
Contracting to a Longest Path in H-Free Graphs
Walter Kern
Department of Applied Mathematics, University of Twente, The Netherlands
w.kern@twente.nl

Daniël Paulusma
Department of Computer Science, Durham University, UK
daniel.paulusma@durham.ac.uk

Abstract
The Path Contraction problem has as input a graph G and an integer k and is to decide if G can
be modified to the k-vertex path Pk by a sequence of edge contractions. A graph G is H-free for
some graph H if G does not contain H as an induced subgraph. The Path Contraction problem
restricted to H-free graphs is known to be NP-complete if H = claw or H = P6 and polynomial-time
solvable if H = P5. We first settle the complexity of Path Contraction on H-free graphs for
every H by developing a common technique. We then compare our classification with a (new)
classification of the complexity of the problem Long Induced Path, which is to decide for a given
integer k, if a given graph can be modified to Pk by a sequence of vertex deletions. Finally, we prove
that the complexity classifications of Path Contraction and Cycle Contraction for H-free
graphs do not coincide. The latter problem, which has not been fully classified for H-free graphs yet,
is to decide if for some given integer k, a given graph contains the k-vertex cycle Ck as a contraction.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases dichotomy, edge contraction, path, cycle, H-free graph

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.22

Funding Daniël Paulusma: supported by The Leverhulme Trust (RPG-2016-258).

1 Introduction

The goal in graph modification is to determine if a graph can be quickly modified to some
specific family of graphs using some specified set of graph operations. For instance, the
Hamiltonian Path problem is that of deciding if a graph can be modified into a path by
using only edge deletions. A more general variant of this problem is that of determining the
length of a longest path in a graph. Its decision version Long Path is equivalent to deciding
if a given graph can be modified into the k-vertex path Pk for some given integer k by a
sequence of vertex and edge deletions. As Hamiltonian Path is NP-complete (see [20]),
Long Path is NP-complete as well. The same holds for the problem Long Induced
Path [20]. The latter problem is to decide if a given graph G contains an induced path on
at least k vertices for some given integer k, that is, if G can be modified into Pk by using
only vertex deletions.

We mainly consider the variant of the above two problems corresponding to another
central graph operation: the contraction of an edge uv of a graph G deletes the vertices u
and v and replaces them by a new vertex made adjacent to precisely those vertices that were
adjacent to u or v in G (without introducing self-loops or parallel edges). A graph G contains
a graph F as a contraction if G can be modified into F by a sequence of edge contractions.

Contractions to specified graphs play an important role in graph modification problems,
e.g. Hamiltonian Path [32, 33], but are also intensively studied in their own right; see,
for example, [1, 2, 3, 4, 5, 9, 17, 23, 24, 28, 30, 43, 44, 45, 51] for a number of classical and
parameterized complexity results on deciding if a graph G can be modified into a graph F
from some specified family F by at most ` edge contractions for some given ` ≥ 0. Many of

© Walter Kern and Daniël Paulusma;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:w.kern@twente.nl
https://orcid.org/0000-0001-5945-9287
mailto:daniel.paulusma@durham.ac.uk
https://doi.org/10.4230/LIPIcs.ISAAC.2020.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Contracting to a Longest Path in H-Free Graphs

these papers are recent and not only involve rich graph families F , such as bipartite graphs
and planar graphs, but also more basic graph families F , such as complete graphs, complete
bipartite graphs, cycles, stars, trees, and paths. For example, if F is the class of complete
graphs, then the modification problem becomes the Hadwiger Number problem, which is
NP-complete [15]. To give another example, if F is the class of stars, then we obtain the
Connected Vertex Cover problem (see [39]), which is also NP-complete [19].

If F is the class of paths, which is our focus, we obtain the Path Contraction problem.
An equivalent formulation (when considering the classical complexity of the problem) is to
set k = n− ` and ask if the n-vertex input graph G has a graph F ∈ F with |V (F)| ≥ k as a
contraction. This will be the formulation we use:

Path Contraction
Instance: a connected graph G and a positive integer k.
Question: does G contain Pk as a contraction?

The Path Contraction problem is NP-complete as well [8]. Recently, Agrawal et al. [1]
gave an exact algorithm faster than O∗(2n) for it. Due to the computational hardness of
Long Path, Long Induced Path and Path Contraction it is natural to restrict the
input to special graph classes in order to increase our understanding of the computational
hardness of these three path-pattern problems.1

Most of the studied graph classes are hereditary, that is, closed under vertex deletion. As
such, they can be characterized by a family of forbidden induced subgraphs. For a graph H,
a graph G is H-free if G does not H as an induced subgraph. Hereditary graph classes
defined by a small family of forbidden induced subgraphs are well studied, as they enable a
systematic study into the computational complexity of a graph problem. This is evidenced by
extensive studies on (algorithmic and structural) decomposition theorems, e.g., for bull-free
graphs [10] or claw-free graphs [11, 31], and surveys for graph problems or parameters, e.g.,
for Colouring [22, 49] or clique-width [13].

All known NP-hardness results for Hamiltonian Path (see, e.g. [6, 18, 48]) carry over
to Long Path. There is a limited number of hereditary graph classes for which the Long
Path problem is known to be polynomial-time solvable [25, 35, 36, 46, 47, 52, 53]. The few
graph classes for which the Long Induced Path problem is known to be polynomial-time
solvable include the classes of k-chordal graphs [21, 37], AT-free graphs [40], graphs of
bounded clique-width [12] (see also [40]) and graphs of bounded mim-width (provided a
branch decomposition of constant mim-width is given or can be “quickly” computed) [38].

Unlike the Long Path and Long Induced Path problems, Path Contraction
is NP-complete even if k is fixed (that is, k is not part of the input). To explain this,
let F -Contractibility be the problem of deciding if a graph G contains some fixed
graph F as a contraction. The complexity classification of F -Contractibility is still open
(see [8, 41, 42, 54]), but Brouwer and Veldman [8] showed that already P4-Contractibility
and C4-Contractibility are NP-complete (where Ck denotes the k-vertex cycle). In fact,
P4-Contractibility problem is NP-complete even for P6-free graphs [55], whereas Heggernes
et al. [29] showed that P6-Contractibility is NP-complete for bipartite graphs, which was
later improved to k = 5 in [14]. Moreover, P7-Contractibility is NP-complete for line
graphs [16] and thus also for its superclass of claw-free graphs. Hence, Path Contraction

1 These three problems are, with respect to basic graph operations, the most natural problems to consider,
as the problems of asking for a long (induced) path as an (induced) minor or topological (induced)
minor are all equivalent to Long (Induced) Path; we omit the proof details.

W. Kern and D. Paulusma 22:3

is NP-complete for all these graph classes as well. THe Path Contraction problem is
polynomial-time solvable for chordal graphs [29]. For hereditary graph classes defined by
only one forbidden subgraph, the only known positive result is for P5-free graphs [55].

Our Results. We first give a dichotomy for Long Induced Path for H-free graphs.
Using [55] as a starting point, we then prove our main result: a complete dichotomy for
Path Contraction for H-free graphs. In both theorems, H is not part of the input. The
run-time of the tractable cases, where H may have arbitrarily large size, is nO(|V (H)|) and
nO(|V (H)|2), respectively. Let G1 +G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) be the disjoint
union of two vertex-disjoint graphs G1 and G2, and sG the disjoint union of s copies of G.
A linear forest is the disjoint union of one or more paths.

I Theorem 1. Let H be a graph. If H is a linear forest, then Long Induced Path
restricted to H-free graphs is polynomial-time solvable; otherwise it is NP-complete.

I Theorem 2. Let H be a graph. If H is an induced subgraph of P2 + P4, P1 + P2 + P3,
P1 + P5 or sP1 + P4 for some s ≥ 0, then Path Contraction restricted to H-free graphs
is polynomial-time solvable; otherwise it is NP-complete.

Comparison. Theorem 2 shows that Path Contraction is polynomial-time solvable for
H-free graphs for an infinite family of well-structured linear forests H. This is in contrast to
the situation for Long Induced Path. Nevertheless, Theorem 1 also gives us an infinite
family of polynomial-time solvable cases.

Methodology. We prove Theorem 1 in Section 3 by combining NP-completeness proof for
Long Induced Path for graphs of high girt and line graphs with the observation that the
length of a longest induced path in a H-fee graph is bounded by a constant cH .

To extend the aforementioned results from [14, 16, 29, 55] for Path Contraction to the
full classification given in Theorem 2 significant more work is required. First, in Section 4,
we prove the four new polynomial-time solvable cases of Theorem 2. In each of these cases
H is a linear forest, and proving these cases is where our main technical contribution lies.
Every linear forest H is Pr-free for some suitable value of r and Pr-free graphs do not
contain Pr as a contraction. Hence, it suffices to prove that for each 1 ≤ k ≤ r − 1, the
Pk-Contractibility problem is polynomial-time solvable for H-free graphs for each of
the four linear forests listed in Theorem 2. In fact, as P3-Contractibility is trivial (see
also [8]), we only have to consider the cases where 4 ≤ k ≤ r − 1. Our general technique for
doing this is:

Change an instance of Pk-Contractibility for k ≥ 5 into a polynomial number of instances
of Pk−1-Contractibility until k = 4 and solve P4-Contractibility in polynomial time.

For k = 4 we cannot reduce to P3-Contractibility, as the case k = 4 is closely related
to the 2-Disjoint Connected Subgraphs problem. This problem takes as input a triple
(G,Z1, Z2), where G is a graph with two disjoint subsets Z1 and Z2 of V (G). It asks
if V (G) \ (Z1 ∪Z2) has a partition (S1, S2), such that Z1 ∪ S1 and Z2 ∪ S2 induce connected
subgraphs of G. Robertson and Seymour [50] proved that the more general problem k-
Disjoint Connected Subgraphs (for k subsets Zi), a central problem in their project, is
polynomial-time solvable as long as the union of the sets Zi has constant size.2 However, in
our context, Z1 and Z2 may have arbitrarily large size. In that case, 2-Disjoint Connected
Subgraphs is NP-complete even if |Z1| = 2 (and only Z2 is large) [55].

2 If every Zi has size 2, then we obtain the well-known k-Disjoint Paths problem.

ISAAC 2020

22:4 Contracting to a Longest Path in H-Free Graphs

To work around this obstacle, we use the fact that the two outer vertices of the P4, to which
the input graph G must be contracted, may correspond to single vertices u and v of G [55],
which we call P4-suitable. We then “guess” u and v so:

We modify, in polynomial time, an instance graph G of P4-Contractibility into O(n2)
instances (G− {u, v}, N(u), N(v)) of 2-Disjoint Subgraphs.

That is, for each guess (u, v), we seek for a partition (Su, Sv) of (V (G)\{u, v})\(N(u)∪N(v)),
such that N(u)∪ Su and N(v)∪ Sv induce connected subgraphs of G. Then we can contract
these two sets to single vertices corresponding to the two middle vertices of the P4. We also
say that we solve the P4-Suitability problem on instance (G, u, v). In particular, we do not
remove u and v from G but exploit their presence in the graph, together with the H-freeness
of G, for an extensive analysis of the structure of Su and Sv of a potential solution (Su, Sv).

We first show how to check in polynomial time for solutions (Su, Sv) where either the
part of Su that ensures the connectivity of N(u) ∪ Su, or the part of Sv that does this for
N(v) ∪ Sv has bounded size. We call such solutions constant. If we do not find a constant
solution, then we exploit their absence. This enables us to branch to a polynomial number of
instances of Bipartite Matching; the connection between contractibility and the problem
of finding a maximum matching in a bipartite graph is a new (and unexpected) discovery.

In Section 5 we prove the new NP-completeness results. In particular, we prove that
Pk-Contractibility, for some suitable value of k, is NP-complete for bipartite graphs of
large girth, strengthening the known result for bipartite graphs of [29]. Combining our new
results with the NP-completeness results for K1,3-free graphs [16] and P6-free graphs [55]
yields Theorem 2.

In Section 6 we pose some open problems. We give the state-of-art of the complexity
classification of Long Path for H-free graphs, which is still incomplete. We also discuss
the Cycle Contraction problem [7, 26, 27], which is to decide if a given graph contains
Ck as a contraction for some given integer k. We show that its (incomplete) complexity
classification of Cycle Contraction for H-free graphs differs from the classification of
Path Contraction for H-free graphs (Theorem 2).

2 Preliminaries

Throughout the paper we consider finite, undirected graphs with no self-loops.
Let G = (V,E) be a graph. For S ⊆ V , let G[S] = (S, {uv ∈ E | u, v ∈ S}) be the

subgraph of G induced by S; then S is connected if G[S] is connected. The neighbourhood of
v ∈ V is the set N(v) = {u | uv ∈ E} and the closed neighbourhood is N [v] = N(v) ∪ {v}.
The length of a path P is its number of edges. The distance distG(u, v) between vertices u
and v is the length of a shortest path between them. Two disjoint sets S, T ⊂ V are adjacent
if there is at least one edge between them; S and T are (anti)complete to each other if every
vertex of S is (non)adjacent to every vertex of T . The set S dominates T if every vertex of
T has a neighbour in S. The subdivision of an edge e = uv in G replaces e by a new vertex
w and two new edges uw and wv.

For a set H1, . . . ,Hp of graphs, G is (H1, . . . ,Hp)-free if G is Hi-free for i = 1, . . . , p.
A graph is complete bipartite if it has only one vertex or its vertex set can be partitioned
into two independent sets A and B that are complete to each other. The claw K1,3 is the
complete bipartite graph with |A| = 1 and |B| = 3. The graph Kn is the complete graph
on n vertices. The line graph L(G) of G has the edges of G as vertices and there is an edge
between two vertices e1 and e2 of G if and only if e1 and e2 have a common end-vertex in G.
Every line graph is K1,3-free.

W. Kern and D. Paulusma 22:5

The girth of a graph G that is not a forest is the number of vertices in a shortest induced
cycle of G. A subgraph F of a graph G is spanning if V (F) = V (G). The next lemma is
well known (and we omit its proof).

I Lemma 3. Every connected P4-free graph on at least two vertices has a spanning complete
bipartite subgraph, which can be found in polynomial time.

3 The Proof of Theorem 1

We start with the following lemma.

I Lemma 4. Let p ≥ 3 be some constant. Then Long Induced Path is NP-complete for
graphs of girth at least p.

Proof. We reduce from Hamiltonian Path. Let G be a graph on n vertices. We subdivide
each edge e of G exactly once and denote the set of new vertices ve by V ′. We denote the
resulting graph by G′ and note that G′ is bipartite with partition classes V and V ′. We
claim that G has a Hamiltonian path if and only if G′ has an induced path of length 2n− 2.

First suppose that G has a Hamiltonian path u1u2 · · ·un. Then the path on vertices
u1, vu1u2 , u2, . . . , vun−1un

, un is an induced path of length 2n− 2 in G′. Now suppose that
G′ has an induced path P ′ of length 2n− 2. Then either P ′ starts and finishes with a vertex
of V , or P ′ starts and finishes with a vertex of V ′.

In the first case P ′ contains n vertices of G, so P contains all vertices u1, . . . , un of G, say
we see the vertices of G in this order when we move from the first vertex to the last vertex
of P . Then, by the construction of G′, we find that u1u2 · · ·un is a Hamiltonian path of G.

In the second case P ′ contains n− 1 vertices of V , say vertices u1, . . . , un−1 in that order.
As P ′ is an induced path and vertices of V ′ are only adjacent to vertices of V , this means
that the end-vertices of P ′ are both adjacent to un. Hence, we find that u1u2 · · ·un is a
Hamiltonian path of G (and the same holds for unu1 · · ·un−1).

We note that the girth of G′ is twice the girth of G. Now, to obtain the result, we apply
this trick p times, that is, we subdivide each edge p times. Let G′′ be the resulting graph.
Then G′′ has girth at least p times the girth of G. Hence, the girth of G′′ is at least p, while
V (G′′) is |V (G)|+p|E(G)|, which is polynomial in the size of G, as p is a constant. Moreover,
just as we argued above, G has a Hamiltonian path if and only if G′′ has an induced path of
length (p+ 1)(n− 1). J

We also need the following lemma, which we prove by a reduction from Hamilton Path
(proof details omitted).

I Lemma 5. The Long Induced Path problem is NP-complete for line graphs.

We are now ready to prove Theorem 1.

I Theorem 1 (restated). Let H be a graph. If H is a linear forest, then Long Induced
Path restricted to H-free graphs is polynomial-time solvable; otherwise it is NP-complete.

Proof. Let G be an H-free graph. If H is a linear forest, then there exists a constant k such
that H is an induced subgraph of Pk. This means that the length of a longest induced path
of G is at most k − 1. Hence, we can determine a longest path in G in O(nk−1) time by
brute force. If H is not a linear forest, then the class of line graphs or the class of graphs
of girth at least p for some suitable integer p forms a subclass of the class of H-free graphs.
Hence, we can apply Lemma 4 or 5. J

ISAAC 2020

22:6 Contracting to a Longest Path in H-Free Graphs

Figure 1 Two P4-witness structures of a graph; the grey vertices form a P4-suitable pair [55].

4 The Polynomial-Time Solvable Cases of Theorem 2

A graph G contains a graph F as a contraction if and only if for each x ∈ V (F) there
exists a nonempty subset W (x) ⊆ V (G), such that (i) W (x) is connected; (ii) the set
W = {W (x) | x ∈ V (F)} is a partition of V (G); and (iii) for every xi, xj ∈ V (F), W (xi)
and W (xj) are adjacent in G if and only if xi and xj are adjacent in F . By contracting, for
each x ∈ V (F), all edges of a spanning tree of G[W (x)] we obtain the graph F (recall that
self-loops or parallel edges are not introduced). The set W (x) is called an F -witness bag
of G for x. The set W is an F -witness structure of G (which does not have to be unique).

A pair of (non-adjacent) vertices (u, v) of a graph G is Pk-suitable for some integer
k ≥ 3 if and only if G has a Pk-witness structure W with W (p1) = {u} and W (pk) = {v},
where Pk = p1 . . . pk; see Figure 1 for an example. The following known lemma shows why
Pk-suitable pairs are of importance.

I Lemma 6 ([55]). For k ≥ 3, a graph G contains Pk as a contraction if and only if G has
a Pk-suitable pair.

Lemma 6 leads to the following auxiliary problem, where k ≥ 3 is a fixed integer, that is, k
is not part of the input. See Figure 2 for an example.

Pk-Suitability
Instance: a connected graph G and two non-adjacent vertices u, v.
Question: is (u, v) a Pk-suitable pair?

The next, known observation follows from the fact that Pk-Contractibility is trivial for
k ≤ 2, whereas for k = 3 we can use Lemma 6 combined with the triviality of P3-Suitability.

I Lemma 7 ([8]). For k ≤ 3, Pk-Contractibility can be solved in polynomial time.

We denote the graph obtained from a graph G by contracting e = uv by G/e. We may
denote the resulting vertex by u (or v) again and say that we contracted e on u (or e on v).
We need the following lemma (proof omitted).

I Lemma 8. Let k ≥ 4 and let (G, u, v) be an instance of Pk-Suitability with u and v
at distance d > k. Let P be a shortest path from u to v. Then (G, u, v) can be reduced
in polynomial time to d − 2 instances (G/e, u, v), one for each edge e ∈ E(P) that is not
incident to u and v, with dist(u, v) = d− 1, such that (G, u, v) is a yes-instance if and only
if at least one of the new instances (G/e, u, v) is a yes-instance of Pk-Suitability.

In our polynomial-time algorithms for constructing Pk-witness structures we put vertices in
certain sets, which we then try to extend to Pk-witness bags (possibly via branching) and we
will often apply the following rule:
Contraction Rule. If two adjacent vertices s and t end up in the same bag of some potential
Pk-witness structure, then contract the edge st.

W. Kern and D. Paulusma 22:7

u v

s

s0

s00w

w0

1

Figure 2 An example of an instance (G, u, v) of P4-Suitability. Without the dotted line,
(G, u, v) has no solution. With the dotted line, (G, u, v) has both a double-sided and single-sided
solution but no independent solution. For example, let S′

u be the set of three black vertices. Then
Su = S′

u ∪ {w, w′} and Sv = {s, s′, s′′} form a double-sided solution that is not only 5-constant
(as |Su| = 5) but even 3-constant (as |Sv| = 3). An alternative reason for the fact that (Su, Sv) is
3-constant is that S′

u ∪ N(u) is connected and |S′
u| = 3. A single-sided 3-constant solution is formed

by the independent set consisting of the two top black vertices and w and the set with the bottom
black vertex and s, s′, s′′, w′.

For a graph G, we apply the Contraction Rule on some set U ⊆ V (G) if we contract every
edge in G[U]. This leads to a smaller instance and G[U] becomes independent. We will
exploit both properties in our algorithms. The following known lemma, which is readily seen,
shows that applying the Contraction Rule preserves H-freeness as long as H is a linear
forest.

I Lemma 9. Let H be a linear forest and let G be an H-free graph. Then the graph obtained
from G after contracting an edge is also H-free.

We follow the same strategy (outlined in Section 1) for each case, so eventually we check
if the input graph can be contracted to P4 or not. This turns out to be the hardest situation
to deal with in our proofs. Due to Lemma 6, we can solve it by checking for each pair of
distinct vertices u, v with N(u) ∩N(v) = ∅ if (G, u, v) is a yes-instance of P4-Suitability.
Let (G, u, v) be an instance of P4-Suitability. For every P4-witness structure of G with
W (p1) = {u} and W (p4) = {v} (if it exists), every neighbour of u belongs to W (p2) and
every neighbour of v belongs to W (p3).

Throughout our proofs we let T (u, v) = V (G) \ (N [u] ∪ N [v]) be the set of remaining
vertices of G, which still need to be placed in either W (p2) or W (p3). We write T = T (u, v)
if no confusion is possible. A partition (Su, Sv) of T is a solution for (G, u, v) if N(u) ∪ Su
and N(v) ∪ Sv are both connected. Hence, a solution (Su, Sv) for (G, u, v) corresponds to a
P4-witness structure W of G, where W (p1) = {u}, W (p2) = N(u) ∪ Su, W (p3) = N(v) ∪ Sv
and W (p4) = {v}. A solution (Su, Sv) for (G, u, v) is α-constant for some constant α ≥ 0 if:
either Su contains a set S′u of size |S′u| ≤ α such that N(u)∪ S′u is connected, or Sv contains
a set S′v of size |S′v| ≤ α such that N(v) ∪ S′v is connected; see also Figure 2.

The following lemma is straightforward (we omit its proof) and shows that we can detect
constant solutions in polynomial time.

I Lemma 10. Let (G, u, v) be an instance of P4-Suitability. For every constant α ≥ 0, it
is possible to check in O(nα+2) time whether or not (G, u, v) has an α-constant solution.

We need some additional terminology. Let (Su, Sv) be a solution for an instance (G, u, v)
of P4-Suitability. If G[Su] and G[Sv] each contain at least one edge, then (Su, Sv) is
double-sided. If exactly one of G[Su], G[Sv] contains an edge, then (Su, Sv) is single-sided. If
both Su and Sv are independent sets, then (Su, Sv) is independent. We refer to Figure 2 for
an illustration of these concepts.

ISAAC 2020

22:8 Contracting to a Longest Path in H-Free Graphs

We now show, via the auxiliary problem Pk-Suitability, that Path Contraction is
polynomial-time solvable for (P2 +P4)-free graphs. We first give, in Lemma 11, a polynomial-
time algorithm for P4-Suitability for (P2 + P4)-free graphs. This is the most involved part
of our algorithm, and we use it as a showcase for illustrating our techniques.

Outline of the algorithm for P4-Suitability on (P2 + P4)-free graphs (Lemma 11)

Let (G, u, v) be an instance. Our aim is to reduce to a polynomial number of instances of
Bipartite Matching. We may assume that u and v are of distance at least 3 (and thus
N(u)∩N(v) = ∅). Recall that T = V (G) \ (N [u]∪N [v]). To get a handle on the adjacencies
between T and V (G) \ T we will apply a (constant) number of branching procedures. Each
time we branch we obtain, in polynomial time, a polynomial number of new, smaller instances
of P4-Suitability satisfying additional helpful constraints, such that the original instance
is a yes-instance if and only if at least one of the new instances is a yes-instance. We then
consider each new instance separately until we solve the problem.

1. Exploit the structure of G[T]; in particular we prove that G[T] may be assumed to be
P4-free.

2. Check if (G, u, v) has a 7-constant solution. If not, we prove that the absence of 7-constant
solutions implies that (G, u, v) has no double-sided solution either. Then if we have not
found a solution yet, it remains to test if (G, u, v) has a single-sided solution or an
independent solution.

3. Check single-sidedness with respect to u and v independently. In both cases we show
that this will lead either to a solution or to a polynomial number of smaller instances, for
which we only need to check if they have an independent solution. This will enable us to
branch in such a way that afterwards we may assume that T is an independent set and
that the solution we are looking for is equivalent to finding a “star cover” of N(u) and
N(v) with centers in T .

4 Reduce the “star cover” problem to Bipartite Matching, which we can solve in
polynomial time by using the Hopcroft-Karp algorithm [34].

We are now ready to present the full algorithm. We sketch its correctness proof.

I Lemma 11. P4-Suitability can be solved in polynomial time for (P2 + P4)-free graphs.

Proof. Let (G, u, v) be an instance of P4-Suitability, where G is a connected (P2 + P4)-free
graph. We may assume without loss of generality that u and v are of distance at least 3,
that is, u and v are non-adjacent and N(u) ∩N(v) = ∅; otherwise (G, u, v) is a no-instance.
Recall that T = V (G) \ (N [u] ∪N [v]) and that we are looking for a partition (Su, Sv) of T
that is a solution for (G, u, v), that is, both N(u) ∪ Su and N(v) ∪ Sv must be connected.
In order to do so we will construct partial solutions (S′u, S′v), which we try to extend to a
solution (Su, Sv) for (G, u, v). We use the Contraction Rule from Section 2 on N(u) ∪ S′u
and N(v) ∪ S′v, so that these two sets will become independent. By Lemma 9, the resulting
graph will always be (P2 + P4)-free. For simplicity, we will denote the resulting instance by
(G, u, v) again. After applying the Contraction Rule the size of the set T will be reduced
if a vertex t ∈ T was involved in an edge contraction with a vertex from N(u) or N(v). In
that case we say that we contracted t away. We initialise by setting S′u = S′v = ∅ and apply
the Contraction Rule on N(u) and N(v). Afterwards we can make the following claim.

B Claim 1. N(u) and N(v) are independent sets.

W. Kern and D. Paulusma 22:9

Phase 1: Exploiting the structure of G[T]
Suppose G[T] contains an induced P4 on vertices a1, a2, a3, a4. If there is a vertex t ∈ N(u)
not adjacent to any vertex of {a1, a2, a3, a4}, then {u, t} ∪ {a1, a2, a3, a4} induces a P2 + P4
in G, a contradiction. Hence, {a1, a2, a3, a4} dominates N(u). Similarly, {a1, a2, a3, a4} must
dominate N(v). Suppose G[T] has another induced P4 on vertices {b1, b2, b3, b4} such that
{a1, a2, a3, a4} ∩ {b1, b2, b3, b4} = ∅. By the same arguments, {b1, b2, b3, b4} also dominates
N(u) and N(v). Hence, N(u)∪{a1, a2, a3, a4} and N(v)∪{b1, b2, b3, b4} are both connected.
We put each remaining vertex of T into either Su or Sv (which is possible, as G is connected).
This yields a (4-constant) solution for (G, u, v). From now on, assume that G[T] contains no
induced copy of P4 that is vertex-disjoint from a1a2a3a4.

Branching I (O(n16) branches)
We branch by considering every possibility for each ai (1 ≤ i ≤ 4) to go into either Su or Sv
for some solution (Su, Sv) of (G, u, v) (if it exists). We then branch into O(n16) possibilities
to ensure that we contracted each ai away. We consider each resulting instance, which we
denote by (G, u, v) again and for which the following claims hold. The first claim holds
immediately. We omit the proof of the second claim.

B Claim 2. G[T] is P4-free.

B Claim 3. Let (Su, Sv) be a solution for (G, u, v) that is not 7-constant. Let t, x1, x2 be
three vertices of T with tx1 /∈ E(G), tx2 /∈ E(G) and x1x2 ∈ E(G). If t, x1, x2 are in Su,
then every neighbour of t in N(u) is adjacent to at least one of x1, x2. If t, x1, x2 are in Sv,
then every neighbour of t in N(v) is adjacent to at least one of x1, x2.

Phase 2: Excluding 7-constant solutions and double-sided solutions
By using Claim 3 we show the following claim on double-sided solutions (proof omitted).

B Claim 4. If (G, u, v) has a double-sided solution, then (G, u, v) has a 7-constant solution.

We now check in polynomial time if (G, u, v) has a 7-constant solution by using Lemma 10.
If so, then we are done. From now on assume that (G, u, v) has no 7-constant solution. Then,
by Claim 4 it follows that (G, u, v) has no double-sided solution. It remains to check if
(G, u, v) has a single-sided solution or an independent solution. If (G, u, v) has a single-sided
solution (Su, Sv) that is not independent, then exactly one of Su or Sv is independent. Our
algorithm first looks for a solution (Su, Sv) where Su is independent. We say that it is doing
a u-feasibility check. If afterwards we have not found such a solution, then our algorithm will
perform a v-feasibility check, which is the same check but now performed with respect to v.

Phase 3: Doing a u-feasibility check
We start by exploring the structure of a solution (Su, Sv) that is either single-sided or
independent, and where Su is an independent set. As Su and N(u) are both independent
sets, G[N(u) ∪ Su] is a connected bipartite graph. Hence, Su contains a set S∗u, such that
S∗u dominates N(u). We assume that S∗u has minimum size. For s ∈ S∗u, let Q(s) be the set
that consists of all neighbours of s in N(u) that are not adjacent to any vertex in S∗u \ {s}.
Then, for each s ∈ S∗u, the set Q(s) is nonempty, as otherwise we can remove s from S∗u,
contradicting our assumption that S∗u has minimum size. We call the vertices of Q(s) the
private neighbours of s with respect to S∗u. We can show that the following holds if (G, u, v)
has a solution (Su, Sv) in which Su is an independent set (proof omitted):

(P) The set Su contains a subset S∗u of size at least 2 that dominates N(u), such that each
vertex in S∗u has a nonempty set Q(s) of private neighbours with respect to S∗u, and
moreover, the set N(u) \Qu, where Qu =

⋃
s∈S∗u

Q(s), is nonempty and complete to S∗u.

ISAAC 2020

22:10 Contracting to a Longest Path in H-Free Graphs

I Remark. We emphasize that S∗u is unknown to the algorithm, as we constructed it from
the unknown Su, and consequently, our algorithm does not know (yet) the sets Q(s). We
also point out that the set S∗u and thus the sets Q(s) might not be unique. However, this is
irrelevant and for us the existence of at least one set S∗u suffices.

Phase 3a: Reducing N(u) \Qu to a single vertex wu
We will now branch into a polynomial number of smaller instances, in which N(u) \ Qu
consists of just one single vertex wu, which we can even identify.

Branching II (O(n4) branches)
We will determine exactly those vertices of N(u) that belong to Qu via some branching,
under the assumption that (G, u, v) has a solution (Su, Sv), where Su is independent, that
satisfies (P). By (P), S∗u consists of at least two (non-adjacent) vertices s and s′. Let w ∈ Q(s)
and w′ ∈ Q(s′). We branch by considering all possible choices of choosing these four vertices.
This leads to O(n4) branches, which we each process in the way described below.

If we selected s and s′ correctly, then s, s′ belong to an independent set Su that together
with Sv = T \ Su forms a solution for (G, u, v) that is not 7-constant. This implies that
{s, s′} does not dominate N(u). Hence, N(u) \ {w,w′} 6= ∅. For each w∗ ∈ N(u) \ {w,w′},
we do as follows. If w∗ is adjacent to both s and s′, then w∗ must belong to N(u) \Qu due
to property (P). In the other case, that is, if w∗ is adjacent to at most one of s, s′, then w∗
must belong to Qu, again by property (P). Hence, we have identified in polynomial time
the (potential) sets Qu and N(u) \Qu. Moreover, by applying the Contraction Rule on
N(u) ∪ {s, s′} we can contract s and s′ away. This also contracts all of N(u) \ Qu into a
single vertex which, as we mentioned above, we denote by wu. Thus wu is complete to
S∗u. We denote the resulting instance by (G, u, v) again. We also let T1 = N(wu) ∩ T and
T2 = T \ T1. Note that S∗u ⊆ T1. As S∗u dominates N(u) and every vertex of S∗u is adjacent
to wu, we find that N(u) ∪ S∗u is connected, and we can modify our instance (G, u, v) such
that the following claim holds (proof omitted):

B Claim 5. T2 is an independent set that is anticomplete to N(v).

By definition, no vertex of T2 is adjacent to wu either. In a later stage we will modify T2
and this property may no longer hold. However, we will always maintain Claim 5.

By Lemma 10 we check in polynomial time if (G, u, v) has a 7-constant solution. If so,
then we are done. From now on suppose that (G, u, v) has no 7-constant solution. Recall
that we are still looking for a single-sided or independent solution (Su, Sv), where Su is an
independent set. We first show that we can modify G in polynomial time such that afterwards
the following claim holds, while maintaining Claim 5 (we omit the proof of Claim 6).

B Claim 6. G[T] is (K3 + P1)-free.

We will now do some further branching to obtain O(n) smaller instances in which G[T1] is
K3-free, such that the following holds. If one of these new instances has a solution, then
(G, u, v) has a solution. If none of these new instances has a solution, then (G, u, v) may still
have a solution (Su, Sv), but in that case Su is not an independent set while Sv must be an
independent set; this will be verified when we do the v-feasibility check.

Branching III (O(n) branches)
We consider all possibilities of putting one vertex t ∈ T1 in Su. This leads to O(n) branches.
For each branch we do as follows. As t is adjacent to wu (because t ∈ T1), we contract t away
using the Contraction Rule on N(u) ∪ {t}. As Su is independent, every neighbour t′ of t
in T1 must go to Sv. If such a neighbour t′ is adjacent to a vertex of N(v), this means that we
may contract t′ away by using the Contraction Rule on N(v)∪ {t′}. If t′ has no neighbour

W. Kern and D. Paulusma 22:11

in N(v), then we put t′ in T2. By the Contraction Rule we may contract all edges between
t′ and its neighbours in T2, such that T2 is an independent set again that is anticomplete to
N(v), so Claim 5 is still valid (but T2 may now contain vertices adjacent to wu). Denote
the resulting instance by (G, u, v) again. As G[T], and thus, G[T1] is (K3 + P1)-free due to
Claim 6, we find afterwards that the following holds for each branch.

B Claim 7. G[T1] is K3-free.

By Lemma 10 we check in polynomial time if (G, u, v) has a 7-constant solution. From
now on assume not. Then (G, u, v) has no double-sided solution either, as then the original
instance would have a double-sided solution, which we already ruled out (alternatively, apply
Claim 4).

Phase 3b: Looking for independent solutions after branching
We will now branch to O(n5) smaller instances for which the goal is to find an independent
solution. If one of the newly created instances has a solution, then (G, u, v) has a solution.
If no new instance has a solution, then (G, u, v) may still have a solution (Su, Sv). However,
in that case Su is not independent and Sv must be an independent set. This will be verified
when doing the v-feasibility check. An instance (G, u, v) satisfies the (∗)-property if:

(∗) If (G, u, v) has a solution (Su, Sv) where Su is an independent set, then (G, u, v) has an
independent solution.

Let D1, . . . , Dq be the connected components of G[T] for some q ≥ 1. If each Di has size 1,
then G[T] is independent. Hence, any solution for (G, u, v) will be independent, and thus (∗)
holds already. Now suppose at least one of D1, . . . , Dq, say D1, has more than one vertex.
We first consider the case where another Di, say D2, also has more than one vertex. We
claim that (∗) is again satisfied already (proof omitted). So, from now on, assume that D1
has more than one vertex and D2, . . . , Dq each have a single vertex. Recall that T2 is an
independent set that is anticomplete to N(v) due to Claim 5. Suppose t ∈ T2 does not belong
to D1. Then t is an isolated vertex of G[T] that is not adjacent to any vertex of N(v). As G
is connected, t is adjacent to at least one vertex of N(u). We apply the Contraction Rule
on N(u) ∪ {t} to contract t away. Afterwards, we find that every vertex of T2 must belong
to D1. Let B1, . . . , Bp be the connected components of G[T1 ∩ V (D1)] for some p ≥ 1. By
Claim 2, G[T], and thus G[T1∩V (D1)], is P4-free (note that we only contracted edges during
the branching and thus maintained P4-freeness due to Lemma 9). As G[T1] is also K3-free
by Claim 7, each Bi is a complete bipartite graph on one or more vertices due to Lemma 3.

First suppose p = 1. Recall that T2 is an independent set by Claim 5 that belongs to D1.

Branching IV (O(n2) branches)
In this case we can branch into O(n2) new and smaller instances, such that (G, u, v) has a
solution (Su, Sv), in which Su is an independent set, if and only if one of these new instances
has such a solution. Moreover, we can show that each new instance, which we denote by
(G, u, v) again, will either have the (∗) property or p ≥ 2 holds (proof omitted).
So, if (∗) does not yet hold, (G, u, v) is an instance with p ≥ 2. By Lemma 3 and because
D1 is connected and P4-free, D1 has a spanning complete bipartite graph B∗. As p ≥ 2, all
vertices of V (B1)∪ · · · ∪ V (Bp) belong to the same partition class of B∗. By definition, these
vertices are in T1. Hence, as T2 is an independent set in D1, all vertices of T2 form the other
bipartition class of B∗. Thus, T2 is complete to T1 ∩ V (D1).

ISAAC 2020

22:12 Contracting to a Longest Path in H-Free Graphs

Branching V (O(n) branches)
Every vertex of T2 will belong to Sv in any solution (Su, Sv) where Su is an independent set,
but without having any neighbours in N(v) due to Claim 5. This means that Sv contains at
least one vertex t of V (D1) ∩ T1. We branch by considering all possibilities of choosing this
vertex t. Indeed, as T2 is complete to T1, it suffices to check single vertices t ∈ T1 that have
a neighbour in N(v). This leads to O(n) branches. For each branch we do as follows. We
contract the vertices of T2 ∪ {t} away using the Contraction Rule on N(v) ∪ T2 ∪ {t}. We
denote the resulting instance by (G, u, v) and observe that T2 = ∅, so T = T1.
Note that G[T] = G[T1] now consists of connected components B′1, . . . , B′p′ for some p′ ≥ 1,
where each B′i is complete bipartite. If each B′i has size 1, then G[T] is independent. Hence,
any solution for (G, u, v) will be independent, and thus (∗) holds. Now suppose at least one
of B′1, . . . , B′p′ , say B′1, has more than one vertex. If another B′i, also has more than one
vertex, then (∗) holds: we can show this in the same way as when we proved this for the sets
D1, . . . , Dq. From now on, assume that B′1 has more than one vertex and B′2, . . . , B′p′ have
only one vertex. So, in particular, B′1 is complete bipartite and has at least two vertices.

Branching VI (O(n2) branches)
We first consider each possibility of choosing one vertex t ∈ B′1 to be placed in Su, leading
to O(n) branches. Afterwards we perform O(n) further branches. For each new instance,
which we denote by (G, u, v) again, we can show that T = T1 and T is independent, leading
to (∗); we omit the proof of this claim.
If we did not yet find a solution, then by achieving (∗) we have further reduced the problem
to O(n5) instances, for which we search for an independent solution. We consider these new
instances one by one, and we denote the instance under consideration by (G, u, v) again.

Phase 3c: Searching for private solutions
In this phase we introduce a new type of independent solution after some branching.

Branching VII. (O(n4) branches)
First we process N(v) via O(n4) branches in the same way as we did for N(u) in Branching II.
Hence, if (G, u, v) has a solution (Su, Sv) in which Su and Sv are independent sets, then:
(P1) Su contains a subset S∗u of size at least 2 that dominates N(u), such that each s ∈ S∗u

has a nonempty set Qu(s) of private neighbours with respect to S∗u, and moreover, the set
N(u) \Qu, where Qu =

⋃
Qu(s), consists of a single vertex wu that is complete to S∗u.

(P2) Sv contains a subset S∗v of size at least 2 that dominates N(v), such that each s ∈ S∗v
has a nonempty set Qv(s) of private neighbours with respect to S∗v , and moreover, the
set N(v) \Qv, where Qv =

⋃
Qv(s), consists of a single vertex wv that is complete to S∗v .

We call an independent solution (Su, Sv) satisfying (P1) and (P2) private.
By now all branches are guaranteed to have private solutions or no solutions at all. Thus

we need only to search for private ones. While doing this we may modify the instance (G, u, v),
but we will always ensure that private solutions are pertained. In particular, if we contract
a vertex t ∈ S∗u to wu using the Contraction Rule on N(u) ∪ {t}, this leads to a private
solution (Su, Sv) with t /∈ S∗u. Then all private neighbours of t become adjacent to wu and,
by the Contraction Rule, they get contracted to wu. However, if t /∈ S∗u, then contracting t
to wu will make the neighbours of t in N(u) adjacent to wu and the Contraction Rule
contracts these to wu. Consequently, some vertices in S∗u may have no private neighbours
in N(u) and hence leave S∗u. If this reduces |S∗u| to 1, we will notice this by checking, in
polynomial time (Lemma 10), for 1-constant solutions. If we find a 1-constant solution, then
we stop and conclude that our original instance is a yes-instance. Otherwise, we know that
|S∗u| ≥ 2, and hence private solutions pertain (should such solutions exist at all). We will
always perform this test implicitly whenever we apply the Contraction Rule.

W. Kern and D. Paulusma 22:13

We show the next two claims (proofs omitted).

B Claim 8. Every vertex of T is adjacent to both wu and wv.

B Claim 9. If (G, u, v) has a private solution, then G[T] must be the disjoint union of one
or more complete bipartite graphs.

By Claim 9 we may assume that G[T] is the disjoint union of one or more complete bipartite
graphs; otherwise we discard the branch (as we search for a private solution). We now
prove that T can be changed into an independent set via some branching. Suppose T is not
independent yet. Let B1, . . . , Br, for some r ≥ 1, denote the connected components of G[T]
with at least one edge (note that G[T] may also contain some isolated vertices). By Claim 9,
every Bi is complete bipartite. By Claim 10 (proof omitted) we may assume that r ≤ 3;
otherwise we discard the branch.

B Claim 10. If (G, u, v) has a private solution, then r ≤ 3.

Branching VIII (O(1) branches)
As r ≤ 3 by Claim 10, we can branch to obtain O(1) smaller instances, such that (G, u, v)
has a private solution if and only if at least one of these new instances has a private solution.
Moreover, for each new instance, which we denote by (G, u, v) again we can show that T is
an independent set (proof omitted). As T is an independent set, the sets Su and Sv of any
solution (Su, Sv) will be independent (should (G, u, v) have a solution). Recall that {wu, wv}
is complete to T by Claim 8. As we search for a private solution (Su, Sv), the following two
claims can be shown (proofs omitted).

B Claim 11. Let s and t be any two distinct vertices of T . Then we may assume without
loss of generality that either N(u) ∩N(s) ∩N(t) = {wu}; or N(u) ∩N(s) = N(u) ∩N(t);
or {s, t} dominates N(u). Similarly, we may assume without loss of generality that either
N(v) ∩N(s) ∩N(t) = {wv}; or N(v) ∩N(s) = N(v) ∩N(t); or {s, t} dominates N(v).

B Claim 12. Let s and t be two distinct vertices in T such that {s, t} dominates N(u)∪N(v).
Then (G, u, v) has a 2-constant solution.

We continue as follows. By Lemma 10 we check in polynomial time if (G, u, v) has a 2-constant
solution. If so, then we are done. Otherwise, we obtain the following claim.

B Claim 13. We may assume without loss of generality that every pair of (distinct) vertices
{s, t} in T does not dominate N(u); hence, {s, t} may only dominate N(v).

We call a pair of vertices s, t of T a 2-pair if {s, t} dominates N(v). Let Tv be the set of
vertices of T involved in a 2-pair. We show the following claim (proof omitted).

B Claim 14. Tv = ∅.

Phase 3d: Translating the problem into a bipartite matching problem
We now translate the instance (G, u, v) into an instance of Bipartite Matching. Recall
that wu and wv are the vertices in N(u) and N(v) that are complete to T . By Claims 11
and 14 we can partition N(u) \ {wu} into sets N1(u) ∪ · · · ∪Nq(u) for some q ≥ 1 such that
two vertices of N(u) have the same neighbours in T if and only if they both belong to Nh(u)
for some h ∈ {1, . . . , q}. Similarly, we can partition N(v) \ {wv} into sets N1(v)∪ · · · ∪Nr(v)
for some r ≥ 1 such that two vertices of N(v) have the same set of neighbours in T if and
only if they both belong to Ni(v) for some i ∈ {1, . . . , r}. We may remove all but one vertex
of each Nh(u) and Ni(v) to obtain an equivalent instance, which we denote by (G, u, v) again.

ISAAC 2020

22:14 Contracting to a Longest Path in H-Free Graphs

Let G′ be the graph obtained from G by removing u, v, wu, wv and all edges between N(u)
and N(v). Then G′ is bipartite with partition sets (N(u) \ {wu}) ∪ (N(v) \ {wv}) and T .
It remains to compute a maximum matching M in G′, which can be done in polynomial
time via the Hopcroft-Karp algorithm [34]. If |M | = |N(u)|+ |N(v)| − 2, then each vertex in
(N(u) \ {wu}) ∪ (N(v) \ {wv}) is incident to an edge of M , and hence, we found a (private)
solution for (G, u, v). If |M | < |N(u)|+ |N(v)|−2, then (G, u, v) has no (private) solution; we
discard the branch. This concludes the u-feasibility check. If we found a solution, we translate
it in polynomial time to a solution for the original instance; else we enter the last phase.

Phase 4: Doing a v-feasibility check
We repeat the same steps as in Phase 3 and this concludes the description of our algorithm.
The correctness of our algorithm follows from the above description. To analyze its run-time,
the branching (Branching I-VIII) yields a total of O(n30) branches. As explained in each step
above, processing each branch created in Branching I-VI until we start branching again takes
polynomial time. Checking for 1-constant solutions to ensure survival of private solutions
takes polynomial time as well. As processing the branches created in Branch VII-VIII takes
polynomial time, we conclude that the total running time of our algorithm is polynomial. J

We use Lemma 8 to obtain Lemma 12, which we use for Lemma 13; we omit both proofs.
Lemmas 6, 7, 11–13 together with the fact that a (P2 +P4)-graph has no P7 as a contraction
yields Theorem 14.

I Lemma 12. P5-Suitability can be solved in polynomial time for (P2 + P4)-free graphs.

I Lemma 13. P6-Suitability can be solved in polynomial time for (P2 + P4)-free graphs.

I Theorem 14. Path Contraction is polynomial-time solvable for (P2 + P4)-free graphs.

We prove the other polynomial-time cases, H = P1 +P2 +P3, H = P1 +P5 and H = sP1 +P4
(s ≥ 1), by the same strategy but in a less involved way (we omit the details).

5 The NP-Complete Cases of Theorem 2

A hypergraph H is a pair (Q,S), where Q = {q1, . . . , qm} is a set of m elements and S =
{S1, . . . , Sn} is a set of n hyperedges, which are subsets of Q. A 2-colouring of H is a partition
of Q into two (nonempty) sets Q1 and Q2 with Q1 ∩ Sj 6= ∅ and Q2 ∩ Sj 6= ∅ for each Sj .
The Hypergraph 2-Colourability problem is to decide if a given hypergraph has a
2-colouring. This problem is NP-complete even for hypergraphs H with Si 6= ∅ for 1 ≤ i ≤ n
and Sn = Q. Brouwer and Veldman [8] proved that P4-Contractibility is NP-complete
by a reduction from Hypergraph 2-Colourability. That is, from a hypergraph H they
built a graph GH, such that H has a 2-colouring if and only if GH has P4 as a contraction:

Construct the incidence graph of (Q,S), which is the bipartite graph with partition
classes Q and S and an edge between two vertices qi and Sj if and only if qi ∈ Sj .
Add a set S ′ = {S′1, . . . , S′n} of n new vertices, where we call S′j the copy of Sj .
For i = 1, . . .m and j = 1, . . . , n, add an edge between qi and S′j if and only if qi ∈ Sj .
For j = 1, . . . , n and ` = 1, . . . , n, add an edge between Sj and S′`, so the subgraph
induced by S ∪ S ′ will be complete bipartite.
For h = 1, . . . ,m and i = 1, . . . ,m, add an edge between qh and qi, so Q will be a clique.
Add two new vertices t1 and t2.
For j = 1, . . . , n, add an edge between t1 and Sj , and between t2 and S′j .

As mentioned, Brouwer and Veldman [8] proved a hypergraph H has a 2-colouring if and
only if GH has P4 as a contraction. The graph GH is P6-free [55]. We observe that GH is
also (2P1 + 2P2, 3P2, 2P3)-free. Hence, we obtain the following:

W. Kern and D. Paulusma 22:15

I Lemma 15. P4-Contractibility is NP-complete for (2P1+2P2, 3P2, 2P3, P6)-free graphs.

By modifying GH we show Theorem 16 (proof details omitted).

I Theorem 16. Let p ≥ 4 be some constant. Then P2p-Contractibility is NP-complete
for bipartite graphs of girth at least p.

Theorem 16 implies that Path Contraction is NP-complete for H-free graphs if H has a
cycle. Combining Lemma 15 and Theorem 16 with the known NP-completeness result for
K1,3-free graphs [16] yields the NP-complete part of Theorem 2.

6 Conclusions

We completely classified the complexities of Long Induced Path and Path Contraction
for H-free graphs. For Long Path, the classification is still incomplete. It is known that
Hamiltonian Path, and thus Long Path, is NP-complete for chordal bipartite graphs
and strongly chordal split graphs [48], and thus for H-free graphs if H has a cycle or an
induced 2P2. Moreover, Hamiltonian Path is NP-complete for line graphs [6] and thus for
H-free graphs if H is a forest of maximum degree at least 3. On the positive side, Long
Path is polynomial-time solvable for cocomparability graphs [36, 47] and thus for P4-free
graphs. This leaves open, for both problems, the cases H = sP1 + Pr (3 ≤ r ≤ 4 and s ≥ 1),
H = sP1 + P2 (s ≥ 2) and H = sP1 (s ≥ 3).

The classification of Cycle Contraction for H-free graphs is also open. Hammack
proved that this problem is NP-complete for general graphs [27] but polynomial-time solvable
for planar graphs [26]. It is also NP-complete for K1,3-free graphs [16]. The classifications
of Cycle Contraction and Path Contraction do not coincide for H-free graphs. By
Theorem 2, the former is polynomial for (P2 + P4)-free graphs. However, we can show
the following result by inspecting the NP-hardness gadget of Brouwer and Veldman [8] for
C4-Contractibility (proof details omitted).

I Theorem 17. C4-Contractibility, and thus Cycle Contraction, is NP-complete
for (P2 + P4)-free graphs.

Preliminary research suggests that our techniques are applicable to other contractibility and
connectivity problems as well, such as contracting to large (subdivided) stars or claws (the
problem of contracting to a largest star is known as Connected Vertex Cover [39]).

Another natural question is how Path Contraction behaves on hereditary graph
classes with more than one forbidden induced subgraph. Recall that Path Contraction is
polynomial-time solvable for P5-free graphs and NP-complete for P6-free graphs. It would be
interesting to determine the complexity of Path Contraction for (K1,3, Pt)-free graphs
for t ≥ 6. Other problems, such as Graph Colouring, are also open for these graph classes
and a better understanding of their structure is needed.

References
1 Akanksha Agrawal, Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Prafullkumar Tale.

Path contraction faster than 2n. Proc. ICALP 2019, LIPIcs, 132:11:1–11:13, 2019.
2 Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to trees

and cacti. Proc. CIAC 2017, LNCS, 10236:31–42, 2017.
3 Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:

The untold story. ACM Transactions on Computation Theory, 11:18:1–18:22, 2019.

ISAAC 2020

22:16 Contracting to a Longest Path in H-Free Graphs

4 Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale. On the parameterized complexity
of contraction to generalization of trees. Theory of Computing Systems, 63:587–614, 2019.

5 Rémy Belmonte, Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Parameterized
complexity of three edge contraction problems with degree constraints. Acta Informatica,
51:473–497, 2014.

6 Alan A. Bertossi. The edge Hamiltonian path problem is NP-complete. Information Processing
Letters, 13:157–159, 1981.

7 D. Blum. Circularity of graphs. Virginia Polytechnic Institute and State University, 1982.
8 A. E. Brouwer and Henk Jan Veldman. Contractibility and NP-completeness. Journal of

Graph Theory, 11:71–79, 1987.
9 Leizhen Cai and Chengwei Guo. Contracting few edges to remove forbidden induced subgraphs.

Proc. IPEC 2013, LNCS, 8246:97–109, 2013.
10 Maria Chudnovsky. The structure of bull-free graphs II and III - A summary. Journal of

Combinatorial Theory, Series B, 102:252–282, 2012.
11 Maria Chudnovsky and Paul D. Seymour. The structure of claw-free graphs. Surveys in

Combinatorics, London Mathematical Society Lecture Note Series, 327:153–171, 2005.
12 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization

problems on graphs of bounded clique-width. Theory of Computing Systems, 33:125–150, 2000.
13 Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for hereditary

graph classes. Proc. BCC 2019, London Mathematical Society Lecture Note Series, 456:1–56,
2019.

14 Konrad K. Dabrowski and Daniël Paulusma. Contracting bipartite graphs to paths and cycles.
Information Processing Letters, 127:37–42, 2017.

15 David Eppstein. Finding large clique minors is hard. Journal of Graph Algorithms and
Applications, 13:197–204, 2009.

16 Jirí Fiala, Marcin Kamiński, and Daniël Paulusma. A note on contracting claw-free graphs.
Discrete Mathematics & Theoretical Computer Science, 15:223–232, 2013.

17 Fedor Fomin, Daniel Lokshtanov, Ivan Mihajlin, Saket Saurabh, and Meirav Zehavi. Com-
putation of hadwiger number and related contraction problems: Tight lower bounds. Proc.
ICALP 2020, LIPCcs, 168:49:1–49:18, 2020.

18 M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar hamiltonian circuit
problem is NP-complete. SIAM Journal on Computing, 5:704–714, 1976.

19 Michael R. Garey and David S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32:826–834, 1977.

20 Michael Randolph Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

21 Fanica Gavril. Algorithms for maximum weight induced paths. Information Processing Letters,
81:203–208, 2002.

22 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of coloring graphs with forbidden subgraphs. Journal of Graph
Theory, 84:331–363, 2017.

23 Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013.

24 Sylvain Guillemot and Dániel Marx. A faster FPT algorithm for bipartite contraction.
Information Processing Letters, 113:906–912, 2013.

25 Yi-Lu Guo, Chin-Wen Ho, and Ming-Tat Ko. The longest path problem on distance-hereditary
graphs. Advances in Intelligent Systems and Applications, 1:69–77, 2013.

26 Richard Hammack. Cyclicity of graphs. Journal of Graph Theory, 32:160–170, 1999.
27 Richard Hammack. A note on the complexity of computing cyclicity. Ars Combinatoria, 63,

2002.
28 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul.

Contracting graphs to paths and trees. Algorithmica, 68:109–132, 2014.

W. Kern and D. Paulusma 22:17

29 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, and Christophe Paul. Contracting chordal
graphs and bipartite graphs to paths and trees. Discrete Applied Mathematics, 164:444–449,
2014.

30 Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a
bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27:2143–
2156, 2013.

31 Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Domin-
ation when the stars are out. ACM Transactions on Algorithms, 15:25:1–25:90, 2019.

32 Cornelis Hoede and Henk Jan Veldman. On characterization of hamiltonian graphs. Journal
of Combinatorial Theory, Series B, 25:47–53, 1978.

33 Cornelis Hoede and Henk Jan Veldman. Contraction theorems in hamiltonian graph theory.
Discrete Mathematics, 34:61–67, 1981.

34 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2:225–231, 1973.

35 Kyriaki Ioannidou, George B. Mertzios, and Stavros D. Nikolopoulos. The longest path
problem has a polynomial solution on interval graphs. Algorithmica, 61:320–341, 2011.

36 Kyriaki Ioannidou and Stavros D. Nikolopoulos. The longest path problem is polynomial on
cocomparability graphs. Algorithmica, 65:177–205, 2013.

37 Tetsuya Ishizeki, Yota Otachi, and Koichi Yamazaki. An improved algorithm for the longest
induced path problem on k-chordal graphs. Discrete Applied Mathematics, 156:3057–3059,
2008.

38 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width I. Induced path problems. Discrete
Applied Mathematics, 278:153–168, 2020.

39 Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected Vertex Cover for
(sP1 + P5)-free graphs. Algorithmica, 82:20–40, 2020.

40 Dieter Kratsch, Haiko Müller, and Ioan Todinca. Feedback vertex set and longest induced
path on AT-free graphs. Proc. WG 2003, LNCS, 2880:309–321, 2003.

41 Asaf Levin, Daniël Paulusma, and Gerhard J. Woeginger. The computational complexity of
graph contractions I: polynomially solvable and NP-complete cases. Networks, 51:178–189,
2008.

42 Asaf Levin, Daniël Paulusma, and Gerhard J. Woeginger. The computational complexity of
graph contractions II: two tough polynomially solvable cases. Networks, 52:32–56, 2008.

43 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating
small induced subgraphs by contracting edges. Proc. IPEC 2013, LNCS, 8246:243–254, 2013.

44 Barnaby Martin and Daniël Paulusma. The computational complexity of disconnected cut
and 2K2-partition. Journal of Combinatorial Theory, Series B, 111:17–37, 2015.

45 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Transactions on Algorithms, 9:30:1–30:35, 2013.

46 George B. Mertzios and Ivona Bezáková. Computing and counting longest paths on circular-arc
graphs in polynomial time. Discrete Applied Mathematics, 164:383–399, 2014.

47 George B. Mertzios and Derek G. Corneil. A simple polynomial algorithm for the longest path
problem on cocomparability graphs. SIAM Journal on Discrete Mathematics, 26:940–963,
2012.

48 Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156:291–
298, 1996.

49 Bert Randerath and Ingo Schiermeyer. Vertex colouring and forbidden subgraphs - A survey.
Graphs and Combinatorics, 20:1–40, 2004.

50 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63:65–110, 1995.

51 Bin Sheng and Yuefang Sun. An improved linear kernel for the cycle contraction problem.
Information Processing Letters, 149:14–18, 2019.

ISAAC 2020

22:18 Contracting to a Longest Path in H-Free Graphs

52 Ryuhei Uehara and Yushi Uno. On computing longest paths in small graph classes. International
Journal of Foundations of Computer Science, 18:911–930, 2007.

53 Ryuhei Uehara and Gabriel Valiente. Linear structure of bipartite permutation graphs and
the longest path problem. Information Processing Letters, 103:71–77, 2007.

54 Pim van ’t Hof, Marcin Kamiński, Daniël Paulusma, Stefan Szeider, and Dimitrios M. Thilikos.
On graph contractions and induced minors. Discrete Applied Mathematics, 160:799–809, 2012.

55 Pim van ’t Hof, Daniël Paulusma, and Gerhard J. Woeginger. Partitioning graphs into
connected parts. Theoretical Computer Science, 410:4834–4843, 2009.

	Introduction
	Preliminaries
	The Proof of Theorem 1
	The Polynomial-Time Solvable Cases of Theorem 2
	The NP-Complete Cases of Theorem 2
	Conclusions

