGBC 91% 87% 74% 87% 79% 86% 86.5%
GLOVE+XGBC+PAR 92% 91% 82% 90% 85% 90% 90.2%
GLOVE+GNB 90% 86% 78% 85% 82% 85% 85.0%
GLOVE+GNB + PAR 88% 87% 82% 86% 84% 86% 86.7%
GLOVE+SVM 80% 87% 71% 87% 75% 86% 86.8%
GLOVE+SVM+PAR 95% 94% 89% 94% 91% 94% 93.7%
GLOVE+GBC 79% 83% 68% 82% 72% 81% 81.7%
GLOVE+GBC+PAR 83% 87% 77% 87% 79% 86% 86.6%
GLOVE+KC 91% 93% 89% 93% 90% 93% 92.8%
GLOVE+KC+PAR 91% 93% 90% 93% 90% 93% 93.1%
W2V+RFC 95% 88% 78% 86% 84% 86% 86.1%
W2V+RFC+PAR 94% 93% 87% 93% 90% 93% 92.7%
W2V+ETC 95% 88% 79% 87% 85% 87% 86.8%
W2V+ETC+PAR 95% 93% 87% 92% 90% 92% 92.3%
W2V+XGBC 92% 87% 76% 86% 82% 86% 86.4%
W2V+XGBC+PAR 91% 91% 86% 91% 87% 91% 90.7%
W2V+GNB 90% 87% 78% 86% 82% 86% 85.7%
W2V+GNB+PAR 88% 87% 81% 86% 84% 86% 85.9%
W2V+SVM 85% 90% 79% 90% 82% 90% 90.2%
W2V+SVM+PAR 96% 95% 91% 94% 93% 94% 94.3%
W2V+GBC 77% 82% 69% 81% 73% 81% 81.3%
W2V+GBC+PAR 83% 88% 78% 88% 80% 88% 87.8%
W2V+KC 91% 92% 89% 92% 90% 92% 92.4%
W2V+KC+PAR 93% 94% 91% 94% 92% 94% 93.9%
KT+CNN 94% 91% 84% 91% 88% 91% 90.8%
KT+CNN+PAR 92% 93% 90% 93% 91% 93% 93.2%
KT+(RNN+CNN) 86% 91% 86% 91% 85% 91% 90.8%
KT+(RNN+CNN)+PAR 89% 91% 87% 91% 88% 91% 91.4%
BT+BERT 93% 95% 91% 95% 92% 95% 94.7%
BT+BERT+PAR 94% 95% 92% 95% 93% 95% 95.2%

potentially useful to further analyse this problem as a multi-
contextual prediction task.

7. LIMITATIONS
One of the major limitations of this paper is related to data
set size. Although we have a significant number of prob-
lems, in the case of some contexts there is a small number
of instances, due to the quantity of classes in our multi-
classification problem. To address this limitation, we used
cutting-edge NLP techniques to produce new instances on
the training set, using contextual paraphrases.

Moreover, our original problem descriptions were in Por-
tuguese and hence, when we translated them to English,
this may have introduced some errors from our automatic
data processing. However, this was counter-balanced by the
availability of the most cutting-edge NLP processing tools
for the various steps involved in our pipeline, which were not
available for the Portuguese language.

In addition, this research worked with introductory topics to
computer programming. It is thus less clear if the method-
ology applies to more advanced topics of programming. For
example, database disciplines may need a different approach.
However, the holistic pipeline we propose can guarantee that
the right method can outperform the others, thus ensuring
area appropriateness.

Another limitation arises from undergraduate courses that
do not have programming in their curriculum. Although it is
clear that in this research several courses may use program-
ming for some activities, not all of them have programming
topics in the curriculum. To illustrate, although our data set
presents health issues that can be applied to the medical or
nursing courses, unfortunately these undergraduate courses
do not have programming topics in their curriculum. This
may however change in the future, with the rise of the ubiq-
uitousness of computing, and thus this research may have
wider relevance and impact than originally envisioned.



Ba
nk

in
g

Co
m

m
er

cia
l

Co
m

pu
ta

tio
na

l

Co
ns

um
pt

io
n

Da
te

 a
nd

 ti
m

e

Sc
ho

ol

Sp
or

ts

M
ov

ie
s a

nd
 T

V 
Sh

ow
s

Ph
ys

ics

Ge
og

ra
ph

y

Ta
x

Ga
m

es

M
at

he
m

at
ica

l

En
vi

ro
nm

en
t

Re
se

ar
ch

Pe
rs

on

Po
pu

la
tio

n

Pr
od

uc
tio

n

Ch
em

ist
ry

Hu
m

an
 re

so
ur

ce
s

He
al

th

Sa
fe

ty

Tr
af

fic

predicted value

Banking

Commercial

Computational

Consumption

Date and time

School

Sports

Movies and TV Shows

Physics

Geography

Tax

Games

Mathematical

Environment

Research

Person

Population

Production

Chemistry

Human resources

Health

Safety

Traffic

tru
e 

va
lu

e
0.94 0.03 0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0

0.02 0.91 0 0 0 0.01 0 0 0 0.01 0 0.01 0.02 0 0 0 0 0 0 0.01 0 0 0.02

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.06 0 0.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.1 0 0 0.76 0.05 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0.05

0 0.01 0 0 0 0.97 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.92 0 0 0.03 0 0.03 0 0 0 0 0 0 0 0 0.03

0 0 0 0 0 0 0 0.09 0 0.82 0 0 0.09 0 0 0 0 0 0 0 0 0 0

0 0.2 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0

0 0.01 0 0 0.01 0 0 0 0.01 0 0.01 0.95 0.01 0 0 0 0 0 0 0 0 0 0

0 0.01 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.89 0 0 0.06 0 0.06 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.94 0.06 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.96 0 0 0 0.04 0 0

0 0.29 0 0 0.14 0 0 0 0 0 0 0 0 0 0 0 0 0.57 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0.94 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0.05 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.93
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: BERT with Paraphrasing

8. CONCLUSION AND FUTURE WORKS
According to the results obtained and illustrated in this re-
search, we can conclude that paraphrasing of the minority
classes boosts results, that is, it was able to make predictive
models more accurate and with greater recognition capacity,
regardless of which NLP was used, that is, Glove, Word2vec,
BERT, etc.

In addition, our work was able to achieve a performance with
high precision and a high recognition rate for all 23 classes

proposed in this article. That is, our best model, which is
based on the BERT technique with paraphrase-balancing,
was able to achieve an accuracy of 95.2% with a minimal
error rate, which is no more than 4.8%.

With that, the first step to generate personalised problem
lists, according to the context of the undergraduate course,
was taken. We have additionally provided a new context
taxonomy for problems, as well as a comprehensive evalua-
tion pipeline methodology for context-based personalisation



of problem lists.

As future work we intend to further evaluate the effect of
the personalised programming problem assignments using
our method to detect the subject matter. Thus, we can
explore if the performance of the non-CS students will be
affected when solving problems related to their courses.

In addition, three new experiments can be performed to
analyse the generalisation power of our method. The first is
to repeat the procedure on other online judge problem col-
lections, but still at an introductory programming discipline
level. The purpose of this experiment is to verify how gener-
alisable our approach is across educational settings different
from ours. We believe, nevertheless, that choices such as the
programming language used in teaching CS1 will not be a
factor that will prevent similar outcomes.

As a second experiment, we would repeat the procedure
with more advanced programming topics, to analyse if the
method can be applied to these more complex types of top-
ics. For example, disciplines such as data structures may
be a research target. Finally, we envision to adapt our
pipeline to perform automatic classification of the program-
ming problems in terms of the topics used in the CS1 courses
(Sequential, Composite conditional structures, Chained con-
ditional structures, Repeating structures by condition, Re-
peating structures by counting, Vectors and Strings and Ma-
trices). Such a pipeline would be useful for several applica-
tions, such as for problem recommendation, automatic an-
notation, amongst others.

Concluding, we believe that the automatisation of the clas-
sification of statements by contexts is extremely relevant for
several reasons, among which we highlight: i) statements
which students are already familiar with can help in the
process of engagement and learning; ii) students will find it
easier to understand the relevance of programming in their
professional lives; iii) teachers can use this automatisation
to generate personalised lists, which would facilitate their
work, since it would be too much work to select these prob-
lems manually, in addition to which it could lead to human
error and iv) students could use this automatisation to se-
lect problems to which they are used to, facilitating their
process of learning a certain programming topic.

Acknowledgements
This research, carried out within the scope of the Project for
Education and Research (SUPER), according to Article 48
of Decree no 6.008/2006 (SUFRAMA), was partially funded
by Samsung Electronics of Amazonia Ltda, under the terms
of Federal Law no 8.387/1991, through agreements 001/2020
and 003/2018, signed with Federal University of Amazonas
and FAEPI, Brazil.

9. REFERENCES
[1] T. Aljohani, F. D. Pereira, A. I. Cristea, and H. T.

Oliveira. Prediction of users’ professional profile in
moocs only by utilising learners’ written texts. In
International Conference on Intelligent Tutoring
Systems. Springer, 2020.

[2] R. Artstein and M. Poesio. Inter-coder agreement for
computational linguistics. Educational and

Psychological Measurement 20(1):37-46, 2008.

[3] V. Athavale, A. Naik, R. Vanjape, and M. Shrivastava.
Predicting algorithm classes for programming word
problems. In Proceedings of the 5th Workshop on
Noisy User-generated Text (W-NUT 2019), pages
84–93, 2019.

[4] J. Cohen. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement
20(1):37-46, 1960.

[5] R. E. De Castilho, J.-C. Klie, N. Kumar, B. Boullosa,
and I. Gurevych. Linking text and knowledge using
the inception annotation platform. In 2018 IEEE 14th
International Conference on e-Science (e-Science),
pages 327–328. IEEE, 2018.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[7] T. G. Dietterich. Approximate statistical tests for
comparing supervised classification learning
algorithms. Neural computation, 10(7):1895–1923,
1998.

[8] P. Domingos. A few useful things to know about
machine learning. Communications of the ACM,
55(10):78–87, 2012.

[9] F. Dwan, E. Oliveira, and D. Fernandes. Predição de
zona de aprendizagem de alunos de introdução à
programação em ambientes de correção automática de
código. Simpósio Brasileiro de Informática na
Educação-SBIE, 28(1):1507, 2017.

[10] L. Echeverŕıa, R. Cobos, L. Machuca, and I. Claros.
Using collaborative learning scenarios to teach
programming to non-cs majors. Computer Applications
in Engineering Education, 25(5):719–731, 2017.

[11] S. Fonseca, E. Oliveira, F. Pereira, D. Fernandes, and
L. S. G. de Carvalho. Adaptação de um método
preditivo para inferir o desempenho de alunos de
programação. In Brazilian Symposium on Computers
in Education (Simpósio Brasileiro de Informática na
Educação-SBIE), volume 30, page 1651, 2019.

[12] L. Galvão, D. Fernandes, and B. Gadelha. Juiz online
como ferramenta de apoio a uma metodologia de
ensino h́ıbrido em programação. In Brazilian
Symposium on Computers in Education (Simpósio
Brasileiro de Informática na Educação-SBIE),
volume 27, page 140, 2016.

[13] A. Géron. Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, 2019.

[14] I. Govender. The learning context: Influence on
learning to program. Computers & Education,
53(4):1218–1230, 2009.

[15] V. T. Norman and J. C. Adams. Improving non-cs
major performance in cs1. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, page 558–562, New York, NY,
USA, 2015. Association for Computing Machinery.

[16] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.



[17] F. Pereira, E. Oliveira, D. Fernandes, L. S. G.
de Carvalho, and H. Junior. Otimização e automação
da predição precoce do desempenho de alunos que
utilizam júızes online: uma abordagem com algoritmo
genético. In Brazilian Symposium on Computers in
Education (Simpósio Brasileiro de Informática na
Educação-SBIE), volume 30, page 1451, 2019.

[18] F. D. Pereira, E. Oliveira, A. Cristea, D. Fernandes,
L. Silva, G. Aguiar, A. Alamri, and M. Alshehri. Early
dropout prediction for programming courses
supported by online judges. In International
Conference on Artificial Intelligence in Education,
pages 67–72. Springer, 2019.

[19] F. D. Pereira, E. H. Oliveira, D. Fernandes, and
A. Cristea. Early performance prediction for cs1
course students using a combination of machine
learning and an evolutionary algorithm. In 2019 IEEE
19th International Conference on Advanced Learning
Technologies (ICALT), volume 2161, pages 183–184.
IEEE, 2019.

[20] F. D. Pereira, E. H. T. Oliveira, D. B. F. Oliveira,
A. I. Cristea, L. S. G. Carvalho, S. C. Fonseca,
A. Toda, and S. Isotani. Using learning analytics in
the amazonas: understanding students’ behaviour in
introductory programming. British journal of
educational technology., 2020.

[21] Y. Qian, S. Hambrusch, A. Yadav, and S. Gretter.
Who needs what: Recommendations for designing
effective online professional development for computer
science teachers. Journal of Research on Technology in
Education, 50(2):164–181, 2018.

[22] J. M. C. RAABE, A. L. A.; SILVA. Um ambiente para
atendimento as dificuldades de aprendizagem de
algoritmos. pages 2326–2335, 2005.

[23] B. L. Santana and R. A. Bittencourt. Increasing
motivation of cs1 non-majors through an approach
contextualized by games and media. In 2018 IEEE
Frontiers in Education Conference (FIE), pages 1–9,
Oct 2018.

[24] A. Stefik and S. Siebert. An empirical investigation
into programming language syntax. ACM Transactions
on Computing Education (TOCE), 13(4):1–40, 2013.

[25] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and
T. Sternal. A survey on online judge systems and their
applications. ACM Computing Surveys (CSUR),
51(1):1–34, 2018.

[26] A. S. Zanini and A. L. A. Raabe. Análise dos
enunciados utilizados nos problemas de programação
introdutória em cursos de ciência da computação no
brasil. In Anais do XXXII Congresso da Sociedade
Brasileira de Computação, XX WEI – Workshop sobre
Educação em Computação, Curitiba, 2012.

[27] W. X. Zhao, W. Zhang, Y. He, X. Xie, and J.-R. Wen.
Automatically learning topics and difficulty levels of
problems in online judge systems. ACM Transactions
on Information Systems (TOIS), 36(3):1–33, 2018.


