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ABSTRACT
In traditional unsupervised domain adaptation problems, the
target domain is assumed to share the same set of classes as
the source domain. In practice, there exist situations where
target-domain data are from only a subset of source-domain
classes and it is not known which classes the target-domain
data belong to since they are unlabeled. This problem has
been formulated as Partial Domain Adaptation (PDA) in the
literature and is a challenging task due to the negative trans-
fer issue (i.e. source-domain data belonging to the irrele-
vant classes harm the domain adaptation). We address the
PDA problem by detecting the outlier classes in the source
domain progressively. As a result, the PDA is boiled down
to an easier unsupervised domain adaptation problem which
can be solved without the issue of negative transfer. Specif-
ically, we employ the locality preserving projection to learn
a latent common subspace in which a label propagation al-
gorithm is used to label the target-domain data. The outlier
classes can be detected if no target-domain data are labeled as
these classes. We remove the detected outlier classes from the
source domain and repeat the process for multiple iterations
until convergence. Experimental results on commonly used
datasets Office31 and Office-Home demonstrate our proposed
method achieves state-of-the-art performance with an average
accuracy of 98.1% and 75.4% respectively.

Index Terms— Partial Domain Adaptation, Label Propa-
gation, Domain Adaptation, Subspace learning, Locality Pre-
serving Projection

1. INTRODUCTION

Traditional supervised learning requires a large amount of la-
beled data for training and the training data are assumed to be
drawn from the same distribution as those for testing. In many
real-world applications, we may not have access to sufficient
training data for the task of interest since annotating data is
time-consuming and cost-intensive. One promising solution
to this issue of training data scarcity is domain adaptation. It
aims to take advantage of abundant labeled data from a dif-
ferent but related domain (i.e. source domain) and transfer
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Fig. 1. The difference between PDA and UDA in terms of
addressing the negative transfer issue. PDA finds out and re-
moves the outlier classes in the source domain.

knowledge learned from the source-domain data to the do-
main where the task of interest resides in (i.e. target domain).
Due to the data distribution shift between the source and tar-
get domains, domain adaptation methods are needed for the
knowledge transfer.

Among a variety of domain adaptation problems, Unsu-
pervised Domain Adaptation (UDA) has been well studied in
recent years [1, 2, 3]. UDA assumes the availability of la-
beled source-domain data and unlabeled target-domain data
for training and the training data across two domains share the
same label space (i.e. data are from the same set of classes).
This is a strong assumption and restricts the usage of UDA
from a practical perspective. A more realistic problem for-
mulation is it is unknown which classes the unlabeled target-
domain data belong to and we have labeled source-domain
data from a large number of classes. The target-domain label
space is a subset of the source-domain label space. This prob-
lem is well known as Partial Domain Adaptation (PDA) and
has been studied in recent literature [4, 5, 6, 7, 8, 9].

The challenge of PDA is the negative transfer issue [4]
which is caused by the label space mismatch in the source
and target domains. As shown in Figure 1, traditional UDA
approaches suffer from potentially disastrous misalignment
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Fig. 2. The framework of our proposed approach SCS-LP
(LPP: Locality Preserving Projection; LP: Label Propaga-
tion).

when they try to align the marginal data distributions of two
domains. In PDA approaches, the negative transfer issue is
addressed by down-weighting the contributions of all source
data belonging to the outlier source label space in [4, 5].
The source class weights are computed based on the pre-
dicted probability of target-domain data belonging to each
source class. In general, the target-domain data are unlikely
to be predicted as outlier source classes hence these outlier
classes will have lower weights and contribute less to the
domain adaptation. Zhang et al. [6] extends the aforemen-
tioned idea by proposing the Importance Weighted Adversar-
ial Nets (IWAN) which computes instance-level weights of
contributing to the domain adaptation for the source-domain
data. Example Transfer Network (ETN) [10] jointly learns
domain-invariant representations across domains and a pro-
gressive weighting scheme to quantify the transferability of
source examples.

The aforementioned methods share some common prop-
erties. On one hand, all of them aim to train a deep neural
network with specially designed loss functions. There is no
existing PDA approach based on deep feature transforma-
tion which has been proved superior to deep network learn-
ing in UDA problems [2]. On the other hand, they weight
source-domain data on the instance-level and most outlier
source-domain samples still contribute to the domain adap-
tation though with lower weights. In this work, we present
a novel PDA approach based on deep feature transformation
and source class selection (SCS). Specifically, our method
is based on the state-of-the-art UDA approaches CAPLS
[1] and SPL [2] and uses the Locality Preserving Projection
(LPP) technique to learn a common subspace. In the sub-
space, we use label propagation (LP) to predict the labels of
target-domain data. Based on the predicted labels of target-
domain data, we can detect some outlier source classes. The
source-domain data from the detected outlier source classes
are subsequently removed from training data and we re-learn
the common subspace with LPP using the updated training
data (some outlier source class removed and pseudo-labeled
target data included). The process is repeated until conver-
gence. Our experiments demonstrate the process converges

fast within 3 and 10 iterations for Office31 and Office-Home
datasets respectively.

The contributions of this work can be summarized as
follows: (1) we present a novel deep feature transformation
based PDA approach using LPP and label propagation; (2)
we demonstrate that the source class selection strategy is
effective to address the negative transfer issue in PDA; (3)
experimental results on two datasets show the superiority of
our proposed approach (CSC-LP).

2. METHOD

Given a labelled dataset Ds = {(xs
i , y

s
i )}, i = 1, 2, ..., ns

from the source domain S, xs
i ∈ Rd represents the feature

vector of i-th labelled sample in the source domain, d is the
feature dimension and ysi ∈ Ys denotes the corresponding
label. PDA aims to classify an unlabelled data set Dt =
{xt

i}, i = 1, 2, ..., nt from the target domain T , where xt
i ∈

Rd represents the feature vector in the target domain. The
target label space Yt is a subset of the source label space Ys

and it is unknown which classes the target-domain data are
from. It is assumed that both the labelled source domain data
Ds and the unlabelled target domain data Dt are available for
model learning.

The proposed method consists of two modules (common
subspace learning and pseudo-labeling) within an iterative
learning framework as shown in Figure 2. The first module
aims to learn a projection matrix mapping data from both do-
mains into a common subspace in which the second module
predicts pseudo labels for all target-domain data. We employ
the supervised LPP and label propagation algorithms for these
two modules as enabling techniques respectively. Supervised
LPP can learn a discriminative subspace by preserving the
data structure in the original domains hence generalize better
to out-of-distribution data than other dimensionality reduc-
tion techniques such as LDA [11, 2]. Label propagation can
explore the target-domain data structure in the learned sub-
space in a self-supervised manner. The source classes with
no target-domain data assigned to them are treated as outlier
classes and removed from the training data set in the next
iteration. Once some outlier classes are removed from the
training data set, a better subspace can be learned by super-
vised LPP and label propagation results in more accurate
pseudo labels for target-domain data. The iterative learning
stops when no more outlier source classes are detected.

2.1. Common Subspace Learning

The goal of subspace learning is to find a lower-dimensional
subspace in which the projected data from both domains are
well aligned. To promote the class-wise alignment of two
domains, we use the supervised locality preserving projection
[12] as an enabling technique to learn a domain invariant yet
discriminative subspace Z from X̃ .



The objective of SLPP is to learn a projection matrix P
by minimizing the following cost function:

min
P

∑
i,j

||PTxi −PTxj ||22Mij , (1)

where P ∈ Rd×d1 and d1 ≤ d is the dimensionality of the
learned subspace; xi is the i-th column of the labeled data
matrix Xl ∈ Rd×(n′

s+nt) and Xl is a collection of selected
n′s labeled source data and nt pseudo-labeled target data. The
similarity matrix M ∈ R(n′

s+nt)×(n′
s+nt) is defined as fol-

lows:

Mij =

{
1, yi = yj ,
0, otherwise.

(2)

The idea is that samples from the same class should be pro-
jected close to each other in the subspace regardless of which
domain they are originally from. Following the treatment in
[12, 2], the problem defined in Eq.(1) is equivalent to the fol-
lowing generalized eigenvalue problem:

XlDXlTp = λ(XlLXlT + I)p, (3)

where L = D −M is the laplacian matrix, D is a diagonal
matrix with Dii =

∑
j Mij . Solving the generalized eigen-

value problem gives the optimal solution P = [p1, ...,pd1
]

where p1, ...,pd1
are the eigenvectors corresponding to the

largest d1 eigenvalues.
Learning the projection matrix P for domain alignment

requires labeled samples from both source and target do-
mains. To get pseudo-labels of target samples for projection
learning, we describe pseudo-labeling methods via label
propagation in the following sub-section.

2.2. Pseudo-Labeling and Outlier Class Detection

In the learned subspace, we follow [11, 2] and process the
projections z = P Tx of data from both domains by mean
subtraction and l2 normalization. Subsequently, we compute
the class means for all reserved source classes by:

mc =
1

nc

∑
ys
i=c

zs
i (4)

where c ∈ Ys \ Youtlier, nc is the number of source-domain
samples from class c. The label propagation algorithm [13] is
applied to the combination of all target-domain data projec-
tions Zt ∈ Rd1×nt and all such reserved source class means
(i.e. the set {mc}).

The source class means are labeled and the target-domain
data are unlabeled. A similarity graph over data Zt ∪ {mc}
is constructed using K nearest neighbours in the subspace.
Suppose there are n = nt + nc nodes in the similarity graph,
where nc = |Ys \ Youtlier| is the number of reserved source
classes, and the similarity matrix is denoted as S ∈ Rn×n,
the labeling information is propagated from labeled nodes to
unlabeled nodes by the following three steps.

Algorithm 1 Patial Domain Adaptation Using SCS-LP
Input: Labeled source data set Ds = {(xs

i , y
s
i )}, i =

1, 2, ..., ns and unlabeled target data set Dt = {xt
i}, i =

1, 2, ..., nt, dimensionality of LPP subspace d1, number
of nearest neighbors K for label propagation.

Output: The predicted labels {ŷt} for target samples.
1: Initialize iter = 0;
2: Learn the projection P0 using only source data Ds;
3: Assign pseudo labels for all target data using label prop-

agation;
4: while not converge do
5: iter ← iter + 1;
6: Detect the outlier source classes and update the train-

ing data set Siter ∪ D̂t by removing the source data
belonging to the outlier classes;

7: Learn Piter using updated training data;
8: Update pseudo labels for all target data using label

propagation.
9: end while

Firstly, we initialize a matrix F0 ∈ Rn×nc . The first nc
rows correspond to the labeled source class means. Each row
contains a 1 in the column corresponding to the true class
label, and a 0 in every other column. The last nt rows cor-
respond to the unlabeled target-domain data, and contain a 0
in all columns. Secondly, at iteration t (starting with t = 1),
we update the matrix Ft = PFt−1, where Pij =

Sij∑n
k=1 Sij

is
the probability of propagating label information from node i
to node j. Note that the first nc rows of Ft need to keep the
same as those of F0 during the update. Finally, we repeat the
second step until the F values converge.

After label propagation, we can obtain the pseudo la-
bels of target-domain data from the matrix F . We count the
number of pseudo labels for each class and detect the outlier
source classes if there is no data assigned to these classes.
The source data belonging to the detected outlier source
classes are removed in the next iteration of subspace learning
and pseudo-labeling. The complete algorithm of SCS-LP is
summarized in Algorithm 1.

3. EXPERIMENTS AND RESULTS

We conduct experiments on two commonly used datasets to
evaluate the effectiveness of the proposed approach for PDA
and present the experimental results in this section.

3.1. Dataset

Office-Home [16] consists of four different domains: Artistic
images (A), Clipart (C), Product images (P) and Real-World
images (R). There are 65 object classes in each domain with a
total number of 15,588 images. We follow [4] and use images



Table 1. Classification Accuracy (%) on Office-Home dataset using either ResNet50 features or ResNet50 based deep models.
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Average
PADA [4] 52.0 67.0 78.7 52.2 53.8 59.0 52.6 43.2 78.8 73.7 56.6 77.1 62.1
IWAN [6] 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6
SAN [5] 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3
DRCN (soft) [9] 54.0 76.4 83.0 62.1 64.5 71.0 70.8 49.8 80.5 77.5 59.1 79.9 69.0
ETN [10] 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5
SAFN [14] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8
RTNetadv[7] 63.2 80.1 80.7 66.7 69.3 77.2 71.6 53.9 84.6 77.4 57.9 85.5 72.3
MCC [15] 63.1 80.8 86.0 70.8 72.1 80.1 75.0 60.8 85.9 78.6 65.2 82.8 75.1
w/o LPP 49.9 72.2 78.3 64.6 69.3 72.5 60.2 49.7 75.8 74.3 54.7 77.9 66.6
w/o SCS 57.9 80.7 88.3 69.0 79.6 84.4 69.6 51.2 82.8 79.6 57.1 87.4 74.0
SCS-1NN 51.9 72.7 80.9 63.1 68.3 77.6 66.2 50.1 78.2 73.6 55.9 80.7 68.3
SCS-LP (Ours) 65.0 81.2 90.0 70.0 81.7 81.7 70.2 55.4 82.8 79.2 60.3 87.4 75.4

Table 2. Classification Accuracy (%) on Office31 dataset us-
ing either ResNet50 features or ResNet50 based deep models.

Method A→W D→W W→D A→D D→A W→A Avg
PADA [4] 86.5 99.3 100.0 82.2 92.7 95.4 92.7
IWAN [6] 89.2 99.3 99.4 90.5 95.6 94.3 94.7
SAN [5] 93.9 99.3 99.4 94.3 94.2 88.7 95.0
DRCN (hard) [9] 90.8 100.0 100.0 94.3 95.2 94.8 95.9
ETN [10] 94.5 100.0 100.0 95.0 96.2 94.6 96.7
RTNetadv[7] 96.2 100.0 100.0 97.6 92.3 95.4 96.9
w/o LPP 98.3 97.3 98.7 98.1 93.9 85.3 95.3
w/o SCS 96.9 97.3 98.7 97.5 93.5 89.4 95.5
SCS-1NN 82.7 98.0 98.7 87.9 91.6 90.0 91.5
SCS-LP (Ours) 99.0 100.0 100.0 100.0 94.3 95.4 98.1

from the first 25 classes in alphabetical order as the target do-
main and images from all 65 classes as the source domain.
Image features are extracted by the ResNet50 [17] model pre-
trained on ImageNet [18] without fine-tuning. Office31 [19]
consists of three domains: Amazon (A), Webcam (W) and
DSLR (D). There are 31 common classes for all three do-
mains containing 4,110 images in total. Following the proto-
col in [4], all 31 classes are used for the source domain and
the fixed 10 classes are used for the target domain. Image fea-
tures are extracted by the ResNet50 [17] model pre-trained on
ImageNet [18] without fine-tuning.

3.2. Implementation Details

The proposed approach is implemented in Matlab R2020b 1.
We set the dimensionality of learned subspace d1 to 128 for
both datasets. For Office-Home dataset, we also apply PCA
to reduce the dimensionality of ResNet50 features from 2048
to 512 in pre-processing to speed up the computation. The
values of K for similarity graph construction in label prop-
agation are set to 15 and 10 for Office-Home and Office31
datasets respectively.

3.3. Experimental Results

We compare our proposed method with contemporary state-
of-the-art methods for PDA. Specifically, we compare with
methods designed for PDA problems such as PADA [4],

1https://github.com/hellowangqian/scs-lp-pda

IWAN [6], SAN [5], ETN [10], SAFN [14], RTNetadv [7],
DRCN [9] and MCC [15].

The comparison results are shown in Tables 1 and 2. On
the Office-Home dataset, our proposed method performs the
best with the average accuracy of 75.4%. On the Office31
dataset, our method outperforms all the other methods on 5
out of 6 tasks and achieves the highest average accuracy of
98.1%. In particular, our method achieves 100% accuracy on
three tasks.

We include an ablation study to investigate the contribu-
tions of different components to superior performance in Ta-
bles 1 and 2. Specifically, we investigate three variants of the
proposed method: without LPP (i.e. the label propagation is
done in the original feature space rather than the learned sub-
space), without SCS (i.e. the outlier source classes are not
removed from the training data set) and SCS-1NN (i.e. the la-
bel propagation algorithm is replaced by 1 nearest neighbour
for pseudo-labeling). The results shown in Tables 1 and 2
demonstrate: (1) both the subspace learning and label propa-
gation are essentials for good performance of the proposed
method; (2) source class selection can further improve the
performance.

Our proposed is computational efficient and the iterative
learning converges within less than 3 and 10 iterations for Of-
fice31 and Office-Home datasets. One limitation of the outlier
source class detection scheme is that some source classes may
be removed by mistake and all the target-domain data belong-
ing to these classes will be misclassified. Such mistakes have
been observed in our experiments on the Office-Home dataset
but source class selection is generally beneficial to the overal
performance as demonstrated in the ablation study.

4. CONCLUSION

We propose a novel deep feature transformation based ap-
proach to PDA and achieve state-of-the-art performance on
establish benchmark datasets within this domain. Both the su-
pervised LPP based subspace learning and label propagation
based pseudo-labeling are essentials for the superior perfor-
mance as illustrated by our supporting ablation study.
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