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ABSTRACT
Recommendation systems aim to assist users to discover desirable
contents from an ever-growing corpus of items. Although recom-
menders have been greatly improved by deep learning, they still
face several challenges: (1) behaviours are much more complex than
words in sentences, so traditional attention and recurrent models
have limitations capturing the temporal dynamics of user prefer-
ences. (2) The preferences of users are multiple and evolving, so it
is difficult to integrate long-term memory and short-term intent.

In this paper, we propose a temporal gating methodology to
improve the attention mechanism and recurrent units, so that tem-
poral information can be considered for both information filtering
and state transition. Additionally, we propose a hybrid sequential
recommender, namedMulti-hop Time-aware AttentiveMemory
network (MTAM), to integrate long-term and short-term prefer-
ences. We use the proposed time-aware GRU network to learn the
short-term intent and maintain prior records in user memory. We
treat the short-term intent as a query and design a multi-hop mem-
ory reading operation via the proposed time-aware attention to
generate user representation based on the current intent and long-
term memory. Our approach is scalable for candidate retrieval tasks
and can be viewed as a non-linear generalisation of latent factori-
sation for dot-product based Top-K recommendation. Finally, we
conduct extensive experiments on six benchmark datasets and the
experimental results demonstrate the effectiveness of our MTAM
and temporal gating methodology.
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1 INTRODUCTION
In large-scale recommendation systems, it is challenging to retrieve
a set of most relevant items for a user given her/his interaction
history from tens or hundreds of millions of items. A common
recipe to handle the huge amount and sparsity of item corpus
is matrix factorisation, which facilitates efficient approximate k-
nearest neighbor searches via resorting to the inner product of user
representation and item representation [2, 26–28].

Typically, there are two stages in an industrial recommendation
system: candidate generation and ranking [3, 6, 35]. At the can-
didate generation stage, time-efficient neural nominators retrieve
hundreds of candidates from a large corpus of items. The candidates
are then re-ranked by a fully-blown neural rankingmodel. Themain
difference between the two stages is that a ranking model can serve
as a discriminator which predicts 𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖) (the preference of user
𝑢 on item 𝑖) on a small candidate set, while candidate generators
are required to generate the representation of a target user which
can be used in k-nearest neighbour searches. As shown in Figure
1, we focus on the candidate generation stage which determines
the ceiling performance of recommendation and treat it as a user
modeling task.

Analogous with words of sentences, a user’s interactions with
items naturally form a behaviour sequence. With the quick develop-
ment of deep learning, many recent researches have built recurrent
and attention models to capture the sequential property of user
behaviours [3, 15, 20].

A vital challenge of user modeling is that user behaviours are
much more complex than words. Some context features of a be-
haviour, like category, action and text information, can be incor-
porated by injecting feature embeddings into the item embedding.
However, the temporal feature is related to a pair of behaviours.
Two behaviours within a short interval intuitively tend to be more
relevant than two behaviours within a long interval. Therefore,
classical structures of recurrent and attention networks need to be
upgraded to model the temporal dynamics of sequential data better.
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Figure 1: The general framework of MTAM for Top-K recommendation. The left part shows the user modeling module, which
encodes user’s short-term intent and long-term memory into the final user embedding via a memory network. And the right
part shows the Top-K recommendation module, which produces a ranking list over all items via the dot-product based K-
nearest neighbor search.
Some recent researches improve GRU or LSTM units by adding
time gates to capture the temporal information of user behaviour
sequences [5, 37, 40]. However, the temporal information is often
ignored in attention mechanism. Originated from the NLP field,
an attention mechanism takes a weighted sum of all components
and focuses only on the information related to a query. Many re-
cent neural recommenders utilise attention mechanism to filter
diverse user interests, by concentrating on relevant behaviours
and eliminating irrelevant ones to predict a user’s future action
[10, 20, 23, 30, 36, 39]. Among these attention neural recommenders,
researches [10, 20] assign weights to compressed hidden states to
build attention RNN models; assign weights to historical records
to build attention memory networks [23, 30]; and assign weights
to hidden variables to build deep attention feed-forward networks
[36, 39]. Nevertheless, when calculating the correlation between
two behaviours, the time interval between them has not been taken
into consideration by most of the previous approaches. One recent
research [21] addresses this challenge by directly adding the clipped
relative time intervals to the dot-product of item embeddings when
calculating the attention weights. However, how to upgrade atten-
tion mechanism to model the temporal patterns of sequences in a
more fine-grained way is still a problem.

To overcome the aforementioned limitations of neural networks,
we propose a novel temporal gating methodology to upgrade at-
tention mechanism and recurrent units by taking advantage of the
time-aware distance between interactions in the task of user modeling.
Inspired by the gated mechanisms in LSTM and GRU, we introduce
a temporal controller to encode the temporal distance between
two interactions into a gate. We then propose a novel time-aware
attention by equipping scaled dot-product attention with the pro-
posed temporal gate. When calculating the relationship between
two interactions, the time-aware attention kernel is capable to take
the time interval into account. Meanwhile, for better short-term
preference modeling, we utilise the proposed temporal gate in GRU
to control how much past information can be transferred to future
states, named T-GRU. Different from previous time-aware recur-
rent recommenders which aim to capture both the short-term and
long-term interests [5, 37, 40], we only aim at short-term intent by
filtering out irrelevant past information with the temporal gate.

Additionally, both long-term preferences and short-term intents
determine the behaviours of users. In this paper, we view user be-
haviours as a decision making program in Memory Network and
propose a Multi-hop Time-aware Attentive Memory (MTAM for
short) network based on the proposed T-GRU and time-aware atten-
tion, which is illustrated in Figure 1. MTAM first utilises T-GRU to
capture the short-term intent of a user and maintains a fixed length
history of behaviours in a memory matrix (memory m) to store
her/his long-term preference. Inspired by the memory retrieval pro-
cedure in the human mind, MTAM treats the short-term intent as a
query 𝑞 to search throughout the long-term memory𝑚. The search-
ing procedure of MTAM is to find a continuous representation for
𝑚 and 𝑞 via time-aware attention. When making recommendations,
MTAM triggers the searching procedure for multi-hops to output
an answer 𝑎, which is a comprehensive representation of the tar-
get user. The time-aware attention mechanism of MTAM provides
an effective manner to learn the temporal dynamics of behaviour
sequences by crediting the different contributions of prior interac-
tions to the current decision. The proposed MTAM can be viewed
as a non-linear generalisation of factorisation techniques and ap-
plied in large-scale retrieval systems. We will show experimentally
that the temporal gating methodology and the multi-hop structure
are crucial to good retrieval performance of MTAM in the Top-K
recommendation task on 6 real-world datasets.

In summary, the main contributions of the paper can be illus-
trated as follows:

• We improve the attention mechanism and recurrent unit
via a novel temporal gating methodology to capture the
temporal dynamics of users’ sequential behaviours.

• We propose a novel multi-hop time-aware memory neural
network for sequential recommendation. MTAM treats the
output of T-GRU as short-term intent and reads out the long-
term memory effectively via time-aware attention. To the
best of our knowledge, MTAM is the first memory network
which takes the time-aware distances between items into
account.

• We compare our model with state-of-the-art methods on six
real-world datasets. The results demonstrate that the per-
formance of Top-K recommendation is obviously improved
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via adding the temporal gate into the recurrent unit and at-
tention mechanism. Additionally, compared to encoding the
user representation with the weighted sum of recurrent hid-
den states, MTAM is able to leverage user historical records
in a more effective manner.

2 RELATEDWORK
Our work focuses on the candidate generation stage and is es-
sentially a memory-augmented sequential recommender. We will
review the related works in three directions.

2.1 Candidate Generation and Ranking
In general, an industrial recommendation system consists of two
stages: candidate generation and candidate ranking [3, 6, 35]. The
candidate generation (a.k.a. retrieval or nomination) stage aims
to provide a small set of related items from a large corpus under
stringent latency requirements [6, 35]. Then, the candidate ranking
model reranks the retrieved items based on click-through rate (CTR
for short), rating or score [10, 30, 34]. In the retrieval stage, rec-
ommenders have to face the computational barriers of full corpus
retrieval. A common recipe for candidate retrieval is modeling the
user-item preference as the dot-product of the low dimensional
user representation and item representation, such as matrix fac-
torisation [18, 26] and neural recommenders [3, 6, 20]. However,
the dot-product correlation limits the capability of neural recom-
menders. To learn deeper non-linear relationships between a target
user and candidate items, some more expressive models have been
proposed for the ranking stage, such as neural collaborative filter-
ing [14], deep interest network [39], SLi-Rec [37] and user memory
network [4]. In this paper, we focus on the candidate generation
stage and the proposed MTAM can be viewed as a non-linear gen-
eralisation of factorisation techniques.

2.2 Sequential Recommenders
Analogous with words of sentences in natural language processing
(NLP), a user’s interactions with items naturally form a behaviour
sequence. In recent years, deep neural networks have achieved
continuous improvements in NLP [7, 11, 25, 31], which prompt a
series of explorations in applying neural networks in sequential
recommendation. The first stab at employing RNN-based models in
session-based recommendation [15] uses GRU to model the click se-
quences and improves the CTR prediction by taking the sequential
characteristics into consideration. Additionally, a user’s purchase
decision is both determined by her/his long-term stable interests
and short-term intents [1, 8, 36]. Other researches [16, 20, 23, 39]
combine RNNs with the attention mechanism to learn the prefer-
ence evolution of users.

However, although traditional attention and recurrent models
have shown excellent performance to model the sequential pat-
terns of user behaviours, they only consider the orders of objects,
without the notion of the temporal information. The time intervals
between interactions are important to capture the correlations be-
tween these interactions. [40] improves LSTM by proposing some
temporal gates to capture both long-term and short term prefer-
ences of users. Recent researches [5, 37] further propose two time-
aware recurrent units. The main difference between our proposed
T-GRU and previous models is we only use the time interval be-
tween adjacent interaction to control how much past information

can be transferred to future states, while previous researches apply
temporal gates to control both previous information and current
content. Furthermore, how to capture the temporal context in at-
tention mechanism is still not well explored. The lastest research
[21] explores the influence of different time intervals on t next-
item prediction and proposes a time-aware self-attention model.
It treats time intervals as special positions and solves it by adding
clipped intervals to the dot-product of item embeddings. In our
work, we further update the attention mechanism by a gating tech-
nique which helps to capture the non-linear temporal differences
between interactions.

2.3 Memory-augmented Recommenders
An essential challenge of user modeling is learning the dependen-
cies of behaviours. RNN-based models encode user’s previous be-
haviours into hidden states. Although an attentionmechanism helps
recurrent networks to learn long-term dependencies by concentrat-
ing on the relevant states [20, 32], it fails to distinguish between
the different roles that each item plays in prediction. To tackle this
challenge, external memory networks have been proposed in re-
cent years to store and manipulate sequences effectively [12, 13],
which have been successfully adapted to NLP tasks, such as ques-
tion answering [19], knowledge tracing [38], translation [24] and
dialogue systems [33]. Several recent researches propose memory-
augmented neural networks for recommendation to leverage users’
historical behaviours in a more effective manner [4, 9, 23, 30]. They
introduce an external user memory to maintain users’ historical
information and use attention mechanism to design memory read-
ing operations. Among these researches, [4, 9, 30] treat the target
item as the query, while [23] treats the last item in the interaction
sequence as the query.

There are twomain differences between these existing researches
and the proposed MTAM. (1) Taking advantage of the proposed
time-aware attention, MTAM is the first memory network which
takes the temporal context of interactions into consideration. (2)
Apart from [23, 32], most previous memory-augmented recom-
menders focus on the candidate ranking stage, which aims to pre-
dict the 𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖). Meanwhile, MTAM focuses on the candidate
retrieval stage, which aims to generate the representation of a target
user merely based on her/his historical records.

3 OVERALL FRAMEWORK
We first provide the formal notations that will be used in this paper
and define the task of sequential recommendation. Thenwe describe
the multi-hop time-aware attention memory recommender overall.

3.1 Preliminaries
Suppose there are𝑀 users and𝑁 items in the system. The behaviour
sequence of user 𝑢 is S𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, ..., 𝑏𝑢, |S𝑢 |). We denote a be-
haviour 𝑏𝑢,𝑖 = (𝑥𝑢,𝑖 , 𝑡𝑢,𝑖 , 𝑒𝑢,𝑖 ) as the 𝑖-th interaction in sequence S𝑢 ,
where 𝑥𝑢,𝑖 ∈ V is the item that user 𝑢 interacts with at time 𝑡𝑢,𝑖 and
𝑒𝑢,𝑖 presents the contextual information. The contextual informa-
tion 𝑒𝑢,𝑖 can include various kinds of important features, e.g. item
category, behaviour position, location, duration and action. Then
given the historical behaviour sequence S𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, ..., 𝑏𝑢,𝑖 ) of
a specified user 𝑢, the time-aware sequential recommendation is
to predict the next item 𝑥𝑢,𝑖+1 that user 𝑢 will interact with at time



CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Wendi Ji, Keqiang Wang, Xiaoling Wang, Tingwei Chen, Alexandra I. Cristea

𝑡target. Since the corpus of items is large in an industrial recom-
mendation system, a nominator in the candidate generation stage
needs to make more than one recommendation to the user, which
represent the so-called Top-K recommendations.

We aim to build a time-aware recommender Rec so that for any
prefix behaviour sequence S𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, ..., 𝑏𝑢,𝑖 ) and a target
time 𝑡target, we obtain the output 𝑦 = Rec(S𝑢 , 𝑡target). As illustrated
in Figure 1, 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝐾 ) is the ranking list for the Top-K
recommendation (0 < 𝐾 ≪ 𝑁 ).

3.2 Recommendation with Attention Memory
Network

User interests are both stable and evolving. In this paper, we pro-
pose a novel attention memory network for the task of Top-K
recommendation, named Multi-hop Time-aware Attention Mem-
ory Network (MTAM for short). As illustrated in Figure 1, MTAM
first encodes the user’s short-term intent into a query 𝑞 via a recur-
rent network based on our proposed T-GRU and maintains a fixed
length of behaviour history as long-term preferences in memory𝑚.
Then, as shown in Figure 2, the prediction procedure is to read the
long-term memory𝑚 for the current short-term intent 𝑞 via our
proposed time-aware attention mechanism. The output 𝑎 of MTAM
is a hybrid user representation which takes the advantage of both
short-term and long-term components.

The proposed MTAM can be viewed as a non-linear neural gen-
eralisation of collaborative filtering based on factorisation tech-
niques. Suppose there are 𝑀 users and 𝑁 items in a recommen-
dation system. Let P ∈ R𝑀×𝑑 and Q ∈ R𝑁×𝑑 be the embedding
matrices for users and items. For any prefix behaviour sequence
S𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, ..., 𝑏𝑢,𝑖 ) of user 𝑢, we first project items and contex-
tual information into embedding spaces via the look-up function
and attain S′𝑢 = ((𝑏 ′

𝑢,1, 𝑡𝑢,1), (𝑏
′
𝑢,2, 𝑡𝑢,2), ..., (𝑏

′
𝑢,𝑖
, 𝑡𝑢,𝑖 )). Our task is

building a user model MTAM, of which the output is the embedding
of user 𝑢 at time 𝑡target:

𝑝𝑢,𝑡target = MTAM(S′𝑢 , 𝑡target) . (1)

Then, as a neural matrix factorisation, a nearest neighbor search
can be performed to generate the Top-K recommendations based on
the dot-product similarity 𝑝𝑢,𝑡targetQ𝑇 between the predicted user
embedding 𝑝𝑢,𝑡target and the embeddings of all items Q:

𝑦 = Rec(S𝑢 , 𝑡target) = Top-K(𝑝𝑢,𝑡targetQ𝑇 ) (2)

where 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝐾 ) is the ranking list of the 𝐾 most relevant
items. Our model can be trained by using a standard mini-batch
gradient descent on the cross-entropy loss:

𝐿 (𝑦′, �̂�) =
𝑀∑
𝑢

𝑦
′
𝑢 log �̂�𝑢 , (3)

where 𝑦
′
𝑢 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝𝑢,𝑡targetQ𝑇 ) is the predicted probability dis-

tribution of the next item and 𝑦𝑢 the one-hot coding of the ground-
truth next item 𝑥𝑢,𝑖+1.

In the following two sections, we first introduce a generalmethod-
ology to update the traditional attention mechanism and recurrent
unit for user modeling, and propose the two basic components
of MTAM: time-aware attention mechanism and T-GRU unit in
Section 4. Then we illustrate the proposed multi-hop time-aware
attention memory network which treats the short-term intent as

key and reads out the long-term memory attentively for multiple
hops in Section 5.

4 TEMPORAL GATING METHODOLOGY
In this section, we first provide a general idea of temporal gating
methodology to capture the time-aware context in user behaviour
sequences. Thenwe describe how to update the traditional attention
mechanism and recurrent unit with it.

4.1 Temporal Gate
Different from the semantic correlations between words in NLP
problems, the relationship between two interactions in a behaviour
sequence is not only related to their relative positions, but also
highly influenced by the time intervals.

We model the time interval as a temporal gate to encode the
non-linear time difference between two interactions. A general
form of the temporal gate between two behaviours can be defined
as:

𝑔𝑖 𝑗 = 𝑓 (𝑡ℎ𝑖 − 𝑡ℎ 𝑗 , ℎ𝑖 , ℎ 𝑗 ), (4)

where (ℎ∗, 𝑡ℎ∗ ) is the hidden representation and timestamp of an
interaction. In this way, the temporal relationship between two
interactions is determined by the time interval and their respective
representations. Next we will introduce how to use the temporal
gate to update recurrent networks and the attention mechanism.

4.2 Time-aware Recurrent Unit
Recurrent networks have led to great success in user modeling due
to their remarkable ability to capture sequential patterns. The re-
current updating function of recurrent networks can be formulated
as:

ℎ𝑠 = 𝑓 (𝑥𝑠 , ℎ𝑠−1), (5)
where 𝑥𝑠 is the current input and ℎ∗ is a hidden state. In practice,
LSTM and GRU are the two most widely used recurrent units. The
computational complexity of GRU is lower than LSTM by reducing
one gate. In this paper, without loss of generality, we formulate the
time-aware recurrent unit with GRU and the computation rules of
the GRU unit can be illustrated as:

𝑧𝑠 = 𝜎 ( [𝑥𝑠 , ℎ𝑠−1 ]𝑊𝑧 + 𝑏𝑧 ) (6)
𝑟𝑠 = 𝜎 ( [𝑥𝑠 , ℎ𝑠−1 ]𝑊𝑟 + 𝑏𝑟 ) (7)

ℎ
′
𝑠 = 𝜙 ( [𝑥𝑠 , ℎ𝑠−1 ⊙ 𝑟𝑠 ]𝑊ℎ + 𝑏ℎ) (8)

ℎ𝑠 = 𝑧𝑠 ⊙ ℎ𝑠−1 + (1 − 𝑧𝑠 ) ⊙ ℎ
′
𝑠 , (9)

where 𝑥𝑠 , ℎ𝑠−1, ℎ𝑠 , ℎ
′
𝑠 , 𝑧𝑠 , 𝑟𝑠 ∈ R1×𝑑 ;𝑊𝑧 ,𝑊𝑠 ,𝑊ℎ ∈ R2𝑑×𝑑 ; [·, ·] is

the concatenate operation; + and ⊙ denote element-wise add and
multiplication operations; 𝜙 and 𝜎 are tanh and sigmoid activation
functions; 𝑧𝑠 and 𝑟𝑠 are update gate and reset gate, respectively;
while ℎ

′
𝑠 is the candidate state; ℎ𝑠−1 is the history state and ℎ𝑠 is

the output hidden state. The output hidden state ℎ𝑠 emitted at state
𝑠 is a linear interpolation between the history state ℎ𝑠−1 and the
candidate state ℎ

′
𝑠 , where update gate 𝑧𝑠 acts as a soft switch.

In order to capture the temporal correlations in a user behaviour
sequence, we design a temporal gate to upgrade GRU, which is
jointly determined by the current input 𝑥𝑠 , the history state ℎ𝑠−1
and the time interval 𝑡𝑠 − 𝑡𝑠−1, that is:

𝛿𝑠 = 𝜙 (log(𝑡𝑠 − 𝑡𝑠−1 + 1) ⊙𝑊𝛿𝑠 + b𝛿𝑠 ), (10)
𝜏𝑠 = 𝜙 ( [𝑥𝑠 , ℎ𝑠−1 ]𝑊𝜏𝑠 + 𝑏𝜏𝑠 ), (11)
𝑔𝑠 = 𝜎 (𝛿𝑠 ⊙𝑊𝑔𝑠𝛿𝑠 + 𝜏𝑠 ⊙𝑊𝑔𝑠𝜏𝑠 + 𝑏𝑔𝑠 ), (12)
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where 𝑡𝑠 , 𝑡𝑠−1 ∈ R, 𝛿𝑠 , 𝜏𝑠 , 𝑔𝑠 ∈ R1×𝑑 ,𝑊𝛿𝑠 ,𝑊𝑔𝑠𝛿𝑠 ,𝑊𝑔𝑠𝜏𝑠 ∈ R1×𝑑 ,
𝑏𝛿𝑠 , 𝑏𝜏𝑠 , 𝑏𝑔𝑠 ∈ R1×𝑑 and𝑊𝜏𝑠 ∈ R2𝑑×𝑑 . The temporal feature 𝛿𝑠
encodes the temporal relation between adjacent interactions at
state 𝑠 . The semantic feature 𝜏𝑠 encodes the semantic context at
state 𝑠 . Temporal gate 𝑔𝑠 is a non-linear combination of temporal
and semantic features.

Then, we propose a novel recurrent unit, named T-GRU, by
modifying the Eq. (9) to:

ℎ𝑠 = 𝑧𝑠 ⊙ 𝑔𝑠 ⊙ ℎ𝑠−1 + (1 − 𝑧𝑠 ) ⊙ ℎ
′
𝑠 , (13)

where the temporal gate 𝑔𝑠 controls how much past information
can be transferred to the current state. Compared to [37], which
uses two temporal gates to control past and current information,
the experimental results show that our proposed T-GRU performs
better as a recurrent recommender on 4/6 datasets and MTAM
dominates on all datasets where T-GRU serves as the short-term
intent encoder.

4.3 Time-aware Attention
The scaled dot-product attention [31] is a popular attention kernel.
Let 𝑄 ∈ R𝑙𝑄×𝑑 , 𝐾 ∈ R𝑙𝐾×𝑑 ,𝑉 ∈ R𝑙𝑉 ×𝑑 represent query, key and
value, where 𝑙𝑄 , 𝑙𝐾 , 𝑙𝑉 are the number of items in query, key and
value, respectively, and 𝑑 is the latent dimension. The attention
correlations between query 𝑄 and key 𝐾 is computed as:

Score(𝑄,𝐾) = softmax
(
𝑄𝐾𝑇

√
𝑑

)
, (14)

where the scale factor
√
𝑑 is used to avoid large values of the inner

product, especially when the dimension 𝑑 is high. 𝑆𝑐𝑜𝑟𝑒 (𝑄,𝐾) ∈
R𝑙𝑄×𝑙𝐾 is a matrix with the shape of the lengths of query (𝑙𝑄 ) and
key (𝑙𝐾 ), where the 𝑖-th row evaluates the relevant percentages of
item𝑄𝑖 with all items in key 𝐾 . Then the output of the dot-product
attention can be computed as a sum of the rows in value𝑉 , weighted
by the attention scores, which is formulated as:

Attention(𝑄,𝐾,𝑉 ) = score(𝑄,𝐾)𝑉 . (15)

We propose a time-aware attention mechanism based on the
scaled dot-product attention, which aims to take the time context
into account when it calculates the correlation between two items.
It is a general update of attention mechanism and can be applied
in attention RNNs, self-attention networks and memory networks.
Figure 2 shows its usage in the memory reader of MTAM.

We first define operation −̂ to compute the time interval matrix
between behaviour sequences. If 𝐴 ∈ R𝑚 and 𝐵 ∈ R𝑛 are two
vectors, we define −̂ as 𝐶 = 𝐴−̂𝐵, such that 𝐶𝑖 𝑗 = 𝐴𝑖 − 𝐵 𝑗 and
𝐶 ∈ R𝑚×𝑛 . For two interaction sequences (𝑥, 𝑡𝑥 ) = {(𝑥𝑖 , 𝑡𝑥𝑖 )}𝑙𝑥𝑖 and

(𝑦, 𝑡𝑦) = {(𝑦𝑖 , 𝑡𝑦𝑖 )}
𝑙𝑦
𝑖
, the temporal gate in time-aware attention

can be computed by:
𝛿 = 𝜙 (log( |𝑡𝑥 −̂𝑡𝑦 | + 1) ⊙𝑊𝛿 + 𝑏𝛿 ), (16)
𝜏 = 𝜙 (𝑦𝑊𝜏𝑥 + 𝑏𝜏 ), (17)

𝑔𝑥𝑦 = 𝜎 (𝛿 ⊙𝑊𝑔𝛿 + 𝜏 ⊙𝑊𝑔𝜏 + 𝑏𝑔), (18)

where 𝛿, 𝜏, 𝑔𝑥𝑦 ∈ R𝑙𝑥×𝑙𝑦 , 𝑥 ∈ R𝑙𝑥×𝑑 , 𝑦 ∈ R𝑙𝑦×𝑑 , 𝑡𝑥 ∈ R𝑙𝑥 , 𝑡𝑦 ∈ R𝑙𝑦 ,
𝑊𝜏 ∈ R𝑑×𝑑 ,𝑊𝛿 ,𝑊𝑔𝛿 ,𝑊𝑔𝜏 ∈ R𝑙𝑥×𝑙𝑦 and 𝑏𝛿 , 𝑏𝜏 , 𝑏𝑔 ∈ R𝑙𝑥×𝑙𝑦 . The
temporal feature 𝛿 and semantic feature 𝜏 encode the temporal
correlations and semantic correlations between each pair of items
in the two sequences. The temporal gate 𝑔𝑥𝑦 ∈ R𝑙𝑥×𝑙𝑦 learns the
non-linear correlations between (𝑥, 𝑡𝑥 ) and (𝑦, 𝑡𝑦) by taking both

temporal and semantic information into consideration. The atten-
tion score in Eq. (14) is now changed to:

T-Score( (𝑥, 𝑡𝑥 ), (𝑦, 𝑡𝑦 )) = softmax

(
𝑥𝑦𝑇 ⊙ 𝑔𝑥𝑦√

𝑑

)
. (19)

Finally, we define the time-aware attention of two temporal se-
quences by updating Eq. (15) as:
T-Attention( (𝑥, 𝑡𝑥 ), (𝑦, 𝑡𝑦 ), (𝑦, 𝑡𝑦 )) = T-Score( (x, 𝑡𝑥 ), (𝑦, 𝑡𝑦 ))𝑦, (20)

where the output is a representation of sequence 𝑥 which is tem-
porally related to sequence 𝑦.

4.4 Discussions
In this section, we have proposed a methodology to update the
traditional attention mechanism and recurrent unit for user model-
ing. Despite the detailed differences between temporal gate 𝑔𝑥𝑦 in
dot-product based attention kernel and temporal gate 𝑔𝑠 in T-GRU
unit, 𝑔𝑥𝑦 and 𝑔𝑠 are both non-linear functions of the time interval
between two objects and their semantic contexts. However, intu-
itively, the preferences tend to be similar within a short period,
while large intervals may decrease the influences of the past ac-
tions. We have tried to build the temporal gate as a time-decaying
function, for example:

𝑔𝑖 𝑗 = exp(−𝛼 (ℎ𝑖 , ℎ 𝑗 ) |𝑡𝑖 − 𝑡 𝑗 |),where 𝛼 (ℎ𝑖 , ℎ 𝑗 ) ≥ 0. (21)

But different from non-linear functions 𝑔𝑥𝑦 and 𝑔𝑠 , it shows no
obvious improvement when building a time-decaying temporal
gate. Therefore, unlike our original intuition that the correlation
between two actions decays with time, the temporal distances have
shown to be more complex than a monotonic decrease.

5 MULTI-HOP TIME-AWARE ATTENTION
MEMORY NETWORK

In this section, we describe three components of MTAM in detail.
They are short-term intent encoder, long-term memory encoder
and reading operation.

5.1 Short-term Intent Encoder and Long-term
Memory Encoder

In MTAM, we treat the short-term intent 𝑐𝑠ℎ𝑜𝑟𝑡𝑢 and a target time
𝑡target as the query 𝑞 = (𝑐𝑠ℎ𝑜𝑟𝑡𝑢 , 𝑡target), and store the long-term
preference in the memory matrix𝑚. The input of the short-term
intent encoder and the long-term memory encoder is a behaviour
sequence S′𝑢 = ((𝑏 ′

𝑢,1, 𝑡𝑢,1), (𝑏
′
𝑢,2, 𝑡𝑢,2), ..., (𝑏

′
𝑢,𝑖
, 𝑡𝑢,𝑖 )), where the 𝑖-th

behaviour (𝑏 ′
𝑢,𝑖
, 𝑡𝑢,𝑖 ) is a tuple of behaviour embedding 𝑏 ′

𝑢,𝑖
∈ R1×𝑑

and timestamp 𝑡𝑢,𝑖 ∈ R.

5.1.1 Short-term Intent Encoder. In the short-term intent encoder,
we build a recurrent network with T-GRU unit (introduced in Sec-
tion 4.3) rather than the traditional GRU [20] and LSTM [22] units
to encode the current intents of users. T-GRU filters out irrelevant
historical information by controlling how much past information
can be transferred to future states via the temporal gate (Eq. (12)).
Therefore, the proposed T-GRU unit is more capable than tradi-
tional and existing time-aware recurrent units [37, 40] to capture
the current intents of users. We use the final hidden state ℎ𝑢,𝑖 as
the short-term intent representation of user 𝑢: 𝑐short𝑢 = ℎ𝑢,𝑖 , where
ℎ𝑢,𝑖 ∈ R1×𝑑 is the short-term intent representation.
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Figure 2: The illustration of multi-hop memory reader, where the left side shows a single layer version and right side
shows a four-layer version. Time-aware Memory Reader takes the long-term memory𝑚𝑢 and the current short-term intent
(𝑐𝑠ℎ𝑜𝑟𝑡𝑢 , 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 ) of target user 𝑢 as input and outputs the current predicted user embedding (𝑐𝑢 , 𝑡target). The attention core of
MTAM is time-aware attention, where the time-aware attention score combines both temporal and semantic corrections.

5.1.2 Long-termMemory Encoder. The long-termmemory encoder,
which can also be called a long-term memory writer, maintains
user’s prior records in a personalised memory 𝑚. Memory 𝑚 =

(𝑚1,𝑚2, ...,𝑚𝐿) is a fixed-length queue with 𝐿 slots and each mem-
ory slot𝑚𝑖 ∈ 𝑚 stores a user historical record (𝑏 ′𝑢,∗, 𝑡𝑢,∗). As men-
tioned in many researches [4, 23], users’ recent behaviours usually
are more important to the current predictions. We adopt a simple
first-in-first-out rule and maintain the latest 𝐿 behaviours of S′𝑢 in
the user memory𝑚, which is:

𝑚𝑢 = ( (𝑏′𝑢,𝑖 , 𝑡𝑢,𝑖 ), (𝑏′𝑢,𝑖−1, 𝑡𝑢,𝑖−1), ..., (𝑏′𝑢,𝑖−𝐿+1, 𝑡𝑢,𝑖−𝐿+1)) . (22)

In the experiments, we empirically set 𝐿 the same as the maximum
length of S′𝑢 . If length of S′𝑢 is less than 𝐿, we add zero-paddings
to the right side of𝑚𝑢 to convert the𝑚𝑢 to a fixed-length queue.

5.2 Reading Operation
The reading operation is the key component of a memory network,
which determines how to predict the answer based on a query and
the information that is stored in the memory.
5.2.1 Single Layer. We start by describing the memory reader of
MTAM in the single layer case, then show how to stack it for
multiple hops.

The memory reader of MTAM reads the memory𝑚𝑢 attentively
for a given query (𝑐short𝑢 , 𝑡target) and outputs a predicted user em-
bedding 𝑐𝑢 . We use the time-aware attention which is introduced
in Section 4.3 as the attention kernel. As illustrated in Figure 2,
the time-aware memory reader projects the current intent 𝑐𝑠ℎ𝑜𝑟𝑡𝑢
and the behaviour embeddings in memory𝑚𝑢,𝑏 into value, key and
query, respectively, and computes the attention output as:

𝑜𝑢 = T-Attention( (𝑐short𝑢 𝑊𝑄 , 𝑡target), (𝑚𝑢,𝑏𝑊𝐾 , 𝑡𝑢,𝑡 ), (𝑚𝑢,𝑏𝑊𝑉 , 𝑡𝑢,𝑡 )),
(23)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑 are query weight, key weight and value
weight,𝑚𝑢,𝑏 = (𝑏 ′

𝑢,𝑖
, 𝑏 ′
𝑢,𝑖−1, ..., 𝑏

′
𝑢,𝑖−𝐿+1) is the behaviour memory

and 𝑡𝑢,𝑡 = (𝑡𝑢,𝑖 , 𝑡𝑢,𝑖−1, ..., 𝑡𝑢,𝑖−𝐿+1) is the time memory.

Then we compute the output of the memory reader, which is the
predicted embedding of user 𝑢 at time 𝑡target, as: 𝑐𝑢 = 𝑐short𝑢 + 𝑜𝑢 .

5.2.2 Multiple Layers. Inspired by previous works [29, 30] where
the multi-hop designs improve the performance of memory net-
works, we stack the single layer memory readers to construct a
deeper network (MTAM). We illustrate how to build a multi-hop
memory reader in Figure 2. Let the short-term intent be the query
for the first hop. Then, the multi-hop memory reader can be formu-
lated recurrently, where the output of the 𝑘-th hop is:

𝑜𝑘𝑢 = T-Attention( (𝑐𝑘−1𝑢 𝑊 𝑘
𝑄 , 𝑡target), (𝑚𝑢,𝑏𝑊𝐾 , 𝑡𝑢,𝑡 ), (𝑚𝑢,𝑏𝑊𝑉 , 𝑡𝑢,𝑡 ))

(24)

𝑐𝑘𝑢 = 𝑐𝑘−1𝑢 + 𝑜𝑘𝑢 (25)

Performing the reading operation for multiple hops helps us to
capture the diversity of user preference, because the memory reader
in different hops may concentrate on different behaviours. For a
MTAM network with 𝑘 ′ hops, the output, which is the predicted
user embedding in Eq. (1), is 𝑝𝑢,𝑡target = MTAM(𝑆𝑢 ′, 𝑡target) = 𝑐𝑘

′
𝑢 .

6 EXPERIMENT
In this section, we first describe the setups of all experiments. Then,
we demonstrate the effectiveness of our proposed models from the
following aspects: (1) The performance of the proposed framework
and comparable methods. (2) The effectiveness of the proposed time-
aware attention kernel, T-GRU unit and the multi-hop structure of
MTAM. (3) The Influence of Multiple Hops.

6.1 Datasets
We conduct experiments on six real-world datasets of two types.
MovieLens-20 and Amazon datasets are rating datasets, which are
not "real" user behaviour logs, but consist of comments on items.
Yoochoose and Ali Mobile are transaction datasets, which directly
record the behaviour trajectories of users.
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Table 1: The Statistics of Datasets

Statistics #user #Item #Cat. Avg. behaviours
per user Density

ml-25m 12015 4991 712 104.27 2.0891%
Electronics 41940 87203 1063 31.67 0.0363%
CDs & Vinyl 39663 33593 419 24.78 0.0738%
Movies & TV 105321 35164 379 22.70 0.0645%
Yoochoose 1/4 108817 16296 187 15.52 0.0953%
Ali Mobile 9980 594083 6352 1226.92 0.1267%

• MovieLens1 is a widely used benchmark dataset for eval-
uating collaborative filtering algorithms. We use the latest
stable version (MovieLens-25m) which includes 25 million
user ratings.

• Amazon2 is a popular dataset to evaluate recommendation
algorithms. It is always used as a benchmark for sequen-
tial recommendation tasks. We consider three categories:
Electronics, CDs & Vinyl and Movies & TV.

• Yoochoose3 from the RecSys’15 Challenge I contains click-
streams gathered from an e-commerce web site during six
months. Because the Yoochoose dataset is quite large, we
randomly sample 1/4 users.

• Ali Mobile4 from the Alibaba Competition contains trans-
action data gathered from Alibaba’s M-Commerce platform
in one month.

We filter the users whose behaviour lengths are less than 10 and
items that appear less than 30 times. The statistics of six datasets af-
ter data preprocessing are shown in Table 1. Although there are vari-
ous types of context information in these datasets (e.g. actions, com-
ments, descriptions), we only use the category of an item and the po-
sition of a behaviour in a sequence as context features in our exper-
iments. For a behaviour sequence S𝑢 = (𝑏𝑢,1, 𝑏𝑢,2, ..., 𝑏𝑢,𝑖 ), we use a
sequence splitting preprocess to generate the sequences and corre-
sponding labels ( [𝑏𝑢,1], 𝑏𝑢,2), ( [𝑏𝑢,1, 𝑏𝑢,2], 𝑏𝑢,3), ..., ( [𝑏𝑢,1, 𝑏𝑢,2, ...,
𝑏𝑢,𝑖−2], 𝑏𝑢,𝑖−1) for the training set and the last behaviour ( [𝑏𝑢,1, 𝑏𝑢,2, ...,
𝑏𝑢,𝑖−1], 𝑏𝑢,𝑖 ) for the testing set.

6.2 Compared Methods and Implementation
Details

We compareMTAM with the following competitive models:
• Top Pop/P-Pop recommends items of the largest interac-
tions with all users/a target user. They are commonly used
baselines for all recommendation researches.

• BPR-MF [26] is a matrix factorisation recommender for the
personalised ranking task.

• GRU is a classical recurrent sequential recommender.
• GRU−− is GRU without the category features.
• T-SeqRec equips LSTM with two temporal gates to model
time intervals and time spans for recommendation problem
[37]. Since it dominates other time-aware RNN-based mod-
els (e.g. [5, 40]), we treat it as a state-of-the-art time-aware
recurrent unit.

• T-GRU is proposed in this paper, which equips GRU with a
new temporal gate. Different from T-SeqRec, T-GRU only

1https://grouplens.org/datasets/movielens/20m/
2http://deepyeti.ucsd.edu/jianmo/amazon/index.html
3http://2015.recsyschallenge.com/challenge.html
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=46

focuses on short-term preference without using time spans
to capture long-term preference.

• SASRec [17] is a self-attention based sequential recommender.
• TiSASRec [21] is a time-aware self-attention sequential rec-
ommender which directly adds the clipped relative time
intervals to the dot-product of item embeddings.

• NARM [20] is a hybrid sequential recommender which
utilises attention mechanism to model the user’s local pur-
poses. It is a commonly used baseline hybrid recommender
which takes both local and global preferences into consider-
ation.

• NARM+ is improved by equipping with our proposed time-
aware attention.

• NARM++ is improved by equipping with our proposed time-
aware attention and T-GRU.

• STAMP [23] captures both long-term and short-term pref-
erences using an attention MLP network.

To ensure fair comparison, we set all hidden units and low-rank
embedding spaces, including RNN layers and attention layers, as
128. We set the initial learning rate as 1e-3 and use an exponential
learning rate decay for every 100 iterators with 0.995 decay rate.
0.5 dropout rate and 1e-5 regularisation rate are used to reduce
overfitting. The maximum length of user behaviour is set to 50. The
proposed models and all compared models are implemented with
TensorFlow 1.145, and trained and tested on a Linux server with a
Tesla P100 GPU.

6.3 Evaluation Metrics
Since items that an individual can interact with are extremely sparse,
recommenders can suggest a set of candidate items each time. We
use HR@k and NDCG@k as the metrics for all models, where 𝑘 is
the number of items recommended each time.
HR@k is short for Hit Ratio, which shows whether the target
item is in the recommended list or not. Since we only consider one
ground truth for each sample, HR@k is equivalent to Recall@k.
NDCG@k takes the position of the hit item into account by assign-
ing a highest score to the hit at top rank and decreasing the scores
to hits at lower ranks. NDCG, short for Normalised Discounted
Cumulative Gain, not only considers the HR but also the orders of
ranking.

Statistical significance of observed differences between the per-
formance of the purposed MTAM and the best baseline methods is
tested by the t-test on pair-wise samples. Small p-values are associ-
ated with large t-statistics, where the threshold 0.01 means strong
significance and the threshold 0.05 means weak significance.

6.4 Overall Recommendation Performance
Table 2 and Figure 3, 4 illustrate the performance of MTAM and
the baseline methods. We only report the results of 𝐾 = 10 for
all models and all datasets in Table 2 due to space limitation. And
in Figure 3, 4, we take the one rating dataset (Electronics) and
one transaction dataset (Ali Mobile) as representatives to show the
results of different 𝐾s for typical models.

In general, the proposed MTAM outperforms the state-of-the-
art methods significantly (p-value<0.01). Our MTAM has achieved

5https://github.com/cocoandpudding/MTAMRecommender
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Table 2: Performance comparison of MTAM and the baseline methods. Among these baselines, T-GRU is a component of
MTAM, and NARM+ and NARM+ is implemented with our proposed T-GRU and time-aware attention. We divide models into
4 groups: naive recommenders (e.g. Top Pop), non-hybrid recommenders (e.g. GRU), hybrid recommenders (e.g. NARM) and
the proposed MTAM. The underlined number is the best baseline method and the boldfaced number is the best method of all.
Improv. denotes the improvement of the best model over the best baseline method. Significant differences are with respect to
the best baseline methods.

HR@10
Top Pop P-Pop BPR-MF GRU−− GRU T-SeqRec T-GRU SASRec TiSASRec NARM NARM+ NARM++ STAMP MTAM improv. p-value

ML-25m 0.0300 0 0.0108 0.1985 0.1946 0.2001 0.2006 0.1847 0.1865 0.1999 0.1978 0.1981 0.1821 0.2053 2.60% 3.39e-3
Electronics 0.0108 0.0017 0.0204 0.0283 0.0370 0.0376 0.0384 0.0328 0.0332 0.0334 0.0322 0.0371 0.0330 0.0423 12.5% 6.12e-11
CDs & Vinyl 0.0062 0.0028 0.0330 0.1070 0.1082 0.1130 0.1129 0.1053 0.1075 0.1131 0.1111 0.1160 0.1091 0.1206 6.63% 6.65e-3
Movies & TV 0.0114 0.0021 0.0279 0.1512 0.1505 0.1550 0.1523 0.1422 0.1441 0.1499 0.1548 0.1583 0.1372 0.1605 3.54% 6.96e-5

Yoochoose 0.0212 0.2599 0.3263 0.5273 0.5345 0.5332 0.5351 0.5240 0.5270 0.5356 0.5355 0.5360 0.5360 0.5386 0.49% 5.40e-4
Ali Mobile 0.0046 0.1366 0.1533 0.2321 0.2299 0.2380 0.2427 0.2274 0.2292 0.2318 0.2329 0.2427 0.2097 0.2501 5.08% 7.99e-4

NDCG@10

ML-25m 0.0140 0 0.0050 0.1146 0.1112 0.1159 0.1150 0.1001 0.1002 0.1129 0.1127 0.1121 0.0981 0.1187 2.42% 6.52e-3
Electronics 0.0051 0.0009 0.0119 0.0180 0.0267 0.0257 0.0263 0.0229 0.0231 0.0221 0.0205 0.0249 0.0232 0.0307 15% 3.81e-9
CDs & Vinyl 0.0030 0.0016 0.0138 0.0715 0.0705 0.0756 0.0754 0.0667 0.0679 0.0747 0.0724 0.0746 0.0723 0.0783 3.57% 6.51e-3
Movies & TV 0.0056 0.0013 0.0135 0.1135 0.1129 0.1167 0.1138 0.1045 0.1061 0.1116 0.1168 0.1169 0.1035 0.1210 3.68% 4.37e-5

Yoochoose 0.0102 0.1698 0.1977 0.3313 0.3365 0.3360 0.3363 0.3293 0.3295 0.3372 0.3384 0.3386 0.3380 0.3381 0.12% 6.35e-4
Ali Mobile 0.0023 0.0834 0.1011 0.1562 0.1549 0.1602 0.1615 0.1524 0.1541 0.1555 0.1560 0.1621 0.1424 0.1651 3.06% 3.83e-3
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(b) NDCG on Amazon Electronics
Figure 3: The overall performance comparison on Amazon
Electronics.

the best performances on five datasets except Yoochoose. On Yoo-
choose, MTAM performs the best for HR@10, but is defeated by
NARM++ for NDCG@10. NARM++ is an attention RNN model
which is updated by the proposed time-aware attention and T-GRU.
Therefore, the overall experimental results demonstrate the effec-
tiveness of our proposed methods. Comparing the results, we have
four observations:

(1) Compared with the models based on traditional RNN and at-
tention mechanism, time-aware neural networks perform obviously
better on all datasets. For example,T-SeqRec dominates all baseline
models in four of the six datasets, where it even achieves much bet-
ter performance than NARM. And NARM+ outperform NARM
on three datasets, while NARM++ outperform both NARM+ and
NARM onmost all dataset (NARM++ has comparable performance
to NARM+ on the ML-25m dataset). These results confirm that
temporal information clearly contributes to recommendation per-
formance and further demonstrate that the proposed time-aware
attention and T-GRU evidently help to build significantly better
user models.

(2) When talking about whether hybrid recommenders that con-
sider both long-term and short-term preferences provide more
competitive results, it is a little complicated. First, we observe that
MTAM dominates all pure RNN-based or self-attention based mod-
els, but NARM loses to GRU on two datasets. Then, we can see
that NARM++ performs better than all pure models. These results
indicate that leveraging both long-term and short-term preferences
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(b) NDCG on Ali Mobile
Figure 4: The overall performance comparison on Ali Mo-
bile.

leads to substantial performance improvement in sequential recom-
mendation, but the hybrid models should have the ability to model
the temporal dynamics, diversity and complexity of users’ sequen-
tial behaviours. The outperformance of MTAM demonstrates that
the proposed multi-hop memory network is good at dealing with
sequential information with the help of time-aware attention and
T-GRU.

(3) The results of Top Pop and P-Pop are quite different on
rating data and transaction data. We observe that the simple Top
Pop provides adequate baseline results on the ML-25m and all
Amazon datasets, but it hardly works on Yoochoose and Ali Mobile
datasets. On the other hand,P-Pop performswell on Yoochoose and
Ali Mobile datasets, but doesn’t work on the rating datasets. These
results directly reveal the different patterns in rating sequences and
transaction sequences. Users may not rate the same item multiple
times, which explains the poor performance of P-Pop on rating
datasets. While in transaction scenarios, users tend to click on the
same item many times and the more interactions may indicate
more interest, which explains the good performance of P-Pop on
transaction datasets. The experimental results demonstrate that
MTAM performs well on both rating data and transaction data.

(4) We observe thatMTAM provides more competitive results
than NARM++ on five of six datasets, while they are comparable
on remaining one. MTAM and NARM++ are both implemented
with the proposed time-aware attention and T-GRU. The differences
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Table 3: Ablation Analysis on six datasets. MTAM with T-SeqRec uses T-SeqRec as the recurrent unit. MTAM without Time-
Aware RNN uses traditional GRU as recurrent unit and MTAM without Time-Aware attention uses traditional dot-product
attention as attention kernel. MTAM via T-GRU and MTAM via GRU store the hidden states of RNN instead of behaviour
embeddings. Time-Aware Self Attention is a SASRec implemented with the proposed time-aware attention. We treat GRU as
the baseline model and the boldface number is the best method. We show the improvement of the best method over GRU.

HR@10 NDCG@10
ML-25m Electronics CDs & Vinyl Movies & TV Yoochoose Ali Mobile ML-25m Electronics CDs & Vinyl Movies & TV Yoochoose Ali Mobile

GRU 0.1946 0.0370 0.1082 0.1474 0.5345 0.2299 0.1159 0.0267 0.0705 0.1104 0.3365 0.1549
MTAM 0.2053 0.0423 0.1206 0.1605 0.5386 0.2501 0.1187 0.0307 0.0783 0.1210 0.3381 0.1651

MTAM with
T-SeqRec 0.2073(1.0% ↑) 0.0396(6.4% ↓) 0.12(0.5% ↓) 0.1603(0.1% ↓) 0.5378(0.2% ↓) 0.2531(1.2% ↑) 0.1203(1.3% ↑) 0.0289(5.9% ↓) 0.0789(0.8% ↑) 0.1213(0.3% ↑) 0.337(0.3% ↓) 0.1671(1.2% ↑)

MTAM without
Time-Aware

RNN
0.2038(0.7% ↓) 0.025(41% ↓) 0.1135(5.9% ↓) 0.1603(0.1% ↓) 0.5389(0.1% ↑) 0.2519(0.7% ↑) 0.1171(1.3% ↓) 0.0156(49% ↓) 0.075(4.2% ↓) 0.1212(0.1% ↑) 0.3378(0.1% ↓) 0.1669(1.0% ↑)

MTAM without
Time-Aware
Attention

0.1952(4.9%↓) 0.0375(11%↓) 0.1127(6.6%↓) 0.1612(0.4%↑) 0.5361(0.4%↓) 0.2420(3.2%↑) 0.1116(6.0%↓) 0.0264(14%↓) 0.0727(7.2%↓) 0.1218(0.7%↑) 0.3367(0.4%↓) 0.1603(2.9%↓)

MTAM via T-GRU 0.2032(1.0% ↓) 0.0369(13% ↓) 0.1136(5.8% ↓) 0.1611(0.4% ↑) 0.5348(0.7% ↓) 0.25161(0.6% ↑) 0.1161(2.2% ↓) 0.0246(20% ↓) 0.0738(5.8% ↓) 0.1205(0.4% ↓) 0.3376(0.2% ↓) 0.1673(1.3% ↑)
MTAM via GRU 0.2002(2.5% ↓) 0.0255(40% ↓) 0.1095(9.2% ↓) 0.1593(0.8% ↓) 0.5352(0.6% ↓) 0.2501(-) 0.1141(3.8% ↓) 0.0154(50% ↓) 0.0717(8.4% ↓) 0.1207(0.3% ↓) 0.3366(0.4% ↓) 0.1652(0.1% ↑)
Time-Aware
Self Attention 0.1953(4.7% ↓) 0.038(10% ↓) 0.1112(7.8% ↓) 0.1566(2.4% ↓) 0.5393(0.1% ↑) 0.2549(1.9% ↑) 0.1112(6.3% ↓) 0.0283(7.8% ↓) 0.0736(6.0% ↓) 0.1175(2.9% ↓) 0.3394(0.4% ↑) 0.1682(1.9% ↑)

improvement 6.5% 14.3% 11.5% 9.4% 0.90% 8.8% 3.8% 15.0% 11.1% 10.3% 0.86% 8.6%

0.1125

0.114

0.1155

0.117

0.1185

0.12

0.1215

0.195

0.197

0.199

0.201

0.203

0.205

0.207

1 2 3 4 5 6 7 8 9

N
DC

G
@

10

HR
@

10

number of hops

HR@10 NDCG@10

(a) HR@10 and NDCG@10
on ML-25m

0.025

0.026

0.027

0.028

0.029

0.03

0.031

0.037

0.038

0.039

0.04

0.041

0.042

0 1 2 3 4 5 6 7 8

N
DC

G
@

10

HR
@

10

number of hops

HR@10 NDCG@10

(b) HR@10 and NDCG@10
on Amazon Electronics

0.074

0.075

0.076

0.077

0.078

0.079

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0 1 2 3 4 5 6 7 8

N
DC

G@
10

HR
@

10

number of hops

HR@10 NDCG@10

(c) HR@10 and NDCG@10
on Amazon CDs & Vinyl

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.15

0.153

0.156

0.159

0.162

0 1 2 3 4 5 6 7 8

N
DC

G
@

10

HR
@

10

number of hops

HR@10 NDCG@10

(d) HR@10 and NDCG@10
on Amazon Movies & TV

0.335

0.3358

0.3366

0.3374

0.3382

0.534

0.5352

0.5364

0.5376

0.5388

1 2 3 4 5 6 7 8 9

N
DC

G
@

10

HR
@

10

number of hops

HR@10 NDCG@10

(e) HR@10 and NDCG@10
on Yoochoose

0.16

0.161

0.162

0.163

0.164

0.165

0.166

0.238

0.24

0.242

0.244

0.246

0.248

0.25

0.252

0 1 2 3 4 5 6 7 8

N
DC

G@
10

RH
@

10

number of hops

HR@10 NDCG@10

(f) HR@10 and NDCG@10
on Ali Mobile

Figure 5: The performance comparison among MTAMs with different number of hops on six datasets, where MTAM with 0
hop is T-GRU.
between them are thatMTAM integrates long-term and short-term
preferences via a multi-hopmemory network, whileNARM++ uses
an attention mechanism on the hidden states of RNN to learn local
user preferences, and combines local and global preferences with a
bi-linear decoder. The experimental results prove that a multi-hop
memory network provides a better way for information fusion.

6.5 Ablation Analysis for MTAM
To verify the effectiveness of the proposed time-aware attention, T-
GRU and themulti-hop structure of MTAM, we conduct an ablation
analysis to demonstrate the contribution of each module. Similar
to the experiments of overall performance in Section 6.4, we only
report the results of 𝐾 = 10 for all datasets in Table 3.

From the results in Table 3, we have some observations:
(1) MTAM defeats MTAM with T-SeqRec for HR@10 on four

of the six datasets, while only defeats it for NDCG@10 on four of
the six datasets. Similar results can also be observed in the com-
parison between T-GRU and T-SeqRec in Table 2. These results
indicate that the proposed T-GRU performs better at the recall
task than the ranking task. Since the mission of MTAM is Top-K
recommendation in the candidate retrieval stage, T-GRU seems to
be the better choice to capture user’s short-term intent.

(2) We observe thatMTAM performs better than MTAMs based
on a traditional attention mechanism and GRU unit on five of the
six datasets, except thatMTAMwithout Time-Aware Attention
dominates other models on the Movies & TV dataset. These results
prove that in most cases the proposed temporal gating methodology
improves the performance of attention and recurrent neural models
for the Top-K recommendation task.

(3) MTAM is obviously more competitive than MTAM via T-
GRU andMTAM via GRU.MTAM maintains behaviour embed-
dings in memory, whileMTAM via T-GRU andMTAM via GRU
store the hidden states of RNN in memory. This result confirms
that a memory network is more effective to learn long-term de-
pendencies than attention recurrent networks (e.g. NARM). An
explanation is that RNNs would forcefully summarise the infor-
mation of all prior behaviours into a hidden state, which makes it
difficult to assign credit to each behaviour in prediction.

(4) To demonstrate that the proposed time-aware attention is a
generally improved version of the attention mechanism and can
be applied to attention RNNs, self-attention networks and memory
networks, we not only equip NARM andMTAM with it, but also
update SASRec to a time-aware version. To our surprise, Time-
Aware Self Attention achieves the best performance amongst
all models on two transaction datasets, but loses to MTAM and
to most other reassembled MTAMs on all rating datasets. This
interesting observation first illustrates that the temporal distance is
of great importance to the attention mechanism when calculating
the correlation between two hidden vectors. Secondly, it implies
that time-aware self-attention models may be more competent
to handle transaction sequences than attention recurrent models
and memory models. Still, attention recurrent models and memory
models are probably better choices to deal with rating sequences.

6.6 Influence of Multiple Hops
Finally, we are curious about whether reading user memory for
multiple hops helps to improve the performance of MTAM. We
study the performance of MTAM for HR@10 and NDCG@10 by
tuning the number of hops in the range of 0 ∼ 8.
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Results are shown in Figure 5. We observe that theMTAMs with
multiple hops preform better than theMTAMwith one hop on five
out of six datasets. The only exception is a transaction dataset, Ali
Mobile, in which the average length of user behaviour sequences
is much longer than the other five datasets (shown in Table 1).
On Ali Mobile dataset, the single-hop MTAM obviously improves
upon T-GRU, but fails to be further strengthened by performing
the reading operation for multiple hops. This result indicates that
a deeper memory network may be not suitable for all datasets.
Nevertheless, overall, multiple hops improve the performance of
MTAM. Whilst the best number of hops varies from one dataset to
another, in most cases, MTAM needs to read the user memory for
more than four hops in our experiments.

7 CONCLUSIONS AND FUTUREWORKS
In this paper, we proposed a novel Multi-hop Time-aware Attention
Memory (MTAM) network for the task of sequential recommenda-
tion. We first updated the attention mechanism and recurrent unit
with a new temporal gate to capture the temporal context of user
behaviours. Then we encoded user’s short-term intent with the pro-
posed T-GRU and maintained user’s long-term records in memory.
Finally, the user modeling procedure can be viewed as a decision
making progress by reading user memory for multiple hops based
on the short-term intent. The experimental results clearly demon-
strate the effectiveness of MTAM for Top-K recommendation and
the general improvement of the proposed temporal gating method-
ology to update the traditional attention mechanism and recurrent
unit for user modeling. Our experiments show a great potential in
integrating the temporal gate and self-attention neural networks.
Compared to NLP tasks, temporal information is much more im-
portant for dependencies between user behaviours than for words.
We plan to further explore how to take full advantage of temporal
information to improve self-attention neural recommenders.
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