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Abstract. Many NP-complete graph problems are polynomial-time solv-
able on graph classes of bounded clique-width. Several of these problems
are polynomial-time solvable on a hereditary graph class G if they are so
on the atoms (graphs with no clique cut-set) of G. Hence, we initiate a
systematic study into boundedness of clique-width of atoms of hereditary
graph classes. A graph G is H-free if H is not an induced subgraph
of G, and it is (H1, H2)-free if it is both H1-free and H2-free. A class of
H-free graphs has bounded clique-width if and only if its atoms have this
property. This is no longer true for (H1, H2)-free graphs, as evidenced by
one known example. We prove the existence of another such pair (H1, H2)
and classify the boundedness of clique-width on (H1, H2)-free atoms for
all but 18 cases.

1 Introduction

Many hard graph problems become tractable when restricting the input to
some graph class. The two central questions are “for which graph classes does
a graph problem become tractable” and “for which graph classes does it stay
computationally hard?” Ideally, we wish to answer these questions for a large set
of problems simultaneously instead of considering individual problems one by
one.

Graph width parameters [26,39,41,45,54] make such results possible. A graph
class has bounded width if there is a constant c such that the width of all its
members is at most c. There are several meta-theorems that provide sufficient
conditions for a problem to be tractable on a graph class of bounded width.
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Two popular width parameters are treewidth (tw) and clique-width (cw).
For every graph G the inequality cw(G) ≤ 3 · 2tw(G)−1 holds [19]. Hence, every
problem that is polynomial-time solvable on graphs of bounded clique-width is also
polynomial-time solvable on graphs of bounded treewidth. However, the converse
statement does not hold: there exist graph problems, such as List Colouring,
which are polynomial-time solvable on graphs of bounded treewidth [44], but
NP-complete on graphs of bounded clique-width [23]. Thus, the trade-off between
treewidth and clique-width is that the former can be used to solve more problems,
but the latter is more powerful in the sense that it can be used to solve problems
for larger graph classes.

Courcelle [20] proved that every graph problem definable in MSO2 is
linear-time solvable on graphs of bounded treewidth. Courcelle, Makowsky and
Rotics [22] showed that every graph problem definable in the more restricted
logic MSO1 is polynomial-time solvable even for graphs of bounded clique-width
(see [21] for details on MSO1 and MSO2). Since then, several clique-width
meta-theorems for graph problems not definable in MSO1 have been devel-
oped [32,36,46,51].

All of the above meta-theorems require a constant-width decomposition of the
graph. We can compute such a decomposition in polynomial time for treewidth [4]
and clique-width [50], but not for all parameters. For instance, unless NP = ZPP,
this is not possible for mim-width [52], another well-known graph parameter,
which is even more powerful than clique-width [54]. Hence, meta-theorems for
mim-width [2,16] require an appropriate constant-width decomposition as part of
the input (which may still be found in polynomial time for some graph classes).

Our Focus. In our paper we concentrate on clique-width6 in an attempt to
find larger graph classes for which certain NP-complete graph problems become
tractable without the requirement of an appropriate decomposition as part of the
input. The type of graph classes we consider all have the natural property that
they are closed under vertex deletion. Such graph classes are said to be hereditary
and there is a long-standing study on boundedness of clique-width for hereditary
graph classes (see, for example, [3,6,7,8,10,11,12,13,24,25,27,28,30,31,39,45,48]).

Besides capturing many well-known classes, the framework of hereditary graph
classes also enables us to perform a systematic study of a width parameter or
graph problem. This is because every hereditary graph class G is readily seen
to be uniquely characterized by a minimal (but not necessarily finite) set FG
of forbidden induced subgraphs. If |FG | = 1 or |FG | = 2, then G is said to be
monogenic or bigenic, respectively. Monogenic and bigenic graph classes already
have a rich structure, and studying their properties has led to deep insights into
the complexity of bounding graph parameters and solving graph problems; see
e.g. [18,26,37,40] for extensive algorithmic and structural studies and surveys.

It is well known (see e.g. [31]) that a monogenic class of graphs has bounded
clique-width if and only if it is a subclass of the class G with FG = {P4}. The sur-
vey [26] gives a state-of-the-art theorem on the boundedness and unboundedness

6 See Section 2 for a definition of clique-width and other terminology used in Section 1.
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of clique-width of bigenic graph classes. Unlike treewidth, for which a complete
dichotomy is known [5], and mim-width, for which there is an infinite number of
open cases [15], this state-of-the-art theorem shows that there are still five open
cases (up to an equivalence relation). From the same theorem we observe that
many graph classes are of unbounded clique-width. However, if a graph class has
unbounded clique-width, then this does not mean that a graph problem must be
NP-hard on this class. For example, Colouring is polynomial-time solvable on
the (bigenic) class of (C4, P6)-free graphs [35], which contains the class of split
graphs and thus has unbounded clique-width [48]. In this case it turns out that
the atoms (graphs with no clique cut-set) in the class of (C4, P6)-free graphs do
have bounded clique-width. This immediately gives us an algorithm for the whole
class of (C4, P6)-free graphs due to Tarjan’s decomposition theorem [53].

In fact, Tarjan’s result holds not only for Colouring, but also for many
other graph problems. For instance, several other classical graph problems, such
as Minimum Fill-In, Maximum Clique, Maximum Weighted Independent
Set [53] (see [1] for the unweighted variant) and Maximum Induced Match-
ing [14] are polynomial-time solvable on a hereditary graph class G if and only if
this is the case on the atoms of G. Hence, we aim to investigate, in a systematic
way, the following natural research question:

Which hereditary graph classes of unbounded clique-width have the property that
their atoms have bounded clique-width?

Known Results. For monogenic graph classes, the restriction to atoms does
not yield any algorithmic advantages, as shown by Gaspers et al. [35].

Theorem 1 ([35]). Let H be a graph. The class of H-free atoms has bounded
clique-width if and only if the class of H-free graphs has bounded clique-width (so,
if and only if H is an induced subgraph of P4).

The result for (C4, P6)-free graphs [35] shows that the situation is different for
bigenic classes. We are aware of two more hereditary graph classes G with this
property, but in both cases |FG | > 2. Split graphs, or equivalently, (C4, C5, 2P2)-
free graphs have unbounded clique-width [48], but split atoms are complete
graphs and have clique-width at most 2. Cameron et al. [17] proved that (cap, C4)-
free odd-signable atoms have clique-width at most 48, whereas the class of all
(cap, C4)-free odd-signable graphs contains the class of split graphs and thus has
unbounded clique-width. See [33,34] for algorithms for Colouring on hereditary
graph classes that rely on boundedness of clique-width of atoms of subclasses.

Our Results. Due to Theorem 1, and motivated by algorithmic applications,
we focus on the atoms of bigenic graph classes. Recall that the class of (C4, P6)-
free graphs has unbounded clique-width but its atoms have bounded clique-
width [35]. This also holds, for instance, for its subclass of (C4, 2P2)-free graphs
and thus for (C4, P5)-free graphs and (C4, P2 + P3)-free graphs. We determine
a new, incomparable case where we forbid 2P2 and P2 + P3 (also known as the
paraglider [43]); see Fig. 1 for illustrations of these forbidden induced subgraphs.
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2P2 P2 + P3

Fig. 1. The two forbidden induced subgraphs from Theorem 2.

Theorem 2. The class of (2P2, P2 + P3)-free atoms has bounded clique-width
(whereas the class of (2P2, P2 + P3)-free graphs has unbounded clique-width).

We sketch the proof of Theorem 2 in Section 3 after first giving an outline. Our
approach shares some similarities with the approach Malyshev and Lobanova [49]
used to show that (Weighted) Colouring is polynomial-time solvable on
(P5, P2 + P3)-free graphs. We explain the differences between both approaches
and the new ingredients of our proof in detail in Section 3. Here, we only discuss
a complication that makes proving boundedness of clique-width of atoms more
difficult in general. Namely, when working with atoms, we need to be careful with
performing complementation operations. In particular, a class of (H1, H2)-free
graphs has bounded clique-width if only if the class of (H1, H2)-free graphs has
bounded clique-width. However, this equivalence relation no longer holds for
classes of (H1, H2)-free atoms. For example, (C4, P5)-free (and even (C4, P6)-free)
atoms have bounded clique-width [35], but we prove that (C4, P5)-free atoms
have unbounded clique-width.

We also identify a number of new bigenic graph classes whose atoms already
have unbounded clique-width. We prove this by modifying existing graph con-
structions for proving unbounded clique-width of the whole class (proofs omitted
due to space restrictions). Combining these constructions with Theorem 2 and
the state-of-art theorem on clique-width from [26] yields the following summary.

Theorem 3. For graphs H1 and H2, let G be the class of (H1, H2)-free graphs.

1. The class of atoms in G has bounded clique-width if
(i) H1 or H2 ⊆i P4

(ii) H1 = paw or Ks and H2 = P1 + P3 or tP1 for some s, t ≥ 1
(iii) H1 ⊆i paw and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5,

P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2

(iv) H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3,
P1 + P5, P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2

(v) H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3

(vi) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3

(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

(viii) H1 ⊆i P1 + P4 and H2 ⊆i P5

(ix) H1 ⊆i K3 + P1 and H2 ⊆i K1,3,
(x) H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3



Clique-Width: Harnessing the Power of Atoms 5

(xi) H1 ⊆i P6 and H2 ⊆i C4, or
(xii) H1 ⊆i 2P2 and H2 ⊆i P2 + P3.

2. The class of atoms in G has unbounded clique-width if
(i) H1 6∈ S and H2 6∈ S
(ii) H1 /∈ S and H2 6∈ S
(iii) H1 ⊇i K3 + P1 and H2 ⊇i 4P1 or 2P2

(iv) H1 ⊇i K1,3 and H2 ⊇i K4 or C4

(v) H1 ⊇i diamond and H2 ⊇i K1,3, 5P1, P2 + P4 or P1 + P6

(vi) H1 ⊇i 2P1 + P2 and H2 ⊇i K3 + P1, K5, P2 + P4 or P6

(vii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

(viii) H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

(ix) H1 ⊇i K4 and H2 ⊇i P1 + P4, 3P1 + P2 or 2P2

(x) H1 ⊇i 4P1 and H2 ⊇i gem, 3P1 + P2 or C4

(xi) H1 ⊇i gem, P1 + 2P2 or P2 + P3 and H2 ⊇i P1 + 2P2 or P6

(xii) H1 ⊇i P1 + P4 and H2 ⊇i P1 + 2P2, or
(xiii) H1 ⊇i 2P2 and H2 ⊇i P2 + P4, 3P2 or P5.

Due to Theorem 3, we are left with 18 open cases, listed in Section 4, where we
discuss directions for future work.

2 Preliminaries

Let G be a graph. For a subset S ⊆ V (G), the subgraph of G induced by S is the
graph G[S], which has vertex set S and edge set {uv | uv ∈ E(G), u, v ∈ S}. If
S = {s1, . . . , sr}, we may write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We write
F ⊆i G to denote that F is an induced subgraph of G. We say that G is H-free
if G does not contain H as an induced subgraph, and that G is (H1, . . . ,Hp)-
free if it is Hi-free for all i ∈ {1, . . . , p}. A (connected) component of G is a
maximal connected subgraph of G. A clique K ⊆ V (G) is a clique cut-set of G if
G\K = G[V (G) \K] is disconnected. A graph with no clique cut-sets is an atom;
note that such graphs are connected. The complement G of G has vertex set
V (G) = V (G) and edge set E(G) = {uv | u, v ∈ V (G), u 6= v, uv /∈ E(G)}. The
neighbourhood of a vertex u ∈ V (G) is the set N(u) = {v ∈ V (G) | uv ∈ E(G)}.
Let X and Y be two disjoint vertex subsets of G. A vertex x ∈ V (G) \ Y is
(anti-)complete to Y if it is (non-)adjacent to every vertex in Y . Similarly, X is
complete to Y if every vertex of X is complete to Y and anti-complete to Y if
every vertex of X is anti-complete to Y .

The graph G1 + G2 is the disjoint union of two vertex-disjoint graphs G1

and G2 and has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The
graph rG is the disjoint union of r copies of a graph G. The graphs Ct, Kt,
and Pt denote the cycle, complete graph, and path on t vertices, respectively.
The paw is the graph P1 + P3, the diamond is the graph 2P1 + P2, and the gem
is the graph P1 + P4. The subdivided claw Sh,i,j , for 1 ≤ h ≤ i ≤ j is the tree
with one vertex x of degree 3 and exactly three leaves, which are of distance h, i
and j from x, respectively. We let S denote the class of graphs every connected
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component of which is either a subdivided claw or a path on at least one vertex.
Note that S1,1,1 = K1,3.

The clique-width of a graph G, denoted by cw(G), is the minimum number of
labels needed to construct G using the following four operations:

1. create a new graph consisting of a single vertex v with label i;
2. take the disjoint union of two labelled graphs G1 and G2;
3. add an edge between every vertex with label i and every vertex with label j

(i 6= j);
4. relabel every vertex with label i to have label j.

A class of graphs G has bounded clique-width if there is a constant c such that
cw(G) ≤ c for every G ∈ G; otherwise the clique-width of G is unbounded.

For an induced subgraph G′ of a graph G, the subgraph complementation
acting on G with respect to G′ replaces every edge of G′ by a non-edge, and
vice versa. Hence, the resulting graph has vertex set V (G) and edge set (E(G) \
E(G′)) ∪ E(G′). For two disjoint vertex subsets S and T in G, the bipartite
complementation acting on G with respect to S and T replaces every edge with
one end-vertex in S and the other in T by a non-edge and vice versa.

For a constant k ≥ 0 and a graph operation γ, a graph class G′ is (k, γ)-
obtained from a graph class G if (i) every graph in G′ is obtained from a graph
in G by performing γ at most k times, and (ii) for every G ∈ G, there exists
at least one graph in G′ obtained from G by performing γ at most k times.
Then γ preserves boundedness of clique-width if for every constant k and every
graph class G, every graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [47].
Fact 2. Subgraph complementation preserves boundedness of clique-width [45].
Fact 3. Bipartite complementation preserves boundedness of clique-width [45].

A graph is split if its vertex set can be partitioned into a clique K and an
independent set I. Note that if there is a vertex v ∈ I with N(v) ( K, then N(v)
is a clique cut-set. Furthermore, if |I| > 1 then K is a clique cut-set. It follows
that split atoms are complete graphs. Since complete graphs have clique-width
at most 2, this means that split atoms have bounded clique-width.

3 The Proof of Theorem 2

Here, we prove Theorem 2, namely that the class of (2P2, P2 + P3)-free atoms
has bounded clique-width. Our approach is based on the following three claims:

(i) (2P2, P2 + P3)-free atoms with an induced C5 have bounded clique-width.
(ii) (2P2, P2 + P3)-free atoms with an induced C4 have bounded clique-width.
(iii) (C4, C5, 2P2, P2 + P3)-free atoms have bounded clique-width.
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We prove Claims (i) and (ii) in Lemmas 4 and 5, respectively, whereas Claim (iii)
follows from the fact that (C4, C5, 2P2)-free graphs are split graphs and so the
atoms in this class are complete graphs, which therefore have clique-width at
most 2. We partition the vertex set of an arbitrary (2P2, P2 + P3)-free atom G
into a number of different subsets with according to their neighbourhoods in
an induced C5 in Lemma 4 or an induced C4 in Lemma 5. We then analyse
the properties of these different subsets of V (G) and how they are connected
to each other, and use this knowledge to apply a number of appropriate vertex
deletions, subgraph complementations and bipartite complementations. These
operations will modify G into a graph G′ that is a disjoint union of a number of
smaller “easy” graphs known to have “small” clique-width. We then use Facts 1–3
to conclude that G also has small clique-width.

This approach works, as we will:

– apply the vertex deletions, subgraph complementations, and bipartite com-
plementations only a constant number of times;

– not use the properties of being an atom or being (2P2, P2 + P3)-free once we
“leave the graph class” due to applying the above graph operations.

Our approach is similar to the approach used by Malyshev and Lobanova [49]
for showing that Colouring is polynomial-time solvable on the superclass of
(P5, P2 + P3)-free graphs. However, we note the following two differences:

1. Prime atoms restriction: OK for Colouring, but not for clique-
width. A set X ⊆ V (G) is said to be a module if all vertices in X have the same
set of neighbours in V (G) \X. A module X in a graph G is trivial if it contains
either all or at most one vertex of G. A graph G is prime if it has no non-trivial
modules. To solve Colouring in polynomial time on some hereditary graph
class G, one may restrict to prime atoms from G [42]. Malyshev and Lobanova
proved that (P5, P2 + P3)-free prime atoms with an induced C5 are 3P1-free or
have a bounded number of vertices. In both cases, Colouring can be solved in
polynomial time. We cannot make the pre-assumption that our atoms are prime.
To see this, let G be a split graph. Add two new non-adjacent vertices to G and
make them complete to the rest of V (G). Let G be the (hereditary) graph class
that consists of all these “enhanced” split graphs and their induced subgraphs.
These enhanced split graphs are atoms, which have unbounded clique-width
due to Fact 1 and the fact that split graphs have unbounded clique-width [48].
However, the prime atoms of G are the complete graphs, which have clique-width
at most 2.

2. Perfect graphs restriction: OK for Colouring, but not for clique-
width. Malyshev and Lobanova observed that (P5, P2 + P3, C5)-free graphs are
perfect. Hence, Colouring can be solved in polynomial time on such graphs [38].
However, being perfect does not imply boundedness of clique-width (for instance,
split graphs are perfect graphs with unbounded clique-width).

We omit the proof of the next lemma.
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Lemma 4. The class of (2P2, P2 + P3)-free atoms that contain an induced C5

has bounded clique-width.

Lemma 5. The class of (2P2, P2 + P3)-free atoms that contain an induced C4

has bounded clique-width.

Proof. Suppose G is a (2P2, P2 + P3)-free atom containing an induced cycle C on
four vertices, say v1, . . . , v4 in that order. By Lemma 4, we may assume that G
is C5-free. For S ⊆ {1, . . . , 4}, let VS be the set of vertices x ∈ V (G) \ V (C) such
that N(x) ∩ V (C) = {vi | i ∈ S}.

To simplify notation, in the following claims, subscripts on vertices and vertex
sets should be interpreted modulo 4 and whenever possible we will write Vi
instead of V{i}, write Vi,j instead of V{i,j}, and so on.

Claim 1. For i ∈ {1, . . . , 4}, Vi,i+1,i+2 is empty.

Proof of Claim. Suppose, for contradiction, that x ∈ V1,2,3. ThenG[v1, v3, v2, v4, x]
is a P2 + P3, a contradiction. The claim follows by symmetry. �

Claim 2. For i ∈ {1, . . . , 4}, V∅ ∪ Vi ∪ Vi+1 ∪ Vi,i+1 is an independent set.

Proof of Claim. Suppose, for contradiction, that x, y ∈ V∅ ∪ V1 ∪ V2 ∪ V1,2 are
adjacent. Then G[x, y, v3, v4] is a 2P2, a contradiction. The claim follows by
symmetry. �

Claim 3. For i ∈ {1, . . . , 4}, Vi,i+1∪Vi,i+2 and Vi,i+1∪Vi+1,i+3 are independent
sets.

Proof of Claim. Suppose, for contradiction, that x, y ∈ V1,2 ∪ V1,3 are adjacent.
By Claim 2, x and y cannot both be in V1,2, so assume without loss of generality
that x ∈ V1,3. Now G[x, v2, v1, v3, y] or G[v1, v3, x, v2, y] is a P2 + P3 if y ∈ V1,2
or y ∈ V1,3, respectively, a contradiction. The claim follows by symmetry. �

Claim 4. G[V1,2,3,4] is (P1 + P2)-free and so it has bounded clique-width.

Proof of Claim. Suppose, for contradiction, that x, y, y′ ∈ V1,2,3,4 induce a P1+P2

in G. Then G[v1, v3, y, x, y
′] is a P2 + P3, a contradiction. Therefore G[V1,2,3,4] is

(P1 + P2)-free and so P4-free, so it has bounded clique-width by Theorem 1. �

Claim 5. For i ∈ {1, 2}, Vi,i+2 is complete to V1,2,3,4.

Proof of Claim. Suppose, for contradiction, that x ∈ V1,3 is non-adjacent to
y ∈ V1,2,3,4. Then G[v1, v3, v2, x, y] is a P2 + P3, a contradiction. The claim
follows by symmetry. �

Claim 6. For i ∈ {1, 2, 3, 4} either Vi−1 ∪ Vi−1,i or Vi,i+1 ∪ Vi+1 is empty.

Proof of Claim. Suppose, for contradiction, that x ∈ V1 ∪ V1,2 and y ∈ V2,3 ∪ V3.
Then G[v1, x, y, v3, v4] is a C5 or G[x, v1, y, v3] is a 2P2 if x is adjacent or non-
adjacent to y, respectively, a contradiction. The claim follows by symmetry. �
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Claim 7. If x ∈ V∅ then x has at least two neighbours in one of V1,3 and V2,4 and
is anti-complete to the other. Furthermore, in this case x is complete to V1,2,3,4.

Proof of Claim. Suppose x ∈ V∅. Since G is not an atom, N(x) cannot be a clique,
and so must contain two non-adjacent vertices y, y′. By Claims 1 and 2, and the
definition of V∅, it follows that y, y′ ∈ V1,3 ∪ V2,4 ∪ V1,2,3,4. If y, y′ ∈ V1,2,3,4, then
G[y, y′, v1, x, v2] is a P2 + P3, a contradiction. By Claim 5, V1,2,3,4 is complete
to V1,3 ∪ V2,4, so it follows that y, y′ ∈ V1,3 ∪ V2,4. If y ∈ V1,3 and y′ ∈ V2,4,
then G[v1, v2, y

′, x, y′] is a C5, a contradiction. It follows that y, y′ ∈ V1,3 or
y, y′ ∈ V2,4.

Suppose y, y′ ∈ V1,3. If z ∈ V2,4 is a neighbour of x, then z must be adjacent
to y and y′ (since, as shown above, x cannot have a pair of non-adjacent neigh-
bours one of which is in V1,3 and the other of which is in V2,4), in which case
G[y, y′, x, v1, z] is a P2 + P3, a contradiction. Therefore x cannot have a neighbour
in V2,4. If z ∈ V1,2,3,4 is a non-neighbour of x, then z must be adjacent to y
and y′ by Claim 5, so G[y, y′, v1, x, z] is a P2 + P3, a contradiction. Therefore x
is complete to V1,2,3,4. The claim follows by symmetry. �

Claim 8. For i ∈ {1, 2}, |Vi,i+1 ∪ Vi+2,i+3| ≤ 2.

Proof of Claim. Suppose, for contradiction, that |V1,2 ∪ V3,4| ≥ 3. First note
that if x ∈ V1,2, y ∈ V3,4 are non-adjacent, then G[v1, x, v3, y] is a 2P2, a contra-
diction. Therefore V1,2 is complete to V3,4. By Claim 2, both V1,2 and V3,4 are
independent sets. If x ∈ V1,2 and y, y′ ∈ V3,4, then G[y, y′, v3, x, v4] is a P2 + P3,
a contradiction. By symmetry, we conclude that either V1,2 or V3,4 is empty.
Suppose V3,4 is empty, so V1,2 contains at least three vertices and let x ∈ V1,2
be such a vertex. Since G is an atom, N(x) cannot be a clique, so x must have
two neighbours y, y′ that are non-adjacent. By Claims 1, 2, 3 and 6, and the
definition of V1,2, every neighbour of x ∈ V1,2 lies in {v1, v2} ∪ V1,2,3,4. Since v1
is complete to {v2} ∪ V1,2,3,4 and v2 is complete to {v1} ∪ V1,2,3,4, it follows that
y, y′ ∈ V1,2,3,4. Now G[y, y′, v1, v3, x] is a P2 + P3, a contradiction. The claim
follows by symmetry. �

Claim 9. For i ∈ {1, 2, 3, 4}, Vi is complete to V1,2,3,4 and at most one vertex
of Vi,i+2 has neighbours in Vi.

Proof of Claim. Suppose x ∈ V1. Since G is an atom, x must have two neighbours
y, y′ that are non-adjacent. By Claims 1, 2 and 6, and the definition of V1,
every neighbour of x lies in {v1} ∪ V1,3 ∪ V2,4 ∪ V1,2,3,4. If y, y′ ∈ V1,3 ∪ V1,2,3,4,
then G[y, y′, v1, v3, x] is a P2 + P3, a contradiction. The vertex v1 is complete
to V1,3 ∪ V1,2,3,4. Therefore without loss of generality, we may assume y ∈ V2,4.
Furthermore, note that V1,3 is an independent set by Claim 3, so x has at most
one neighbour in V1,3. Since V1 is an independent set by Claim 2, it follows that
G[V1 ∪ V1,3] is a bipartite graph with parts V1 and V1,3. Since G is 2P2-free, it
follows that no two vertices in V1 can have different neighbours in V1,3. Therefore
at most one vertex of V1,3 has a neighbour in V1. Now if z ∈ V1,2,3,4, then z
is adjacent to y by Claim 5. If x is non-adjacent to z, then G[v1, y, v2, x, z] is
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a P2 + P3, a contradiction. We conclude that V1 is complete to V1,2,3,4. The claim
follows by symmetry. �

We now proceed as follows. By Claim 1, the set V1,2,3 ∪ V2,3,4 ∪ V1,3,4 ∪ V1,2,4 is
empty. By Claims 6 and 8, there are at most two vertices in V1,2∪V2,3∪V3,4∪V1,4,
so after doing at most two vertex deletions, we may assume these sets are empty
(note that the resulting graph may no longer be an atom). Applying four further
vertex deletions, we can remove the cycle C from G. By Claim 6, we may assume
without loss of generality that V3 and V4 are empty. The remaining vertices
of G all lie in V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4 ∪ V1,2,3,4 and by Fact 1, it suffices to
show that this modified graph has bounded clique-width. By Claims 5, 7 and 9,
V1,2,3,4 is complete to V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4, and so applying a bipartite
complementation between these two sets disconnects G[V1,2,3,4] from the rest of
the graph. By Claim 4, G[V1,2,3,4] has bounded clique-width, so by Fact 3, we
may assume V1,2,3,4 is empty. By Claim 9, at most one vertex of V1,3 (resp. V2,4)
has a neighbour in V1 (resp. V2). Applying at most two further vertex deletions,
we may assume that V1,3 is anti-complete to V1 and V2,4 is anti-complete to V2.
By Claim 7, we can partition V∅ into the set V 1,3

∅ of vertices that have neighbours
in V1,3 and the set V 2,4

∅ of vertices that have neighbours in V2,4. Now Claims 2
and 3 imply that V 2,4

∅ ∪ V1 ∪ V1,3 and V 1,3
∅ ∪ V2 ∪ V2,4 are independent sets,

and so G[V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4] is a 2P2-free bipartite graph. Such graphs
are also known as bipartite chain graphs and are well known to have bounded
clique-width (see e.g. [30, Theorem 2]). By Fact 1, this completes the proof. ut

The class of split graphs is the class of (C4, C5, 2P2)-free graphs. Since split
graphs therefore form a subclass of the class of (2P2, P2 + P3)-free graphs, and
split graphs have unbounded clique-width, it follows that (2P2, P2 + P3)-free
graphs also have unbounded clique-width. Recall that split atoms are complete
graphs, which therefore have clique-width at most 2. The (2P2, P2 + P3)-free
atoms that are not split must therefore contain an induced C4 or C5. Applying
Lemmas 4 and 5, we obtain Theorem 2, which we restate below.

Theorem 2 (restated). The class of (2P2, P2 + P3)-free atoms has bounded
clique-width (whereas the class of (2P2, P2 + P3)-free graphs has unbounded clique-
width).

4 Conclusions

Motivated by algorithmic applications, we determined a new class of (H1, H2)-
free graphs of unbounded clique-width whose atoms have bounded clique-width,
namely when (H1, H2) = (2P2, P2 + P3). We also identified a number of classes of
(H1, H2)-free graphs of unbounded clique-width whose atoms still have unbounded
clique-width. The latter results show that boundedness of clique-width of (H1, H2)-
free atoms does not necessarily imply boundedness of clique-width of (H1, H2)-free
atoms. For example, (C4, P5)-free atoms have bounded clique-width [35], but we
proved that (C4, P5)-free atoms have unbounded clique-width (Theorem 3). Note
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however that while it is not known whether the class of (K3, S1,2,3)-free graphs
has bounded clique-width, we can show that the class of (K3, S1,2,3)-free atoms
has bounded clique-width if and only if the class of (3P1, S1,2,3)-free atoms has
bounded clique-width (proof omitted).

We also presented a summary theorem (Theorem 3), from which we can
deduce the following list of 18 open cases. The cases marked with a ∗ are those
for which even the boundedness of clique-width of the whole class of (H1, H2)-free
graphs is unknown.

Open Problem 6. Does the class of (H1, H2)-free atoms have bounded clique-
width if

(i) H1 = diamond and H2 = P6

(ii) H1 = C4 and H2 ∈ {P1 + 2P2, P2 + P4, 3P2}
(iii) H1 = P1 + 2P2 and H2 ∈ {2P2, P2 + P3, P5}
(iv) H1 = P2 + P3 and H2 ∈ {P2 + P3, P5}
*(v) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}
*(vi) H1 = 3P1 and H2 = P1 + S1,1,3

*(vii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}
*(viii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5}
*(ix) H1 = gem and H2 = P2 + P3, or
*(x) H1 = P1 + P4 and H2 = P2 + P3.

In particular, we ask if boundedness of clique-width of (2P2, P2 + P3)-free atoms
can be extended to (P5, P2 + P3)-free atoms. Could this explain why Colouring
is polynomial-time solvable on (P5, P2 + P3)-free graphs [49]? Is boundedness
of clique-width the underlying reason? Brandstädt and Hoàng [9] showed that
(P5, P2 + P3)-free atoms with no dominating vertices and no vertex pairs {x, y}
with N(x) ⊆ N(y) are either isomorphic to some specific graph G∗ or all their
induced C5s are dominating. Recently, Huang and Karthick [43] proved a more
refined decomposition. However, it is not clear how to use these results to prove
boundedness of clique-width of (P5, P2 + P3)-free atoms, and additional insights
seem to be needed.
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