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Abstract—Semi-supervised methods of anomaly detection have
seen substantial advancement in recent years. Of particular
interest are applications of such methods to diverse, real-world
anomaly detection problems where anomalous variations can
vary from the visually obvious to the very subtle. In this work,
we propose a novel fine-grained VAE-GAN architecture trained
in a semi-supervised manner in order to detect both visually
distinct and subtle anomalies. With the use of a residually
connected dual-feature extractor, a fine-grained discriminator
and a perceptual loss function, we are able to detect subtle,
low inter-class (anomaly vs. normal) variant anomalies with
greater detection capability and smaller margins of deviation
in AUC value during inference compared to prior work whilst
also remaining time-efficient during inference. We achieve state-
of-the-art anomaly detection results when compared extensively
with prior semi-supervised approaches across a multitude of
anomaly detection benchmark tasks including trivial leave-one-
out tasks (CIFAR-10 - AUPRCavg: 0.91; MNIST - AUPRCavg:
0.90) in addition to challenging real-world anomaly detection
tasks (plant leaf disease - AUC: 0.776; threat item X-ray - AUC:
0.51), video frame-level anomaly detection (UCSDPed1 - AUC:
0.95) and high frequency texture with object anomalous defect
detection (MVTEC - AUCavg: 0.83).

I. INTRODUCTION

Anomaly detection is the task of recognising samples of
a given dataset which deviate significantly from established
normality and as such, represent unexpected eventualities or
outliers in the scope of a given task [1]. Anomaly detection
is a challenging task because of the broad range of varia-
tional forms which anomalies may present, representing an
unbounded (open set) distribution of possible deviations from
normality.

The ultimate application challenge of anomaly detection
models is effective and efficient applications to critical real-
world tasks [2]–[4] with little to no human intervention at
training time. However, by contrast, the modus operandi of
anomaly detection evaluation in the literature is to demonstrate
model performance across trivial and unrealistic ‘leave one
out’ tasks on general datasets such as MNIST [5] or CIFAR-
10 [6] in which one class from the dataset is labelled as
anomalous and all other classes as normal. This evaluation
methodology is highly unrealistic as not only are these datasets
not intended for anomaly detection, but the act of directly
comparing the classes present in the datasets in this way is
unlikely to occur in a real-world anomaly detection applica-
tion. Anomalies occurring within real-world problems may be
subtle, localised to a small sub-region of the image, exhibit

Fig. 1. Top: Leaves from Plant Village [7] featuring visible diseases.
Bottom: Anomalous instance segmentation masks generated by PANDA for
the respective diseased leaves.

high variance and even be the result of subterfuge by an
adversary [7]–[10].

Anomaly detection methods have had varying degrees of
success across real-world tasks including, but not limited to:
retinal diagnosis [11], [12], airport security scanning [8], [13]–
[15] and factory line inspection [10]. However, these methods
can often attribute their limited success to being domain-
specific and are not applied across multiple, diverse (multi-
spectral; cross-domain) datasets. Such prior anomaly detection
methods are overly focused on more general features to aid
in categorising visually obvious anomalies [11], [14] akin to
the flawed evaluation methodology of ‘leave-one-out tasks’,
meaning they do not perform overly well with visually subtle
anomalies in tasks such as [7], [11], [12].

Whilst supervised methods [8], [13] can obtain superior
performance across anomaly detection benchmark tasks, often
by following a simplistic anomaly detection by classification
paradigm with discrete classes, they require large, labeled-
datasets for training. These can be both expensive to obtain,
unbalanced in nature, and will always struggle to provide
sufficient coverage of rare, low-occurrence anomalies given
the potential open-ended scope of the anomalous class space.
These challenges of training data adequacy could lead to
potential adversarial example attacks against such methods
[16], [17].

By contrast, semi-supervised methods [12], [14], [15], [18],
[19] overcome this issue by learning a close approximation
to the true distribution manifold exclusively over the non-



anomalous (normal) data samples [11]. Such techniques use
generative methods in order to approximate the distribution
[14], [15]. Furthermore, methods such as [11], [12], [15]
suffer from slow inference times which can hinder real-world
applicability in scenarios where high-throughput processing is
required. Methods such as [12], [14] exhibit vastly differing
accuracy with each iteration over the same dataset leading to
a sparse confidence interval as demonstrated in our experi-
ments, impeding real-world applicability due to unpredictable
detection behaviour at inference.

In this work, we propose the Perceptually Aware Neural
Detection of Anomalies (PANDA-GAN), a Variational Au-
toencoder Generative Adversarial Network (VAE-GAN) based
architecture to combat the task of detecting subtle fine-grained
anomalies present in real-world anomaly detection applications
whilst also retaining time-efficiency at inference. PANDA
includes three novel proposals: (1) a Fine-Grained Visual
Categorisation Discriminator Network (FGVC) to ease the
problem of detecting visually subtle, low inter-class variance
anomalies present in anomaly detection problems and to
provide a harsher critic during training for the GAN generator
module; (2) a residually connected dual-feature extractor im-
plementation within our generator module that carries lower-
level features in given images forward and combines them
residually with higher-level, later features in the architecture;
(3) a perceptual loss function based on feature error instead of
raw pixel-error [20] that in turn obtains higher-fidelity images,
but has not yet been applied to the task of generative anomaly
detection. This work represents the first instance of these
techniques being jointly applied to semi-supervised anomaly
detection.

II. RELATED WORK

Many works have addressed the problem of generative semi-
supervised anomaly detection. Initial methods propose the use
of Variational Autoencoder (VAE) architectures [21], in which
a latent representation z is learned from the image space X
though the use of an encoder. A second module (decoder) then
maps from z, back to the image space to produce X̂ . The en-
coder and decoder can be trained using the reconstruction error
between the original image x ∈ X and the produced image
x̂ ∈ X̂ . Early implementations of VAE [21], however do not
capture the distribution of the data p(X) well due to the over-
simplification of the learned prior probability p(z|X). VAE
are only capable of learning a uni-modal distribution, which
fails to capture complex distributions that are commonplace
in real world anomaly detection scenarios.

Generative Adversarial Networks (GAN), first proposed by
Goodfellow et al. [22], combat this simplification by forcing
a Generator, G, to model complex distributions in data from
random noise in order to generate representative image sam-
ples drawn from this distribution. The learning objective of G
is to reduce the confidence of the Discriminator, D, to assign
an effective probability to a presented image; whether or not it
is original or a generated image. The zero-sum end-game of a
GAN is the Nash Equilibrium whereby the Generator network

and Discriminator network have saturated learning such that
the probability of the Discriminator to distinguish between real
and synthetically generated images converges.

AnoGAN [11] is the first GAN-based, semi-supervised
method of anomaly detection. The model is trained only
on non-anomalous data to learn the manifold z of normal
samples. When an anomaly xa is processed by the Generator
network, it produces a non-anomalous image x′a. Taking an
l2 reconstruction error will outline anomalies present in the
image. Although this method proved that it was possible to
use GAN for the task of anomaly detection, the compu-
tational performance is incredibly slow hence limiting real
world applicability. GANomaly [14] overcomes these issues
by training a Generator network and a secondary encoder in
order to map the generated samples into a second latent space
ẑ which is then used to better learn the original latent priors
z, mapping between latent values efficiently at the same time
as the Generator learns the distribution manifold over data x.
Follow-on work, Skip-GANomaly [15], introduces the notion
of skip connections into the network architecture in order to
preserve image information detail across the encoder-decoder
structure, greatly improving performance.

Concurrently, the author of AnoGAN produced the Fast-
AnnoGAN [12] method of anomaly detection which is similar
to their previous work, but replaces the Deep Convolutional
GAN (DCGAN) [23] with a Wasserstein Generative model
[24]. It uses the trained Generator from the GAN training
to train an encoder which maps images to the latent space.
This enables the overall Fast-AnnoGAN architecture to avoid
the computationally expensive operation of obtaining a latent
representation at inference. A similar approach was adopted by
Houssam et al. [25] which is based on the BiGAN architecture
[26]. They use an approach similar to the one indicated in [26]
to solve the optimisation problem minG,EmaxDV (D,G,E)
where the features of X are learned by the network E to
produce the pair (x,E(x)). The Generator network learns
the pair of (z,G(z)) from the real features of X [27]. This
simultaneous learning of the pairs forces the network to learn
the mapping from not only image data to latent space, but
from latent space back to image data.

Although GANs have risen to prominence and gained signif-
icant results, producing high-fidelity images, they suffer from
volatile training issues such as mode collapse and instability,
leading to over-fitting during training. VAE-GAN [28] are
VAE which are trained in an adversarial manner. The first
instance of these being utilised for anomaly detection is
Baur et al. [18] which utilises a common VAE architecture,
but applies a Discriminator network in order to determine
whether the images are real, or reconstructed. Similar work
was performed in ADAE [19] which uses a dual, parallel
model in which the primary VAE is the Generator and the
second VAE is the Discriminator. As well as reconstructing
the images from the latent representation, the authors also
compute the error between the data distributions between the
dual networks in order to gain a closer fit for the manifold
over real examples.
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Fig. 2. Proposed model architecture featuring our PANDA-GAN architecture with the Generator network (upper) and the Discriminator network (lower).

III. APPROACH

Our proposed method applies a unique VAE-GAN architec-
ture to the task of anomaly detection. Our Generator network
(Section III-A) uses skip-connected dual-feature extractor en-
coders ({E0

high, E
0
low}) to extract both a top and bottom

level latent space which residually combines early, low-level
information with high-level features further in the architec-
ture. This network is trained adversarially with a fine-grained
Discriminator network (Section III-B) which is optimised to
assign a true probability that a presented image conforms to
the distribution of normality and is not synthetically generated
and used to detect subtle discriminating features from input
images during inference. A visual overview of our approach
is shown in Figure 2.

A. Generator Network

Our Generator VAE model is trained adversarially to cre-
ate a VAE-GAN which does not exhibit mode collapse or
vanishing gradient training difficulties present in traditional
GAN architectures [22]. Similar to a U-net model architecture,
input images x are first fed into a low-level encoder E0

low

which maps to a latent representation zlow = pθ(zlow|x) ∼
N(x̄, σ). We then further encode zlow into a higher-order
latent representation zhigh = pθ(zhigh|zlow) ∼ N( ¯zlow, σ) ·
pθ(zlow|x) which captures higher-level image features. Latent
representation pθ(zlow|x) is then combined residually through
skip-connections to pθ(zhigh|zlow); meaning that low-level
information is preserved upon decoding back into image
space x′ via qφ(x′|z). We use only one higher-order latent
representation due to memory constraints and to keep our
method more efficient during inference. We show that our
method obtains state-of-the-art performance by utilising just
one higher-order latent representation.

Additionally, we also utilise two secondary Encoders,
{E1

high, E
1
low} during training exclusively, to re-

encode the decoded respective latent representations
{qφ(zhigh|x)|zhigh), qφ(zlow|x)} back into latent space
z′high and z′low respectively. This better models and constrains
the latent priors of {E0

high, E
0
low} to not be entirely

dependent on the input image. This approach was employed
in GANomaly [14] and Skip-GANomaly [15] to yield better
performance. {E1

high and E1
low} are not enabled during

inference to increase network efficiency.
Overall our VAE-GAN learning objective seeks to minimise

over ∀x ∈ X:

LV AE = Lrec + C(x, x′) + Lz[0] + Lz[1] (1)

where Lrec = ‖x− x′‖2 and x′ is generated from the
Generator Network: D0

low(D0
high(E0

high(E0
low(x))) ·E0

low(x)).
C is the critic, or commonly named Discriminator Network
(Section III-B). Latent loss Lz[i] =

∥∥∥E1
[i] − E

0
[i]

∥∥∥
2
, i =

{high, low}.
We also introduce the notion of perceptual loss (PL) to

calculate feature error rather than pixel-wise error. Previously
introduced to Style Transfer et al. [20] we introduce usage
into the problem of Anomaly Detection instead of using con-
ventional Pixel-Wise Loss (PWL). While PWL computes pixel
differences between x and x′ on low-level pixel information,
PL takes the advantage of taking the error between the high-
level activation features [20]. Feeding the pair (xi, x

′
i),∀xi ∈

X through a pre-trained conventional Convolutional Neural
Network (f()) obtains differing activations (f(xi), f(x′i)) of
a given convolutional feature extraction layer. PL is then
calculated as ‖f(xi), f(x′i)‖2. We use a VGG19 [29] network
as our Perceptual Loss model and take the error between
the activations of the 14th layer. We utilise two variants on
perceptual loss:



• General perceptual loss (PLg()) : Weights obtained by
pre-training a CNN trained across ImageNet [30].

• Problem-specific perceptual loss (PLps()) : Weights ob-
tained from CNN which was pre-trained in a self-
supervised fashion over non-anomalous samples from the
specific anomaly detection task dataset.

B. Discriminator Network

In contrast to prior work in anomaly detection which utilise
conventional Discriminators [11], [12], [14], [15], [31], in
this work we incorporate a Fine-grained Visual Categorisa-
tion (FGVC) Discriminator. In general, FGVC is for use
in obtaining specific sub-class classification of objects (e.g.
species of bird or model of car) [32]. Typical FGVC datasets
are inherently difficult to classify due to highly localised
and visually subtle distinguishing features between classes.
Within real-world anomaly detection problems, there exist
varying levels of anomaly ranging from visually obvious to
negligibly subtle. Our FGVC discriminator is optimised to
detect these subtle anomalies during inference by recognising
the discriminating regions within presented images. It also acts
as a harsher critic to our Generator module during training,
promoting emphasis on generation of the objects themselves
rather than the background context within images.

Our discriminator is inspired from the Weakly Supervised
Data Augmentation Network (WS-DAN) architecture [33], a
proven method in FGVC which obtains superior categorisation
performance in the task of FGVC [33].

The WS-DAN architecture contains attention layers which
allow the network to focus upon both detailed features and key
discriminative object parts during inference when categorising
anomalous data. This mechanism also allows attention guided
data augmentation within the network leading to higher infor-
mation gain and optimised augmentation of non-anomalous
samples during training. The resulting attention maps are
combined with feature representations via Bilinear Attention
Pooling (BAP). This combined feature representation is then
fed into a discriminative filter bank of 1 × 1 convolutions
followed by a Global Max Pooling (GMP) [34] layer on
the resulting feature matrix to reduce dimensionality in the
output, and results in a 1× 1 patch in the output which is the
area of highest discrimination for the discriminator network.
This allows our Generator to refine these areas in the next
iteration and thus enable the overall PANDA-GAN architecture
to reduce the reconstruction error substantially, gaining a better
fit on the manifold over X . We use a Sigmoid activation
function which issues a continuous probability score for a
presented image on whether it is an element of the real dataset
or a synthetic image produced by the Generator network. To
prevent vanishing gradients, which is common with logistic
functions, we use the residual network, ResNet-50 [35] as our
main backbone architecture. The pair of real, non-anomalous
data examples (x) and the generated, synthetic examples (x′)
from x are fed into the discriminator to obtain a probability
score that each of the images is an element of X .

Overall, the Discriminator seeks to optimise:

LC = −log(C(x))− log(1− C(x′)) (2)

where C represents the discriminator, or critic network.
The pair (x, x′) obtains probability outputs C(x) and C(x′)
respectively. Lc represents Pr(x ∈ X|(x, x′)).

C. Anomaly Scoring

Anomaly scoring is the process of categorising samples as
anomalous or non-anomalous based on the knowledge that
the network has obtained via the gained approximation to the
manifold over X (normal samples) during training.

Anomalous samples will be reconstructed by the Generator
model from this approximated manifold producing a normal
appearing sample output upon generation. This allows us
to infer a distribution of reconstruction error Nrecon over
both normal and anomalous samples. When combined with
the two Discriminator scores across both the input sample
and the synthetically generated sample distributions NC(x)

and NC(x′) respectively, these offer more information during
anomaly scoring. Due to the independence of these normally
distributed random variables, we can combine them into a new
distribution using summation Ncom∼N(Σ(µi,σ2

i )) = Ncom =
Nrecon +NC(x) +NC(x′). We then normalise Ncom to values
0 < x < 1 via Equation 3 as follows:

Ncom = ∀x ∈ [Ncom],
x′i − xmin

xmax − xmin
(3)

Once we obtain the distribution Ncom, an anomaly score is
given to each sample presented to the network. A boundary
between Ncom(xnormal) and Ncom(xanomalous) determines
whether the presented sample is anomalous on the basis of
maximum likelihood.

IV. EVALUATION

A. Experimental Setup

The experimental setup comprises of the following dataset
configurations:
• Plant Village [7]: comprises of 11 genera of agricultural

plant for food with 26 diseases. The present diseases
range from those which are subtle in appearance (Pow-
dery Mildew) to diseases such as Isariopsis and Black
Measles which are visually obvious.

• X-ray Security Electronics Dataset [8]: comprises large
consumer electronics items (e.g., laptops) with and with-
out intra-object anomaly concealment present. Anomaly
concealments consist of replica Improvised Explosive
Devices (IED), metal screws, metal plates, knife blades
and similar hidden inside the electronic items.

• UCSDped1 [9]: comprises surveillance video of
pedestrian-only zone featuring pedestrians walking,
running, standing, or any such similar activity. Anomalies
are pedestrians riding or driving vehicles (i.e. bicycles,
skateboards, scooters, vans, cars, etc) in the zone.

• MNIST [5]: comprises a handwritten numeric digit
(0-9) leave-one-out classification task (one select digit



AUPRC MNIST Dataset AUPRC CIFAR-10 Dataset

Fig. 3. AUPRC performance comparison of PANDA-GAN against prior state-of-the-art methods of anomaly detection across ’leave-one-out’ tasks across
Left: MNIST handwritten digit dataset Right: CIFAR-10 object dataset.

class is anomalous, all remaining digit classes are non-
anomalous) across all digits from 0 to 9.

• CIFAR-10 [6]: comprises 10 classes of tiny objects with
dimension 32 × 32 such that a leave-one-out anomaly
classification task (one select object class is anomalous,
all remaining object classes are non-anomalous) is posed.

• MVTEC [10]: comprises of high-resolution industrial
inspection data comprising of 15 object and texture
classes of typical factory-line objects. Sub-classes of each
object contain both visual defects of the respective object
and corresponding defect-free objects.

We use the dataset split for {train:validate:test} as following:
{13,593:2,589:12,661} for Plant Village [7], {229:25:125}
for X-ray Security Electronics [8]. The {train:test} split for
MNIST and CIFAR-10 is {80%:20%} across both datasets
[14], [25]. The hyper-parameters and data configurations are
fine-tuned by systematic grid search in order to obtain the
best results across the problems presented in this work. Pixel
values in input images are normalised to a mean and a
standard deviation of 0.5. All models use ADAM momentum
[36] except our Perceptual Loss model which uses Stochastic
Gradient Descent (SGD) with momentum 0.9. Learning rates
used: 7 × 10−6 - Generator, 1 × 10−5 - Discriminator, and
1 × 10−4 - Perceptual Loss model. Training is performed on
a Nvidia Titan X GPU using a batch size of 15.

B. Results and Discussion

The AUPRC statistical score across the classical ‘leave-
one-out’ anomaly detection tasks (MNIST / CIFAR-10) are
outlined in Figure 3 where it can be observed that our approach
(PANDA-GAN) outperforms prior state-of-the-art approaches
on these seminal, albeit unrealistic benchmark tasks.

As is evident from Figure 3, further direct comparison of
model performance solely across these ‘leave-one-out’ MNIST
/ CIFAR-10 based anomaly detection tasks is becoming de-
creasingly informative due to potential performance saturation

among competing approaches. Across the MNIST task (left)
it can be seen that our method obtains state-of-the-art results
across 40% of classes and obtains close performance to the
other prior methods while exhibiting uniform performance
across all classes. Most noticeably is the result across the
digit 9 whereby PANDA-GAN is over 0.2 AUPRC higher than
prior methods. Across CIFAR-10 (right), our method obtains
state-of-the-art in 30% of classes and matches closely with
other such methods (DADUGT [46], CSI [47], and SSOE [48])
while also obtaining close to uniform performance across all
classes.

By contrast, Table I outlines quantitative results across the
challenging real-world benchmark datasets of Plant Village
[7], Laptop X-ray [8] and UCSDPed1 [9] providing numerous
statistical comparatives including Area Under Curve (AUC),
the 95% confidence interval of the AUC, inference time (I/t,
ms) per image. Datasets [7], [8] feature particularly subtle
anomalies by nature and as such pose as challenging tasks for
semi-supervised anomaly detection models.

PANDA-GAN obtains the highest AUC value across both
image based datasets (Plant Village: 0.776- using Pixel-Wise
Loss (PWL); Laptop X-ray: 0.51- using Problem Specific
Perceptual Loss(PLps)) in comparison to leading state-of-the-
art methods [11], [12], [14], [15], [21], [25], [29] (Table I).
Over multiple evaluations, PANDA-GAN also obtains tighter
confidence-intervals compared to prior semi-supervised work
illustrating our PANDA method can produce more stable
and reliable results across the same dataset while other such
approaches can suffer from sporadic performance at inference
(Table I). Observing the I/t(ms), the PANDA method is sig-
nificantly faster than prior methods.

In Table II, the quantitative AUC results across the MVTEC
dataset can be observed. This is a challenging dataset due
to the large variation in appearance of anomalies present in
textures and objects. Some objects (carpet, hazelnut, screw)
exhibit visually distinct and obvious anomalies, but other



TABLE I
RESULTS OF MODELS ACROSS LEAF DISEASE [7] AND X-RAY LAPTOP ANOMALY DETECTION [8] IMAGE DATASETS AS WELL AS RESULTS ACROSS

UCSDPED1 [9] PEDESTRIAN DETECTION AND CROWD CONTROL VIDEO DATASET USING FRAME-LEVEL COMPARISON [37].

Model Loss

Image Dataset
Plant Village [7] Laptop X-ray [8]

AUC 95% CI
(AUC)

Average
Rec Err

Average
Adv Err I/t(ms) AUC 95% CI

(AUC)
Average
Rec Err

Average
Adv Err I/t(ms)

VAE [21] - 0.65 0.60<x<0.70 0.56 - 6.9 0.21 0.19<x<0.23 0.80 - 9.4
AnoGAN [11] - 0.65 0.65<x<0.66 0.45 0.88 7151 0.41 0.39<x<0.42 0.4 0.92 7223
EGBAD [25] - 0.70 0.65<x<0.67 0.40 0.92 87 0.47 0.42<x<0.43 0.41 0.94 89
GANomaly [14] - 0.73 0.68<x<0.73 0.39 0.75 28 0.49 0.41<x<0.51 0.34 0.78 273
f-AnoGAN [12] - 0.765 0.65<x<0.78 0.12 0.72 65 0.50 0.49<x<0.53 0.1 0.72 86
Skip-GANomaly [15] - 0.771 0.74<x<0.77 0.13 0.74 123 0.51 0.48<x<0.58 0.11 0.68 112

PWL 0.776 0.77<x<0.78 0.012 0.994 15.2 0.42 0.30<x<0.48 0.052 0.987 16.8
PANDA-GAN PLg() 0.74 0.73<x<0.75 0.40 0.993 20 0.45 0.29<x<0.52 0.015 0.658 36

PLps() 0.75 0.76<x<0.78 0.20 0.986 20.8 0.51 0.48<x<0.55 0.045 0.782 30

Model Loss
Video Dataset

UCSDPed1 [9]
AUC EER

SF [38] - 0.675 31
MPPCA [39] - 0.7696 40
MDT [40] - 0.818 25
SRC [41] - 0.86 19
AMDN [42] - 0.921 16
PCA-NET GMM [37] - 0.926 11.2
AED-GAN [43] - 0.974 8

PWL 0.945 35
PANDA-GAN PLg() 0.95 75

PLps() 0.93 96

TABLE II
AUPRC RESULTS ACROSS MVTEC [10] DATASET.

Model Classes
Bottle Cable Capsule Carpet Grid Hazelnut Leather Metal Nut Pill Screw Tile Toothbrush Transistor Wood Zipper AUCavg

AnoGAN [11] 0.8 0.477 0.442 0.337 0.871 0.259 0.451 0.284 0.711 1 0.401 0.439 0.692 0.567 0.715 0.563
GANomaly [14] 0.794 0.711 0.721 0.821 0.743 0.874 0.808 0.694 0.671 1 0.72 0.7 0.808 0.92 0.744 0.782
Skip-GANomaly [15] 0.937 0.674 0.718 0.795 0.657 0.906 0.908 0.79 0.758 1 0.85 0.689 0.814 0.919 0.663 0.805
DA-GAN [44] 0.983 0.665 0.687 0.903 0.867 1 0.944 0.815 0.768 1 0.961 0.95 0.794 0.979 0.781 0.873
U-Net [45] 0.863 0.636 0.673 0.774 0.857 0.996 0.87 0.676 0.78 1 0.964 0.811 0.674 0.958 0.75 0.819
PANDA-GAN 0.826 0.68 0.98 0.95 0.95 0.922 0.75 0.79 0.95 1 0.85 0.66 0.9 0.68 0.62 0.834

TABLE III
ABLATION STUDY OF PANDA-GAN ACROSS PLANT VILLAGE [7] AND LAPTOP ANOMALY [8].

Model

Dataset
Plant Village Laptop Anomaly

Loss Network Architecture Loss Network Architecture
PWL PL(g) PL(ps) E0

high ∩D0
high E1

high E1
low PWL PL(g) PL(ps) E0

high ∩D0
high E1

high E1
low

PANDA-GAN

0.75 0.754 0.762 7 - 7 0.38 0.42 0.434 7 - 7
0.752 0.74 0.746 7 - 3 0.419 0.442 0.446 7 - 3
0.751 0.738 0.744 3 7 7 0.464 0.468 0.476 3 7 7
0.764 0.751 0.762 3 7 3 0.462 0.442 0.43 3 7 3
0.771 0.764 0.775 3 3 7 0.496 0.515 0.504 3 3 7
0.776 0.741 0.769 3 3 3 0.42 0.451 0.512 3 3 3

PANDA-GAN
DCGAN Discriminator 0.769 0.751 0.74 3 3 3 0.413 0.424 0.469 3 3 3

objects (cable, metal nut, toothbrush) feature subtle anomalies
which are hard to detect. This is reflected in the results
of various methods across this dataset with PANDA-GAN
obtaining superior AUC performance across 6 classes.

Our ablation study (Table III) produces evaluation over
individual components to our novel architecture with respect
to variations in both loss function, our network architecture
components (E0

high ∩D0
high, E1

high, E1
low) and our choice of

discriminator architecture across two of the more challenging
real-world anomaly detection task datasets. For comparison
we include the DCGAN [23] discriminator architecture from

GANomaly / Skip-GANomaly [14], [15], which is the next
best performing approach in terms of AUC across the same
datasets (Table I to compare against our FGVC-based discrim-
inator architecture choice.

From the results of Table III, it can be observed that synergy
exists between components of our generator network obtaining
the highest AUC value only when all three of our novel
components are activated. Generally we see that the more
components we activate in our architecture, the better the
performance obtained during our ablation study. Overall, the
problem-specific perceptual loss (PLps) performs better across



the Laptop X-ray dataset by a clear margin from the other
loss functions tested against. Across the Plant Village dataset,
there is negligible difference between the pixel-wise loss and
the problem specific perceptual loss. Both performed almost
identically and gained a clear advantage over the general
perceptual loss function (PLg).

Fig. 4. Top: X-ray images of large electronic items (Anomalous region ground
truth outlined with red bounding box). Bottom: Non-threshold instance
segmentation masks produced by PANDA-GAN outlining anomalous artifacts
within X-ray scans.

V. CONCLUSION

We propose the semi-supervised method of Perceptually
Aware Neural Detection of Anomalies (PANDA-GAN), a Vari-
ational Autoencoder Generative Adversarial Network (VAE-
GAN) based architecture. PANDA-GAN includes three novel
proposals: a Fine-Grained Visual Categorisation Discriminator
Network (FGVC) to ease the problem of low-inter class
variance present in anomaly detection problems, a dual-latent
space implementation that carries higher-level features in given
images forward in the architecture and the use of a perceptual
loss function to compute feature error which enables higher
aptitude at detecting anomalies within the given problems
presented in this work.

Our PANDA-GAN architecture obtains superior results
across: (CIFAR-10, AUPRCavg: 0.91; MNIST, AUPRCavg:
0.90) and challenging real-world datasets (Plant Leaf Dis-
ease, AUC: 0.776, Threat Item X-ray, AUC: 0.51, MVTEC,
AUCavg: 0.83), in addition to video based frame-level anomaly
detection (UCSDPed1, AUC: 0.95). Outperforming prior work
by [9], [11], [12], [14], [15], [19], [25], [37]–[39], [41], [42],
[46], [49].
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images on plant health to enable the development of mobile disease



diagnostics through machine learning and crowdsourcing,” ArXiv, vol.
abs/1511.08060, 2015.

[8] N. Bhowmik, Y.F.A. Gaus, S. Akcay, J. W. Barker, and T. P. Breckon,
“On the impact of object and sub-component level segmentation strate-
gies for supervised anomaly detection within x-ray security imagery.,”
in 18th IEEE International Conference on Machine Learning and
Applications (ICMLA 2019). December 2019, IEEE.

[9] V. Mahadevan, W. X. LI, V. Bhalodia, and N. Vasconcelos, “Anomaly
detection in crowded scenes,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 1975–1981.

[10] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, “Mvtec ad — a
comprehensive real-world dataset for unsupervised anomaly detection,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2019, pp. 9584–9592.
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