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Abstract

TVQA is a large scale video question answering (video-QA) dataset based on popular
TV shows. The questions were specifically designed to require “both vision and language
understanding to answer”. In this work, we demonstrate an inherent bias in the dataset
towards the textual subtitle modality. We infer said bias both directly and indirectly,
notably finding that models trained with subtitles learn, on-average, to suppress video
feature contribution. Our results demonstrate that models trained on only the visual
information can answer ∼45% of the questions, while using only the subtitles achieves
∼68%. We find that a bilinear pooling based joint representation of modalities damages
model performance by 9% implying a reliance on modality specific information. We
also show that TVQA fails to benefit from the RUBi modality bias reduction technique
popularised in VQA. By simply improving text processing using BERT embeddings with
the simple model first proposed for TVQA, we achieve state-of-the-art results (72.13%)
compared to the highly complex STAGE model (70.50%). We recommend a multimodal
evaluation framework that can highlight biases in models and isolate visual and textual
reliant subsets of data. Using this framework we propose subsets of TVQA that respond
exclusively to either or both modalities in order to facilitate multimodal modelling as
TVQA originally intended.

1 Introduction
The increased complexity and capability of models on a single given modality (e.g. image,
text) has sparked interest in modelling multimodal data, especially over the last five years
[1, 3, 12, 16, 22, 36, 50]. The visual question answering (VQA) [1, 23] task in particu-
lar has inspired a wealth of multimodal fusion techniques and models [50], and taxonomic
analysis of the latent representations they produce [22]. However, videos promise more raw
visual content than still images used in VQA, and include temporal dependencies that models
could exploit. Multiple video question answering (video-QA) datasets have been developed
(MovieQA [41], MovieFIB [35], PororoQA [29], TGIF-QA [26], YouTube2Text-QA [46],
EgoVQA [15] and TVQA [32]). The TVQA1 dataset was designed to address shortcomings
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in previous datasets. It is relatively large, uses longer clips and realistic video content, and
provides timestamps allowing the identification of the subtitles and video frames relevant
to a given question. Most notably, the questions were specifically designed to encourage
multimodal reasoning, i.e. models built to answer the questions should require both visual
and textual cues simultaneously. To achieve this, Amazon Mechanical Turk (AMT) workers
were asked to design two-part compositional questions with a ‘main’ part (“What was House
saying..”) and a ‘grounding’ part (“..before he leaned over the bed?”). The authors claimed
this will naturally produce questions that require both visual and language information to
answer since “people often naturally use visual signals to ground questions in time”. De-
spite these specific efforts to ensure that “questions require both vision understanding and
language understanding”, we show that in practice this is not the case. We demonstrate the
subtitles are informative enough to answer the majority of questions in TVQA without re-
quiring complementary visual information as intended. We show that 68% of the questions
can be correctly answered using only the subtitles. Adding visual information merely in-
creases the accuracy to 72%, without subtitles this drops by 27%. TVQA authors stress the
importance of subtitles in video-QA “because it reflects the real world, where people interact
through language”. Though this is true and subtitles significantly improves performance on
TVQA, we find their inclusion actively discourages multimodal reasoning and that the sub-
titles dominate rather than complement the video features. The TVQA+ dataset [33] is not
considered in this study. Despite TVQA+ providing improved timestamp annotations, it is a
significantly smaller subset of TVQA. Furthermore, the ‘visual concept words’ collected for
TVQA+ sample from the questions and the correct answers. This means that models trained
on TVQA+ will be trained to use additional textual hints disproportionately from correct
answers 2. This defeats the purpose of video-QA models as it assumes the correct answer is
known to the model during feature extraction. The main contributions of this paper are: I)
An evaluation framework for multimodal datasets. II) Extensive analysis of the performance
of the TVQA model and dataset per modality and feature type, including the relative contri-
butions of each feature, notably finding that models trained with subtitles learn to suppress
video feature contribution. III) Demonstrate an inherent reliance in the questions on the
subtitles rather than multimodal interactions. IV) State of the art results achieved using the
baseline TVQA model by simply boosting its textual reasoning with contextual embeddings
using BERT [14]. V) Define data subsets that respond exclusively to a single modality or a
combination of modalities. VI) Demonstrate that the model-agnostic RUBi learning strategy
(reducing unimodal bias) [9] fails to improve TVQA performance, inline with other textually
biased datasets. VII) Apply bilinear pooling fusion to the TVQA baseline. The evaluation
framework and proposed subsets are available on GitHub3.

2 Related Work

QA datasets with visual inputs have been key areas for developing multimodal reasoning in
deep learning. However, merely collecting a real world dataset inevitably introduces biases
into it [10, 19, 42, 43].
Video Question Answering: One of the earliest practical video-QA datasets is MovieQA
[41], which provided long video clips but had a relatively low number of clips and QA pairs.

2TVQA+: http://tvqa.cs.unc.edu/download_tvqa_plus.html
3Available at https://github.com/Jumperkables/tvqa_modality_bias
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MovieFIB [35] is a fill-in-the-blank QA dataset. Although the task is simpler than free-
language QA, MovieFIB has substantially more QA pairs than MovieQA. PororoQA [29]
is smaller with cartoon-based video clips to simplify the stories. TGIF-QA [26] uses short
social media GIFs and emphasises actions and verbs. EgoVQA [15] uses first person video
to emulate the natural behaviour of intelligent agents. The AVSD dataset [3] is a visual
dialog dataset i.e. multiple rounds of ongoing QA ‘dialog’ about a given video. AVSD offers
audio signals and ‘dialog history’.
VQA Language Bias: Though VQA benchmarks are specifically designed to be multi-
modal, they suffer from strong language priors overriding visual information [6]. VQA v2
[20] was designed to weaken those priors [6]. For each question, a new image-question-
answer triplet is created with the same question, a similar image, and a different answer.
These ‘balancing’ questions help mitigate question specific priors. A ‘changing priors’ ex-
tension for both versions [2] was introduced as a harder ‘diagnostic’ version. Without con-
gruent language priors from the training splits to exploit, many VQA models significantly
degraded in performance on the test splits [5, 6, 16, 34, 45].
Reducing Bias: Agrawal et al. [2] also introduced the Grounded VQA model (GVQA)
that ‘disentangles’ image-feature-recognition and the process of indentifying the space of
plausible answers into 2 separate steps. GVQA outperforms previous benchmarks, but the
complex design isn’t easily transferred to other models. Flexible model-agnostic learning
strategies have recently been developed that are trained end-to-end [9, 11, 38]. Ramakr-
ishnan et al. [38] proposed an adversarial difference-in-entropy regularisation scheme that
uses a deliberately biased question-only model alongside the full model to adversarially re-
duce language bias learned during training. The RUBi (Reducing Unimodal Bias) learning
strategy [9] uses a question-only model to apply a learnable mask on the outputs of the full
model during training. The mask is intended to dynamically alter the loss by modifying the
predictions of the full model. This causes highly biased training examples to make more
biased predictions, effectively decreasing (increasing) the loss, and therefore importance, of
highly-biased (visually dependent and difficult) training samples. The CLEVRER dataset
[47] aims to both reduce language bias by sampling evenly across question types and mit-
igate simpler pattern-recognition behaviour. Girdhar and Ramanan [18] create the CATER
dataset using a homogeneous scene and object set with multiple variable dataset parameters
to ‘fully control’ object and scene bias.
TVQA: The TVQA dataset [32] is designed to address the shortcomings of previous datasets.
It has significantly longer clip lengths than other datasets and is based on TV shows instead
of cartoons, giving it realistic video content with simple coherent narratives. It contains over
150k QA pairs. Each question is labelled with timestamps for the relevant video frames and
subtitles. The questions were gathered using AMT workers. Most notably, the questions
were specifically designed to encourage multimodal reasoning by asking the workers to de-
sign two-part compositional questions. The first part asks a question about a ‘moment’ and
the second part localises the relevant moment in the video clip i.e. [What/How/Where/Why/
Who/...] — [when/before/after] —, e.g. [What] was House saying [before] he leaned over
the bed?. The authors argue this facilitates questions that require both visual and language
information since “people often naturally use visual signals to ground questions in time”.
The authors identify certain biases in the dataset. They find that the average length of correct
answers are longer than incorrect answers. They analyse the performance of their proposed
baseline model with different combinations of visual and textual features on different ques-
tion types they have identified. However, they didn’t note the substantial performance of
their baseline model on either visual or textual features alone.
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3 Experimental Framework

The evaluation framework we present here is built on the original TVQA model and is de-
signed to assess the contributions of visual and textual information in a mutlimodal dataset.
The goal is to identify any inherent biases towards either modality. As such, we focus the
analysis of the model on the processing streams of the visual and textual features, and the use
of ‘context matching’. This provides a powerful tool to assess in isolation the contribution
of the individual feature types and any combination of them.
Model Definition: The model takes as inputs, I) A question q (13.5 words on average), II)
Five potential answers {ai}4

i=0 (each between 7-23 words), III) A subtitle S and video-clip V
(∼60-90s at 3FPS), and outputs the predicted answer. As the model can either use the entire
video-clip and subtitle or only the parts specified in the timestamp, we refer to the sections
of video and subtitle used as segments from now on. Figure 1 demonstrates the textual and
visual streams and their associated features in the model architecture.
ImageNet Features: Each frame is processed by a ResNet101 [24] pretrained on ImageNet
[13] to produce a 2048-d vector. These vectors are then L2-normalised and stacked in frame
order: V img ∈ R f×2048 where f is the number of frames used in the video segment.
Regional Features: Each frame is processed by a Faster R-CNN [39] trained on Visual
Genome [31] in order to detect objects. Each detected object in the frame is given a bound-
ing box, and has an affiliated 2048-d feature extracted. Since there are multiple objects
detected per frame (we cap it at 20 per frame), it is difficult to efficiently represent this in
time sequences [32]. The model uses the top-K regions for all detected labels in the segment
as in Anderson et al. [4] and Karpathy and Fei-Fei [27]. Hence the regional features are
V reg ∈ Rnreg×2048 where nreg is the number of regional features used in the segment.
Visual Concepts: The classes or labels of the detected regional features are called ‘Visual
Concepts’. Yin and Ordonez [48] found that simply using detected labels instead of image
features gives comparable performance on image captioning tasks. Importantly they argued
that combining CNN features with detected labels outperforms either approach alone. Visual
concepts are represented as either GloVe [37] or BERT [14] embeddings V vcpt ∈ Rnvcpt×300

or Rnvcpt×768 respectively, where nvcpt is the number of visual concepts used in the segment.
Text Features: In the evaluation framework, the model encodes the questions, answers,
and subtitles using either GloVe (∈ R300) or BERT embeddings (∈ R768). Formally, q ∈
Rnq×d ,{ai}4

i=0 ∈R
nai×d ,S ∈Rns×d where nq,nai ,ns is the number of words in q,ai,S respec-

tively and d = 300,768 for GloVe or BERT embeddings respectively.
Context Matching: Context matching refers to context-query attention layers recently adopt-
ed in machine comprehension [40, 49]. Given a context-query pair, context matching layers
return ‘context aware queries’.
Model and Framework Details: In our evaluation framework, any combination of subtitles
or visual features can be used. All features are mapped into word vector space through a tanh
non-linear layer. They are then processed by a shared bi-directional LSTM [21, 25] (‘Global
LSTM’ in Figure 1) of output dimension 300. Features are context-matched with the ques-
tion and answers. The original context vector is then concatenated with the context-aware
question and answer representations and their combined element-wise product (‘Stream Pro-
cessor’ in Figure 1, e.g. for subtitles S, the stream processor outputs [Fsub;Asub,q;Asub,a0−4 ;
Fsub�Asub,q;Fsub�Asub,a0−4 ]∈ Rnsub×1500 where Fsub ∈ Rns×300. Each concatenated vector
is processed by their own unique bi-directional LSTM of output dimension 600, followed by
a pair of fully connected layers of output dimensions 500 and 5, both with dropout 0.5 and
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Figure 1: TVQA Model. �/⊕ = Element-wise multiplication/addition, � = context match-
ing. Any feature streams may be enabled/disabled.

ReLU activation. The 5-dimensional output represents a vote for each answer. The element-
wise sum of each activated feature stream is passed to a softmax producing the predicted
answer ID. All features remain separate through the entire network, effectively allowing the
model to choose the most useful features. This makes this model a strong tool in assessing
the biases towards certain features in the dataset.

4 Results and Discussion

4.1 Feature Contributions
Table 1a shows that all evaluated models trained with subtitles significantly outperform mod-
els trained without them, with a p− value = 1.4e−15 < 0.05 using t-test.
Models with Subtitles: Each BERT variation that includes subtitles gains at least 2% ac-
curacy compared to GloVe, leading to the SI, SVI, and SVIR variations achieving state-of-
the-art results. Models trained using only subtitles achieve +20% accuracy using GloVe and
+23% using BERT embeddings when compared to the best performance using any combi-
nation of video features. This implies that the subtitles are the most informative features in
answering the majority of the questions.
Models without Subtitles: With GloVe embeddings, the most impactful video feature is
the visual concepts, which increases performance by 0.5%, following a trend in image cap-
tioning [48]. Similarly, we find that using image features and visual concepts combined
outperforms using either alone. However, using BERT with just visual concepts drops per-
formance by∼2%. We theorise this is due to the contextual nature of the BERT embeddings
hindering the model by sequentially processing the intrinsically unordered visual concepts.

4.2 Subtitles Dominate Instead of Complement
To further analyse the contributions of each feature, we plot the pre-softmax votes for an-
swers between models trained with and without subtitles. Figure 2 shows the votes per
feature for SVIR and VIR trained model with BERT embeddings, measured in true and false
positive answers. In the VIR model (left side of Figure 2) we find that all video features
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Table 1: (a): Each experiment is a separate end-to-end model. E.g. ‘SI with BERT’ is
the submodel of subtitles and ImageNet features (green and pink in Figure 1) with BERT
embeddings used for the subtitles, questions and answers (random choice accuracy is 20%).
Models shown in bold surpass the SOTA. Models use timestamp annotations except STAGE
which instead uses ‘temporal supervision’ (b): The percentages of questions in the validation
set that are correctly answered by models in Group A, but incorrectly answered by Group B.
Subtitle= all models trained with subtitles. S = subtitle-only model. SVIR = model trained
with all 4 features. S, V, I, R = group of 4 models each trained with one of the 4 features.

Model Text Val Set Train Set
V GloVe 45.39% 60.82%
V BERT 43.44% 52.76%
I GloVe 44.86% 61.52%
I BERT 44.44% 65.02%
R GloVe 42.36% 54.83%
R BERT 42.53% 53.85%
VIR GloVe 46.72% 61.10%
VIR BERT 44.61% 61.38%
S GloVe 66.07% 76.42%
S BERT 68.30% 80.77%
SI GloVe 67.78% 78.78%
SI BERT 70.56% 84.84%
SVI GloVe 69.34% 78.90%
SVI BERT 72.13% 86.84%
SVIR GloVe 69.53% 80.08%
SVIR BERT 71.80% 81.58%
STAGE [33] GloVe 66.92% -
STAGE [33] BERT 70.50% -
VSQA [44] GloVe 67.70% -
VSQA [44] BERT 72.41% -
Human - 93.44% -

(a)

Group A Group B BERT GloVe
All - 90.12% 87.68%
All Non-Subtitle 22.68% 22.91%
All SVIR 18.32% 18.16%
All S, V, I, R 7.68% 5.40%

Subtitle - 84.74% 80.56%
Subtitle Non-Subtitle 22.68% 22.91%

Non-Subtitle - 67.44% 64.77%
Non-Subtitle Subtitle 5.38% 7.12%
Non-Subtitle S 16.72% 18.50%

S, V, I, R - 82.44% 82.28%
S, V, I, R SVIR 14.44% 14.77%

SVIR - 71.80% 69.52%
SVIR S, V, I, R 3.79% 2.01%

S - 68.30% 66.07%
S Non-Subtitle 17.59% 19.80%
S V, I, R 21.94% 22.27%
S VIR 32.83% 30.78%

(b)

similarly contribute to answer votes. When averaged across correct predictions, each fea-
ture contributes positively to the correct answer i.e. true positives, and contributes less to
the other incorrect answers. However, when trained with subtitles in the SVIR model, the
subtitles overwhelmingly contribute to the correct answer. Furthermore, in the true positive
case, each video feature actually contributes less on average than in the accompanying in-
correct answers. This is shown in the SVIR model in Figure 2, where the quartiles of true
positive votes in each video feature are below the votes for false positives. This shows that
in case of correct predictions, models trained with subtitles learn, on-average, to suppress
the video feature contribution, demonstrating a significant bias towards subtitles in TVQA.
We find similar results in the GloVe models (see supplementary materials). Strictly speak-
ing, video-QA models that can constructively use video information at all are, to an extent,
multimodal as they interpret the video features with respect to the textual questions and an-
swers. However in TVQA, using subtitles ‘on-average’ actively suppresses these multimodal
contributions.

4.3 All You Need is BERT

The state-of-the-art STAGE model [33], proposed by the authors of TVQA, improves on
the original TVQA model by exploiting spatio-temporal relationships and simultaneously
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Figure 2: Pre-softmax vote contributions for answers in the validation set. Both are BERT
models: VIR (left) vs SVIR (right). The dashed lines represent quartiles.

(a) (b)

Figure 3: (a) Performance of models on each question type (offset from each model’s overall
accuracy). (b) IoU of correct answers between models.

replacing GloVe with BERT embeddings. This comes at a significant increase of model
complexity with over 14 additional layers and steps added to the original model. We show in
Table 1a that simply upgrading GloVe to BERT embeddings in the relatively simple original
model outperforms the more complex STAGE model. Yang et al. [44] present a detailed
analysis of BERT on the TVQA dataset and propose a ‘V+S+Q+A’ model that is structurally
similar to the simple TVQA baseline (i.e. separate visual and subtitle streams that additively
combines their contributions at the voting stage). Though they do not explore bias in TVQA,
they too demonstrate a substantial boost in performance over STAGE by upgrading from
GloVe to BERT on a simpler model. This implies that better modelling of the subtitles using
BERT in TVQA leads to higher performance regardless of any improvement in modelling
the video information. Furthermore, these results indicate that complex models focused on
improving more abstract behaviours do not necessarily improve video-QA performance in
TVQA. We theorise that these complex models are currently introducing unhelpful overhead
and that, if the goal is to increase performance on TVQA, models are best served by exploit-

Citation
Citation
{Yang, Garcia, Chu, Otani, Nakashima, and Takemura} 2020



8 WINTERBOTTOM, XIAO, MCLEAN, AL MOUBAYED: ON MODALITY BIAS IN TVQA

Figure 4: The dual-stream model. Both features are integrated into a single adapted ‘stream
processor’. � = context matching. BLP is used to fuse S and I features.

Table 2: (a): Dual-stream vs TVQA SI baseline. The hidden pooling dimension is 1500. (b):
TVQA SI model trained on the RUBi criterion (provided by [9]).

Model Text Val Acc
TVQA SI GloVe 67.78%
TVQA SI BERT 70.56%
Dual-Stream MCB GloVe 63.46%
Dual-Stream MCB BERT 60.63%
Dual-Stream MFH GloVe 62.71%
Dual-Stream MFH BERT 59.34%

(a)

Model Dataset Baseline Acc RUBi Acc
TVQA SI (GloVe) TVQA 67.78% 67.67%
TVQA SI (BERT) TVQA 70.56% 70.37%
RUBi Baseline [9] VQA-CP v2 test 38.46% 47.11%
SAN [45] VQA-CP v2 test 33.29% 36.69%
UpDn [4] VQA-CP v2 test 41.17% 44.23%
RUBi Baseline [9] VQA v2 test-dev 63.10% 61.16%
RUBi Baseline [9] VQA v2 val 64.75% 63.18%

(b)

ing the subtitles. These results also suggest that there is an imbalance in the information
contributed by visual and textual modalities. We argue that the contextual nature of BERT
embeddings makes them ideal for processing the sequential subtitles which, since TVQA is
based on TV shows, often follow a structured narrative.

4.4 Dataset Analysis

Feature Distributions: We analyse the features that are most useful in answering each
of the question types. Figure 3a shows that models trained without subtitles significantly
underperform (relative to their own model accuracy) on ‘which’ and ‘who’ questions. This
makes intuitive sense as names and named entities commonly appear in the subtitles. Subtitle
models significantly overperform on ‘why’ and ‘how’ questions, at ∼82%. Intuitively these
question types are harder because the answers are implied rather than concrete and often
revolve around explanations that are best represented in language.
Modality Subsets: By analysing the similarity between the outputs of the different models,
we label each question with the modalities needed to answer it. We isolate subsets of the val-
idation set that are answered correctly using each of the evaluated models. Figure 3b shows
that the correctly answered questions of models trained without subtitles have a relatively
low intersection over union (IoU) score, approximately 58-68%. Although the models have
similar overall accuracies, they seem to perform well on different questions, implying they
successfully use information from relatively separate feature types. The overall accuracies
of subtitle models are significantly higher, giving higher IoU scores among those models.
To inform our recommendation on how to introduce the data subsets, we run a comparative
analysis of the outcomes of different groups of models, i.e. Group A and Group B, to identify
the proportion of the dataset that is answered correctly by models in Group A and incorrectly
by all models in Group B. We will refer to this measure as the Inclusion-Exclusion Measure
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Figure 5: The percentage increase of each respective question type, in the specified IEM
subset, compared to the overall question type distribution in the validation set. Each of the
subsets analysed corresponds to a row in Table 1b.

(IEM). Table 1b summarises this analysis. Row ‘All/-’ shows that the union of all correct
answers of all models is 90.1%, whereas ‘All/Non-Subtitle’, contrasts predictions of all mod-
els trained with subtitles versus those trained without subtitles. This illustrates that 22.7%
of the questions cannot be answered by non-subtitle models. ‘Non-Subtitle/Subtitle’ shows
that only 5.4% can be uniquely answered by the models that don’t use subtitles. To identify
multimodal reliant questions, we consider those that SVIR can answer correctly but that the
unimodal models cannot. ‘SVIR/S,V,I,R’ shows that 3.79% of the validation set and 2.62%
of the training set (see supplementary materials) fits this multimodal criteria (∼4.3k). IEM is
a strict and minimal lower bounding method. A less strict method of partitioning the dataset
is to consider ‘popular vote’, i.e. a set where the majority vote of the models in question
agree on the answer. Though more restrictive than popular vote, IEM removes potential am-
biguity, i.e. if a question cannot be correctly answered by any subtitle model, then subtitle
content is not answering that question. Note that our proposed subsets are inherently linked
to our model. Using our IEM approach, we discount the large amount of questions answered
by unimodal models as not multimodal (by definition), providing a valuable starting point.
Including better models as they are developed in IEM would provide increasingly better sub-
set splits. To provide insight into how TVQA question information is actually distributed, we
present the relative abundance of each question type in our proposed IEM subsets in Figure
5. Most notably, ‘who’ and ‘which’ questions are more highly concentrated in the ‘subtitle
reliant’ subset. This is unsurprising as the subtitles contain a wealth of named entities and
nouns. Conversely, the ‘video reliant’ dataset contains more ‘what’ and ‘where’ questions.

4.5 Further Experimental Findings

Joint Representations Appear Detrimental: Baltrusaitis et al. [7] consider representation
as summarising multimodal data “in a way that exploits the complementarity and redun-
dancy of multiple modalities”. Joint representations (e.g. concatenation, bilinear pooling
[8, 16, 17, 28, 30]) combine unimodal signals into the same representation space. However,
they struggle to handle missing data [7] as they tend to preserve shared semantics while
ignoring modality-specific information [22]. We explore how a joint representation in the
TVQA model affects performance as another method of inferring potential unimodal re-
liances. We create our ‘dual-stream’ (Figure 4) model from the SI TVQA baseline model
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with as few changes as possible, i.e. I) we use context matching between subtitle and Ima-
geNet features to allow bilinear pooling at each time step between both modalities, II) we use
the new pooled feature as input for a single stream processor. Table 2a shows that both our
dual-stream models perform significantly worse than the baseline model. This implies that
questions in TVQA do not effectively use a joint representation of its features, and poten-
tially highlights: I) information from either modality is consistently missing, II) prioritising
‘shared semantics’ over ‘modality-specific’ information harms performance on TVQA. Both
of these possibilities would contradict TVQA’s stated aim as a multimodal benchmark.
RUBi Doesn’t Help: Strong unimodal language biases are prevelent in VQA. As discussed
earlier, the VQA-CP v1/2 dataset [2] is a rearrangement of VQA v1/2 datasets [6, 20] re-
spectively such that certain kinds of identified QA priors appear exclusively in the training
or test sets. Unable to rely on these priors, many VQA baseline model’s performance sig-
nificantly drops. The model-agnostic RUBi strategy [9] uses a text-only variant of a model
during training (see supplementary materials for an illustration) to reduce (increase) the loss,
and therefore importance, of highly-biased (visually dependent and difficult) training sam-
ples. Shown in Table 2b , benchmark models using RUBi perform significantly better on
the less-textually-biased VQA-CP dataset, implying RUBi successfully discourages models
from relying on the now unhelpful text prior shortcuts. Conversely, RUBi harms performance
on datasets with greater text biases (VQA v2 test-dev/val), implying RUBi’s bias-averse be-
haviour is actually detrimental on datasets where these shortcuts exist. We find that RUBi
fails to improve accuracy on TVQA and in fact slightly decreases performance on both BERT
and GloVe models, implying that TVQA could benefit heavily as a multimodal benchmark
by addressing its own textual priors. To the best of our knowledge, we are the first to ap-
ply RUBi to a video-QA dataset. We note that subtitles can also provide learned text-prior
shortcuts, as such, the TVQA text-only model in the RUBi strategy also includes subtitles.

5 Conclusion

We develop a multimodal evaluation framework using the TVQA model to assess potential
dataset biases. We find that information needed to answer questions in the TVQA dataset is
concentrated in the subtitles to the extent that video information is suppressed during train-
ing, contradicting the multimodal nature TVQA was specially designed to have. We provide
an extensive analysis on which question types in TVQA require video or textual features and
propose subsets of TVQA, in particular those which require specific features for multimodal
reasoning. We achieve state-of-the-art results on the TVQA dataset by simply using BERT
embeddings with the TVQA model. This demonstrates that the performance increase in the
STAGE model is largely due to improved NLP embeddings. We find further evidence for
TVQA’s unimodal textual bias through our experiments with joint representations and the
RUBi learning strategy. We show that multimodality is not always guaranteed in video-QA
and suggest that it is challenging to design questions without introducing biases that dis-
courage multimodality. We suggest that great care should be taken in creating datasets for
multimodal reasoning in video-QA. To further advance the field, any research based on mul-
timodal datasets should consider evaluating the dataset and presenting the results based on
subsets and discuss how a given model performs under different modality conditions.
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