
Towards a Human-AI Hybrid System for Categorising
Programming Problems

Filipe Dwan Pereira
Francisco Pires

Federal University of Roraima
Boa Vista, Brazil

filipe.dwan@ufrr.br,junior-
pires.rr@hotmail.com

Samuel C. Fonseca
Elaine H. T. Oliveira

Leandro S. G. Carvalho
David B. F. Oliveira

Federal University of Amazonas
Manaus, Brazil

{scf,elaine,galvao,david}@icomp.ufam.edu.br

Alexandra I. Cristea
Durham University

Durham, UK
alexandra.i.cristea@durham.ac.uk

Abstract
As programming skills are increasingly required world-wide

and across disciplines, many students use online platforms that
provide automatic feedback through a Programming Online Judge
(POJ) mechanism. POJs are very popular e-learning tools, boasting
large collections of programming problems. Despite their many
benefits, students often struggle when solving problems not com-
patible with their prior knowledge. One important cause of this is
that usually statements of problems are not classified according to
programming topics (paradigms, data structures, etc.) and, hence,
students waste time and effort in trying to solve exercises that are
not tailored to their level and needs. Thus, to support students, we
propose a new, “front-heavy” pipeline method to predict topics of
POJ problems, using Bidirectional Encoder Representations from
Transformers (BERT) for contextual text augmentation over the
problem statements and further allowing for (lighter-weight) classi-
cal machine learning for classification. Our model outperformed all
current state-of-the art, with an F1-score of≈ 86% using stratified 10
fold cross-validation in a classically challenging multi-classification
problem with seven categories. As a proof of concept, we conducted
an experiment to show how our predictive model can be used as a
human-AI hybrid complement for POJ, where learners would use
AI-based recommendations to find the most appropriate problems.
CCS Concepts
• Applied computing → Computer-assisted instruction; An-
notation; • Computing methodologies → Natural language gen-
eration; Supervised learning by classification.

ACM Reference Format:
Filipe Dwan Pereira, Francisco Pires, Samuel C. Fonseca, ElaineH. T. Oliveira,
Leandro S. G. Carvalho, David B. F. Oliveira, and Alexandra I. Cristea. 2021.
Towards a Human-AI Hybrid System for Categorising Programming Prob-
lems. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432422

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432422

1 Introduction

Programming Online Judge (POJ) provides a reliable automatic
and instantaneous evaluation of the source code of an algorithm
sent by the learners [40]. POJs are platforms used by many learners
who wish to improve their programming skills. These systems have
been shown to enhance education, promote competitive program-
ming and support recruitment processes [5, 6, 35, 39, 41]. They are
widely used in job interviews of large technology companies, such
as Google, Amazon, etc. [40, 41]. Originally, POJs were designed
for self-directed learning, without the aid of an instructor [40, 41].
However, these systems are increasingly being used in education
institutions (e.g. to support programming classes) as they reduce in-
structors’ workload in correcting the learners’ programming tasks.
At the same time that provides students with instantaneous feed-
back about the correctness of their solutions [35, 40].

POJ problems span over different computer science categories –
e.g., graphs, paradigms, computational geometry, data structures,
etc. Understanding such categorisation allows learners to engage
with specific algorithm techniques and could improve their skills.
Furthermore, for curriculum design, it has been previously pointed
out that it is essential to consider problem categories [38, 41].

Nonetheless, this massive variety of problems are typically piled
in volumes which are not organised by categories or difficulty levels
[5, 17, 39, 41]. Zhao et al. [41] explain that organising problems by
volume has low maintenance costs for developing and updating a
POJ system, since many problems could be easily collected (e.g.,
from an annual ACM International Collegiate ProgrammingContest
(ICPC)) and piled into a new volume, without any classification.
However, such convenience for POJ maintainers comes with an
educational cost for learners, as they may loose time and waste
effort in trying to solve exercises that are not tailored to their level
and needs, what might lead to frustration and dropout. To illustrate,
it is hard and sometimes frustrating for learners to find problems of,
e.g., computational geometry, which may be spread across multiple
volumes. Similarly, novice programmers tend to struggle to find
easy problems in their favourite categories.

One reason why these problems are not categorised is that this
task of annotation is manually performed by the problems’ creators
or expert users, which is a costly and tedious process [6, 12, 41].
In addition, this process is not scalable, as POJs are continuously
increasing their collection of problems [17, 40]. Thus, we formulate
the following research question: how to support semi-automatic
categorisation of programming problems from online judges?

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

94

https://doi.org/10.1145/3408877.3432422
https://doi.org/10.1145/3408877.3432422

To answer our research question, we trained and compared dif-
ferent predictive models, capable of detecting the categories of the
problem based on their statements through the use of advanced
Natural Language Processing techniques (NLP) and Machine Learn-
ing (ML). Moreover, we propose a method able to use small data, by
using contextual paraphrasing with BERT, for text augmentation
on our training set, to boost the performance.

Furthermore, using our predictive model, we conducted an ex-
periment with learners to verify to which extent our model can
be useful in helping learners to recognise the problems’ category
and, hence, the programming topic needed to solve a problem. As
a result, our experiments showed that our model could support
POJ users in the task of categorisation and, hence, the model can
be used as a human-AI hybrid complement for POJ systems, to ar-
range and categorise problems, where learners would use AI-based
recommendations to find the most appropriate exercises. To sum
up, our main contributions are:

• a new ‘front-heavy’ pipeline method to predict topics of POJ
problems with BERT for contextual text augmentation for
small data;

• shallow learning for the main multiple-class classification
problem, with higher performance than SoA.

• empirical evidence that our method can be used as a human-
AI hybrid complement for POJ;

• a new 𝑑𝑎𝑡𝑎𝑠𝑒𝑡0 collected and refined from 2 POJ that can be
used as benchmark in future works.

2 Related Work
Text mining in educational scenarios is gaining momentum, due

to the increasing availability of different sources, such as social
media, discussion forums inMOOC systems, online news, etc. [2, 10,
12]. In spite of this boom, surprisingly few works analysed problem
descriptions in POJs. Instead, POJ studies use student data – e.g.,
the number of accepted problems, wrong answers, or compilation
errors – to propose methods to help in learning programming. Such
data is used to predict learner performance [1, 3, 22, 31, 32, 34, 36],
estimate dropout [21, 33], recommend tasks [5, 18, 39], or detect
problem difficulty [9, 17, 24]. Next, we look at the (very small subset
of) POJ studies targeting the same problem as us – that of predicting
problem categories (also called problem topics) in online judges.

A recent pioneering study tackling this task [41] used students’
sequence of attempts to solve programming problems, to predict
the categories of 940 problems collected from three POJs. The au-
thors depicted the multi-classification task with 10 categories; their
best model achieved an overall F1-score of ≈ 70.63%, which we be-
lieve may be due to their selected categories not being appropriate
(e.g., their ‘Tricky problem’ category would clearly overlap with
several others, etc.). Further, [41] also tried to use problem state-
ments to extract categories; however, they achieved poor results
(≈ 40% accuracy) using Latent Dirichlet Allocation (LDA). In spite
of the result, [41] recognised the potential of using text mining on
problem descriptions, but argued that it might be hard to extract
useful information from these problems statements, as they might
contain figures or attachments. To check their argument, we ran-
domly selected 100 problems from the A2 online judge and only
13 problems had figures. Moreover, even removing those figures, it
0github.com/filipedwan/SIGCSE2021-nlp-poj

is possible to understand the problem and categorise it. Athavale
et al. [4] also addressed the problem of category prediction via
natural language techniques over problem statements. Their study
used two datasets for the multi-class classification, with a total of
1709 problems distributed onto four categories. However, their best
predictive models achieved only F1-scores between 19.2% to 62.2%,
9% lower than human-level analysis.

Instead, here we propose a new pipeline model, which combines
cutting edge NLP techniques, such as BERT, with different shallow
and deep ML classifiers. We carefully design a front-heavy method,
to deal with sparse categories, in the text preprocessing – here,
augmentation phase – but allow for further training to be done on
lightweight systems, if new data is collected. We apply our new
model on the challenging multi-class problem with a total of 7
categories, onto two new datasets, and show that we achieve a
higher performance, when compared to the state of the art (SoA)
[4, 41]. Moreover, we go one step further and, for the first time, to
the best of our knowledge, show via experiments with humans that
our model could support learners in problem categorisation.
3 Research Design
3.1 Problem Definition

POJs automatically evaluate code submitted by learners as solu-
tions to programming problems [40]. The evaluation process uses
test cases to check whether the output of the learner code matches
the expected outputs [33, 40]. Statements of programming problems
in POJ have a description (or various length) and some example Test
Cases. Figure 1 illustrates an example problem. We chose this (easy)
problem as it is a rare case of a problem with a brief statement.

Read two numbers M and N indefinitely. Calculate and write the sum of their factorial. Be carefull, because the
result can have more than 15 digits.

Input
The input file contains many test cases. Each test case contains two integer numbers M (O,; M,; 20) and N (O,; N,;
20). The end of file is determined by eof.

Output
For each test case in the input your program must print a single line, containing a number that is the sum of the
both factorial (Mand N).

Input Sample

::;4;::::;4;::::================::::j:::! 4;:8~ Test Case 1 ~0=0==================::::;:'=2~ Test Case 2
Test Case3

Output Sample

0
(I)
(/)
0
::!. -g,
0 ::,

0 .. ';;}
(/) (/)

(I) -(/)

Figure 1: A problem statement from the URI Online Judge

In this work, we are interested in grouping problems in terms
of their related programming knowledge components, concepts or
skills. To illustrate, a problem that can be solved by using a stack
or a linked list, can be classified as belonging to the ‘data structure’
category. Similarly, a problem that employs dynamic programming
or backtracking belongs to the class paradigms. A very popular
book among ICPC competitors [16] defines 7 macro-categories of
programming problems, which are: introductory problems, data
structure, paradigms, graphs, mathematics, strings processing, com-
putational geometry.

Thus, wemodel this task of categorisation as amulti-classification
problem, i.e, our predictive model must estimate one out of 𝑛 cat-
egories for each problem statement (in our case, 𝑛=7, the seven
categories aforementioned). Our predictive model can be repre-
sented by the function 𝑓 : 𝑃 → 𝐶 , where 𝑃 denote the set of
problems statements and 𝐶 the categories 𝐶 = {𝑐1, 𝑐2, ..., 𝑐7}, with:

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

95

Input: a problem statement 𝑝 ∈ 𝑃 .
Output: a predicted category 𝑐 ′ ∈ 𝐶 , where 𝑓 (𝑝) = 𝑐 ′.
Target: a target (correct) class 𝑐 ∈ 𝐶; if 𝑐 = 𝑐 ′, our prediction

is correct.
3.2 Categorisation of Problems

As one of the contributions of this work, we scraped 5213 pro-
gramming problem statements, merged and unified the labels from
the URI Online Judge (URI for short) and A2 Online Judge (A2 for
short). In both systems, the problem categories were annotated
either by the problem creators, or by expert users, who had already
solved the problem.

Some issues occurred from the start, as the problems were cate-
gorised differently in the two systems. Whilst URI used 8 computer
science (macro-)subjects, A2 used finer-grained segregation, with a
total of 152 categories. The reason for so many categories was that
the maintainers manually labelled the problems with a plethora
of specific categories, such as minimum spanning tree, depth-first
search, flood fill, which could easily be classified into a more gen-
eral category, such as graph. Such extremely detailed categorisation
led also to extreme sparsity, with some classes with 1-2 problem
instances only. To be more precise, 75 of the A2 categories contain
less than 10 problems, rendering the data hard for machine learning.
Note that with exception of the ad-hoc category (explained next),
a well-known book [16] only recommends a limited number of
categories – the ones used by URI as macro-categories. Thus, we
map the categories of A2 over the macro-categories of URI. Table 1
presents the categories’ names, categories’ descriptions and the
number of problems collected in each category after the mapping.
Table 1: Database description of all problems from URI and
A2 after merger

Category Description N
Beginner easy problems targeted for novice program-

mers
305

Ad-hoc problems involving simulation, dates, logic,
and so forth

603

Strings string manipulation, palindromes, and
longest common subsequence

387

Data Structures
(DS)

queue, stack map, set, hash tables, priority
queues and so forth

647

Mathematics number theory, prime numbers, combina-
torics, big numbers and so forth

1075

Paradigms dynamic programming, binary search,
greedy, backtracking and so forth

1441

Graph flood fill, minimum spanning tree, maxi-
mum flow, trees

363

Computational
Geometry (CG)

problems about points, lines, polygons, etc. 392

After analysing the problems from each category, we observed
that the ‘ad-hoc’ category could be confusing. As shown in Table 1,
this category comprises problems of logic, simulation, dates, which
might be present in other categories. Indeed, just like a human, a
machine learning model might be addled to classify problems in
it, as almost all problems have some ad-hoc properties (e.g., logic)
which might lead to problems with more than one category. As we
are designing our problem as a multi-classification task (as URI and
A2 do), not as a multi-labelling task, we thus decided to suppress the

ad-hoc category from our analysis, to avoid misclassification and
confusion in our test with humans. Moreover, the ad-hoc category
is not present in the reputed POJ-related book [16].
3.3 Dealing with Class Imbalance

One known issue in deep (or shallow) learning is class imbal-
ance, i.e., it is critical to have a sufficient number of instances for
each target category. Otherwise, the estimation model for category
importance may be biased. This sparsity issue can be more of a prob-
lem in multi-category classification problems such as ours. In these
situations, studies [7, 15] suggest adjusting the model by chang-
ing the performance metric (e.g. using F1-score) and by trying to
balance the data using undersampling or oversampling techniques.

Undersampling is not feasible in our case, as this technique is suit-
able only for problems with an abundance of data [26] and, thus, we
opted for oversampling. In general, studies simply repeat instances
of minority classes to carry out oversampling [15, 26]. However,
such simple duplication of data might lead to overfitting [7]. As
such, differently, we applied contextual text augmentation over the
problem statements of the minority categories of our dataset, to
produce new programming problem statements on the training
set. To do so, we used a word embeddings augmenter [25], which
stochastically replaced a token (in our case a word), by using the
surrounding tokens, through the use of the cutting-edge method
BERT [8]. It is worth noting that for the problem we are tackling,
paraphrasing might help our ML models to analyse different forms
of the same programming statement, increasing the variance of
the training set. To illustrate, we show an example of a part of an
original problem statement from the beginner category, followed
by its contextual paraphrasing:

• Original sentence: Read two integer values. After this, calcu-
late the product between them and store the result in a variable
named PROD...

• Contextual paraphrase: Add an arbitrary number of integer
values. Given that, calculate the result with them; store the
result in a variable labelled prod...

Note that, in some cases, the contextual paraphrase does not
make much sense. However, our goal here is to create more in-
stances to increase variation on the minority classes and reduce
the chances of the model to minimise errors by frequently predict-
ing the majority class – achieving a high (but misleading) overall
accuracy, but with a low recall and precision per class, mainly in
the minority classes.

We were careful however with the paraphrasing technique to at
most duplicate the number of samples of the minority categories
on the training set, to avoid adding too much artificial information,
rendering it non-representative. This approach was validated by
us empirically. Thus, we decreased the imbalanced proportion, but
did not completely balance the data. I.e., given our majority class
Paradigms (1441 problems), we duplicated the number of samples
in our minority class, Beginner (305 problems) to 610 problems.
However, for Mathematics (1075 problems), we just created enough
problems to achieve the same number as the majority class.
3.4 Preprocessing and Feature Extraction

Several aspects related to data quality can influence the perfor-
mance of the machine learning systems. As such, in this step, we
aimed to clean up the text and prepare it for the machine learning

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

96

algorithms. First, to expedite the comparisons in the indexing pro-
cess, we converted each capital letter of the data to lowercase. The
next step was to carry out the tokenisation of the text, meaning here
breaking the sequence of words into (fragments of) single words.
Subsequently, we removed the stopwords, masked the numbers,
and replaced line breaks with simple spaces. Moreover, we removed
all the html tags from the text.

After preprocessing, we extracted features from the text by using
two techniques: i) distributed word representation and ii) analysis
of word importance. For the first, we employed the famous Skip-
Gram model [28] on our own corpus, to produce a word embedding
for each word of our vocabulary through the use of shallow neural
networks. To do so, we used the word2vec (W2V) module from
the well-known gensim library with a default dimensionality of
the word vectors of 20; and a default maximum distance between
the current and predicted word within a sentence of 10. Still, as an
alternative for distributed word representation, we extracted the
word embeddings of the pre-trained GloVe [30], coined from Global
Vectors, corresponding to the vocabulary of our corpus. We also
used analysis of word importance, employing TF-IDF. All of these
word representations were used in the machine learning algorithms
to compete with each other.
3.5 Classification and Validation

Following previous research [11, 19, 27] in text classification, we
evaluated the ensemble methods Random Forest (RF), Extra Trees
Classifier (ETC), and XGBoost (XGB). Finally, besides using BERT
for text augmentation, as explained in section 3.3, we also analysed
BERT for classification (called Bert Classifier), using 12 encoding
layers from a Transformer network, each layer having 12 attention
heads, as recommended in [8].

For validation of the machine learning models, we used Strat-
ifiedKFold (from scikit-learn) with 10 folds. This method divides
the data into homogeneous subgroups called stratum (stratified
sampling), so that the right number of instances is sampled from
each stratum, to keep the same category proportion in the train-
ing and validation sets [13]. This method is recommended [13] for
imbalanced datasets like ours. For each stratified fold, we applied
contextual paraphrasing only on the training set.
3.6 Evaluation by Humans

Predictive models can estimate the probability that an item
belongs to a particular class. As such, to validate whether our
method can support learners, we conducted an experiment with
10 Computer Science undergraduate students with experience in
algorithms, who have already participated in ICPC. More specifi-
cally, these students participated in the regional contest of ICPC’17
(see icpc.baylor.edu/community/history). We chose these learn-
ers because they are familiar with all categories. As a controlled
treatment, we asked each learner to categorise a sample of 10 pro-
gramming problems manually. In an experimental treatment, the
same students categorised the same problems using the predicted
probabilities of our model as a heuristic. Notice that we sampled
the problems (stratified sampling) from our validation set for this
test with humans. Thus, the heuristic is estimated and calculated
on test data.
4 Results and Discussion

The results of the ensemble methods RF and ETC using different
text representation (W2C, GloVe, and TF-IDF) were similar, with

an advantage for RF. On the other hand, XGBoost achieved lower
performances. Figure 2 shows the average of the weighted F1-scores
of the models on the stratified cross-validation with 10 folds.

The contextual paraphrasing boosts the performance of the pre-
dictive models in almost all cases. Notice that BERT was crucial for
this boosting through the text augmentation; however, for classifi-
cation, this deep learning model did not achieve the best result (see
BERT and BERT+PAR in Figure 2). Indeed, Random Forest using
Word2Vec and contextual paraphrases (RF+W2C+PAR) outperform
the other models with the highest F1-score (≈ 86%) and a low stan-
dard deviation (𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.05 –McNemar’s Test). Still, this model
surpassed the current state of the art (as explained in related works)
on similar data. This represents thus one of the contributions of
our work - a new, “front-heavy” pipeline method to predict topics
of POJ problems with BERT for contextual text augmentation.

Figure 3 (left) shows the confusion matrix of our best model, in
which rows represent true categories, whilst columns represent
predicted categories. From a visual inspection, we can see that the
model can achieve high performance (> 75%) for the categories
computational geometry, data structure, mathematics, paradigms,
and strings. On the other hand, the performance for the graph and
beginner categories could be better.

To further analyse the types of errors this model makes, we com-
pare these errors proportionally. In Figure 3 (right) we fill the main
diagonal with zeros to focus on the misclassification and divide
the number of errors on the rows by the number of instances for
each corresponding category. First, some rows are brighter, such as
the rows corresponding to categories strings, DS, CG, mathematics
and paradigms. This means that most of the instances from these
categories are classified correctly. Notice that the errors are not
perfectly symmetrical; for example, there are more beginner prob-
lems misclassified asmathematics than the reverse. Hence, columns
for the categories beginner, mathematics and paradigms are darker,
which tells us that many problem statements are misclassified into
these three categories.

A possible explanation of why many instances were wrongly
classified as mathematics is that some problems use some mathe-
matical formulas, even when they do not belong to the mathematics
category, which might cause misclassification. Specifically, we can
see in this figure that the model confuses beginner and mathemat-
ics. Indeed, many beginner problems have as context basic math-
ematics operations, such as asking students to multiply variables
or problems evolving factorials, Fibonacci series or counting of
prime values. We can also see some confusion between graph and
paradigms, which could be explained as there are graph problems
which might be solved using techniques from paradigms, such as
dynamic programming (e.g., the Bellman-Ford algorithm for the
shortest path problem with negative edges in a graph).

It is worth noting that, in general, our model performs better on
the categories which comprise the most difficult problems. To illus-
trate, our model achieves a recall of 89% on computation geometry,
which contains problems evolving Convex Hull, Graham Scan, etc.
Similarly, our model achieves also 89% on the paradigms category,
which comprises problems evolving dynamic programming and
backtracking, which are notorious difficult to all but experienced
programmers.

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

97

icpc.baylor.edu/community/history

BE
RT

BE

RT
+P

A
R

CN
N

C
N

N
+P

A
R

ET

+G
LO

V
E

ET
+G

LO
V

E+
PA

R

ET
+ T

FI
D

F
ET

+ T
FI

D
F+

PA
R

ET

+W
2V

ET

+W
2V

+P
A

R

RF
+G

LO
V

E
R

F+
G

LO
V

E+
PA

R

R
F+

 TF
ID

F
RF

+ T
FI

D
F+

PA
R

R

F+
W

2V

R
F+

W
2V

+P
A

R

RN
N

RN
N

+P
A

R
X

G
B+

G
LO

V
E

X
G

B
+G

LO
V

E+
PA

R

X
G

B+
TF

ID
F

X
G

B
+ T

FI
D

F+
PA

R

X
G

B
+W

2V

X
G

B
+W

2V
+P

A
R

Fl
-s

co
re

 (
w

ei
gh

te
d)

0

0
0

0
0

0
~

■

■

■

■

■

■

■

~

~

m

~

ro

~

o
_

..
,

--
......

......

,__
_..

.

- - - - n
-

u
-

- - e
:::: ..

..,

-=- - - ~ .., ...

-
n u

n
-

...
 v

n ..

il--
-8-

t
t-f

fi-
t

~

.m

'"'
 ·w

~

Figure 2: We plot the weighted average F1-score since our dataset is imbalanced and this metric considers the proportion of
each class for calculation. In this figure, PAR refers to the use of paraphrasing in the training set.

beginner 0 0.02 0.27 0.11 0.05
0.8

0 0.01 0.06 0.02 0

DS - 0.03 0 0.1 0.05 0.02 0.6
Q)
::::,
ro
> graph - 0.05 0 0.15 0.16 0.01
Q)
::::, 0.4 L..
.µ

mathematics - 0.04 0 0 0.01

paradigms - 0.02 0 0 - 0.2

strings - 0.06 0 0 0

- 0.0
L.. l9 l/) .c l/l
Q) u 0 CL Ol C
C ro .µ

Ol C
L.. ro ·;::

Ol Ol E "O .µ

Q) ro l/l

.c Q) L.. .c ro .µ CL ro
E

predicted value

0.25

beginner

CG 0.20

DS
0.15

graph

mathematics 0.10

paradigms

0.05
strings

,._
l.? l/) ..c V'l V'l V'l

QJ 0 Q. u E Ol
C u C (0 Ol C ,._ (0 ·;:::
Ol Ol E "O

(0 V'l QJ QJ ,._
..Cl ..c (0 Q.

(0

0.00

E

Figure 3: Confusion Matrix of our best model (left) and error density by category (right).

From this analysis, we hypothesise that our model can be com-
plementary to humans in a human-AI system, as humans are better
in recognising the beginner category, where the model performed
worse, whilst learners with less experience would tend to strug-
gle to classify problems of the other categories, where our model
performed better.

It is important to note that Random Forest, with the best result,
can estimate the probability that an item belongs to a particular
class by averaging the probabilities estimation of its constituent
decision trees. Thus, we checked whether these predicted probabil-
ities can be used as a heuristic to enhance the learners capabilities’
to categorise programming problems and, hence, better recognise
the prior knowledge and skills needed to solve a programming task.

In the controlled treatment, without our heuristic, the learners
achieved an average F1-score of ≈ 54%. Figure 4 (left) shows their
performance by category in a confusion matrix. In the experimental
treatment, the same students categorised the same problems using

the probability estimation of our best model as a heuristic. We
presented the probability estimation as an array, containing a row
per problem statement and a column per category, each containing
the probability that the given problem statement belongs to the
given category (e.g., 70% chance that problem A belongs to the
category ‘graphs’). This time, the students achieved an average
F1-score of ≈ 87%. Figure 4 (right) shows the confusion matrix of
the students with our heuristic.

From the learner performance, we find further support towards
our hypothesis that our model can be complementary for humans
in POJ problem categorisation – another contribution of our work.
Figure 4 shows that the learners boost their performance in all
classes. Moreover, for ‘tougher’ categories, such as paradigms, their
recall tripled. We believe that this is an important move toward
the construction of a human-AI hybrid POJ system, where learners
would use AI-based recommendations to find problems that are
related to their skills and prior knowledge. In addition, we believe

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

98

1.0

beginner 0 0 0 0.33 0 0

CG - 0 0 0 0 0.2 0 0.8

DS- 0 0 0.4 0.2 0.1 0.2 0.1
Q) - 0.6
::I
(0

> graph - 0 0 0 0 0
Q)
::I
I...
.µ - 0.4

mathematics - 0.13 0.07 0 0 0 .07

paradigms - 0 0.09 0.18 0.09 0.27 0.27 0 .09 - 0.2

strings - 0 0 0 0 0 0~5·
I I - 0.0

I... <., (/) ..c 1/) 1/) 1/)
Q) u Cl a. u E O'I
C (0 .µ C
C I... (0 O'I ·;::
Ol Ol E 'O .µ

Q) Q) (0 1/)

.0 I... ..c (0
.µ a. (0

E
predicted value

1.0

beginner 0 0 0 0

0 0 0 0 0 .8

0 .1 0 .1 0 .1 0
Q) - 0.6
::I
(0

> graph - 0 0 0 0 0 0
Q)
::I
I...
.µ - 0.4

mathematics - 0 0 0 0 0 .07

paradigms - 0 0 0 0 0 - 0.2

strings - 0 0 0 0 0 0

I I I - 0.0
I... <., (/) ..c 1/) 1/) 1/)
Q) u Cl a. u E O'I
C (0 .µ C
C I... (0 O'I ·;::
Ol Ol E 'O .µ

Q) Q) (0 1/)

.0 I... ..c (0
.µ a. (0

E
predicted value

Figure 4: Performance of competitors without (left) and with the heuristic (right).

that our method can be applied in other domains, that is, other
kinds of online systems that often have the same issues as the POJ
problems: they are not (or not enough) labelled with the topic of
the resource. These online systems might also benefit from our
front-heavy pipeline method for categorisation.

5 Pedagogical Implications

Programming skills are really important nowadays and many
companies are demanding qualified programmers [23, 40]. More-
over, we learn programming by doing and, hence, practicing is one
of the most effective ways of improving [37]. POJ systems allow
practicing with instantaneous feedback; however, a major issue of
these systems is the typical lack of problem categorisation [17, 41].

For self-direct learning, understanding the problem categories
allows learners to engage with specific algorithm techniques and
could help improve their skills at a faster rate. On the other hand,
without awareness of the problem category, learners might waste
precious time and effort in trying to solve exercises that are not
tailored to their level and needs. As an analogy, it is similar to a
virtual store, where there are no salespeople physically present,
and where products are not categorised, that is, there is no cue to
guide customers to find out what they need, who likely will buy at
another store. In education, such lack of organisation might further
lead to frustration or even to dropout.

Thus, our front-heavy pipeline method and approach of using its
predicted probabilities as heuristic has potential benefits for educa-
tion, by enabling students to select problems that are better suited
to their skill level and prior knowledge. Instructors can also benefit
from that, by selecting adequate problems to compose assignment
lists – in which it is essential to consider problem categories.

Finally, categories are a form of simplified ontology [14]. Onto-
logical mapping of knowledge can lead to the understanding of the
meta-knowledge (’knowledge about knowledge’), and thus allow
access to a much deeper comprehension. Students accessing such
knowledge know in fact not only the basic knowledge [20, 29],
but also what they know – and are arguably better equipped to
further extend their comprehension in an orderly and systematic

fashion. Future research could further look into generating more
hierarchical ontologies with increased structure and depth.

6 Conclusions, Limitations and Future Work

In this work, we have proposed and evaluated a new, “front-
heavy” pipeline method to predict topics of POJ problems for “small
(sparse) data”, allowing for shallow learning for themainmulti-class
classification task. We showed here that our method can support
online judge users in categorisation, through a heuristic, based on
the probability estimation of our model. We believe that this is an
important move toward the construction of a human-AI hybrid POJ
system, where learners could have a better user experience in find-
ing appropriate problems. Interestingly, our model achieved higher
performance in the categories where humans achieve lower perfor-
mance and vice-versa. This renders our model naturally as a useful
tool for “pre-categorisation”, which could be later validated with
a human pipeline of expert users. As a replacement of the current
manual categorisation by expert users, our model clearly allows
for the task of categorisation to be accomplished with considerably
less effort.

Moreover, our method can also be useful as a benchmark (as
we make available our dataset) for future work. We achieve a com-
petitive F1-score of ≈ 86%, above the current state of the art. Still,
despite our model having proven to be a good heuristic, it can be
improved upon. Further work can look into optimising techniques
towards complete automatisation.

The main limitation of this work is related to the dataset. There
are very few POJs that categorise their problems and, hence, it is
difficult to find fully labelled datasets. Furthermore, this task of
categorisation could be further extended to a multi-label classifica-
tion, where one problem could potentially be labelled with multiple
labels/classes. Our paraphrasing technique sometimes produced
semantically irrelevant sentences. Nevertheless, this method of data
balancing produced better results than simple synonym replace-
ment, for instance. Future work can look into other methods with
increased semantics.

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

99

Acknowledgements
This research, carried out within the scope of the Samsung-

UFAM Project for Education and Research (SUPER), according to
Article 48 of Decree nº 6.008/2006 (SUFRAMA), was partially funded
by Samsung Electronics of Amazonia Ltda., under the terms of Fed-
eral Law nº 8.387/1991, through agreements 001/2020 and 003/2019,
signed with Federal University of Amazonas and FAEPI, Brazil. This
study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

References
[1] Alireza Ahadi, Raymond Lister, Shahil Lal, Juho Leinonen, and Arto Hellas.

2017. Performance and consistency in learning to program. In Proceedings of the
Nineteenth Australasian Computing Education Conference. 11–16.

[2] Tahani Aljohani, Filipe Dwan Pereira, Alexandra I Cristea, and Elaine Oliveira.
2020. Prediction of Users’ Professional Profile in MOOCs Only by Utilising
Learners’Written Texts. In International Conference on Intelligent Tutoring Systems.
Springer, 163–173.

[3] Michael Mogessie Ashenafi, Giuseppe Riccardi, and Marco Ronchetti. 2015. Pre-
dicting students’ final exam scores from their course activities. In 2015 IEEE
Frontiers in Education Conference (FIE). IEEE, 1–9.

[4] Vinayak Athavale, Aayush Naik, Rajas Vanjape, and Manish Shrivastava. 2019.
Predicting Algorithm Classes for Programming Word Problems. In Proceedings
of the 5th Workshop on Noisy User-generated Text (W-NUT 2019). Association for
Computational Linguistics, Hong Kong, China, 84–93.

[5] Giorgio Audrito, Tania Di Mascio, Paolo Fantozzi, Luigi Laura, Gemma Martini,
Umberto Nanni, and Marco Temperini. 2019. Recommending Tasks in Online
Judges. In International Conference in Methodologies and intelligent Systems for
Techhnology Enhanced Learning. Springer, 129–136.

[6] Jean Luca Bez, Neilor A Tonin, and Paulo R Rodegheri. 2014. URI Online Judge
Academic: A tool for algorithms and programming classes. In 2014 9th Interna-
tional Conference on Computer Science & Education. IEEE, 149–152.

[7] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. 2018. A systematic
study of the class imbalance problem in convolutional neural networks. Neural
Networks 106 (2018), 249–259.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] Tomáš Effenberger, Jaroslav Čechák, and Radek Pelánek. 2019. Measuring Diffi-
culty of Introductory Programming Tasks. In Proceedings of the Sixth (2019) ACM
Conference on Learning@ Scale. 1–4.

[10] Rafael Ferreira-Mello, Máverick André, Anderson Pinheiro, Evandro Costa, and
Cristobal Romero. 2019. Text mining in education.Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 9, 6 (2019), e1332.

[11] Irina Fishcheva and Evgeny Kotelnikov. 2019. Cross-Lingual Argumentation
Mining for Russian Texts. In International Conference on Analysis of Images, Social
Networks and Texts. Springer, 134–144.

[12] Samuel C Fonseca, Filipe Dwan Pereira, Elaine HT Oliveira, David BF Oliveira,
Leandro SG Carvalho, and Alexandra I Cristea. 2020. Automatic Subject-based
Contextualisation of Programming Assignment Lists. Educational Data Mining.

[13] Aurélien Géron. 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly
Media.

[14] Nicola Guarino and Christopher Welty. 2000. A formal ontology of properties. In
International Conference on Knowledge Engineering and Knowledge Management.
Springer, 97–112.

[15] Guo Haixiang, Li Yijing, Jennifer Shang, Gu Mingyun, Huang Yuanyue, and
Gong Bing. 2017. Learning from class-imbalanced data: Review of methods and
applications. Expert Systems with Applications 73 (2017), 220–239.

[16] Steven Halim, Felix Halim, Steven S Skiena, and Miguel A Revilla. 2013. Compet-
itive Programming 3. Lulu Independent Publish.

[17] Chowdhury Md Intisar and Yutaka Watanobe. 2018. Cluster analysis to estimate
the difficulty of programming problems. In Proceedings of the 3rd International
Conference on Applications in Information Technology. 23–28.

[18] Hermino Barbosa Freitas Junior, Filipe Dwan Pereira, Elaine Harada Teixeira
Oliveira, David Fernandes, and Leandro Silva Galvão de Carvalho. 2020. Re-
comendação Automática de Problemas em Juízes Online Usando Processamento
de Linguagem Natural e Análise Dirigida aos Dados. In Brazilian Symposium on
Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE).

[19] Muhammad Khalifa and Noura Hussein. 2019. Ensemble Learning for Irony
Detection in Arabic Tweets. In Proceedings of the In Metha P.,
Rosso P., Majumder P., Mitra M.(Eds.) Working Notes of the Forum for Information
Retrieval Evaluation (FIRE 2019). CEUR Workshop Proceedings.

[20] Taisiya Kostareva, Svetlana Chuprina, and Alexandr Nam. 2016. Using Ontology-
Driven Methods to Develop Frameworks for Tackling NLP Problems.. In AIST
(Supplement). 102–113.

[21] Carmen Lacave, Ana I Molina, and José A Cruz-Lemus. 2018. Learning Analyt-
ics to identify dropout factors of Computer Science studies through Bayesian
networks. Behaviour & Information Technology 37, 10-11 (2018), 993–1007.

[22] Jarkko Lagus, Krista Longi, Arto Klami, and Arto Hellas. 2018. Transfer-learning
methods in programming course outcome prediction. ACM Transactions on
Computing Education (TOCE) 18, 4 (2018), 1–18.

[23] Paul Luo Li, Amy J Ko, and Andrew Begel. 2020. What distinguishes great
software engineers? Empirical Software Engineering 25, 1 (2020), 322–352.

[24] Marcos Avner Pimenta de Lima, Leandro Silva Galvão de Carvalho, Elaine H. T.
Oliveira, David Fernandes, and Filipe Dwan Pereira. 2020. Classificação de dificul-
dade de questões de programação com base em m´tricas de cǿdigo. In Brazilian
Symposium on Computers in Education (Simpósio Brasileiro de Informática na
Educação-SBIE), Vol. 31.

[25] Edward Ma. 2019. NLP Augmentation. https://github.com/makcedward/nlpaug.
[26] Harish Tayyar Madabushi, Elena Kochkina, and Michael Castelle. 2020. Cost-

Sensitive BERT for Generalisable Sentence Classification with Imbalanced Data.
arXiv preprint arXiv:2003.11563 (2020).

[27] Raj P Mehta, Meet A Sanghvi, Darshin K Shah, and Artika Singh. 2020. Sentiment
Analysis of Tweets Using Supervised Learning Algorithms. In First International
Conference on Sustainable Technologies for Computational Intelligence. Springer,
323–338.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[29] Riichiro Mizoguchi and Jacqueline Bourdeau. 2000. Using ontological engineering
to overcome common AI-ED problems. Journal of Artificial Intelligence and
Education 11 (2000), 107–121.

[30] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[31] Filipe Pereira, Elaine Oliveira, David Fernandes, Hermino Junior, and Leandro
Silva Galvão Carvalho. 2019. Otimização e automação da predição precoce do
desempenho de alunos que utilizam juízes online: uma abordagem com algoritmo
genético. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação-SBIE), Vol. 30. 1451.

[32] Filipe Dwan Pereira, Samuel C Fonseca, Elaine HT Oliveira, David BF Oliveira,
Alexandra I Cristea, and Leandro SG Carvalho. 2020. Deep learning for early
performance prediction of introductory programming students: a comparative
and explanatory study. Brazilian journal of computers in education. 28 (2020),
723–749.

[33] Filipe D Pereira, Elaine Oliveira, Alexandra Cristea, David Fernandes, Luciano
Silva, Gene Aguiar, Ahmed Alamri, andMohammad Alshehri. 2019. Early dropout
prediction for programming courses supported by online judges. In International
Conference on Artificial Intelligence in Education. Springer, 67–72.

[34] Filipe Dwan Pereira, Elaine HT Oliveira, David Fernandes, and Alexandra Cristea.
2019. Early performance prediction for CS1 course students using a combination
ofmachine learning and an evolutionary algorithm. In 2019 IEEE 19th International
Conference on Advanced Learning Technologies (ICALT), Vol. 2161. IEEE, 183–184.

[35] Filipe D Pereira, Elaine HT Oliveira, David BF Oliveira, Alexandra I Cristea,
Leandro SG Carvalho, Samuel C Fonseca, Armando Toda, and Seiji Isotani. 2020.
Using learning analytics in the Amazonas: understanding students’ behaviour in
introductory programming. British Journal of Educational Technology (2020).

[36] Keith Quille and Susan Bergin. 2019. CS1: how will they do? How can we help?
A decade of research and practice. Computer Science Education 29, 2-3 (2019),
254–282.

[37] A. V. Robins. 2019. Novice programmers and introductory programming. In The
Cambridge Handbook of Computing Education Research. Cambridge University
Press, Cambridge, Chapter 12, 327–376.

[38] Alexander Joseph Romiszowski. 2016. Designing instructional systems: Decision
making in course planning and curriculum design. Routledge.

[39] Antonio A Sánchez-Ruiz, Guillermo Jimenez-Diaz, Pedro P Gómez-Martín, and
Marco A Gómez-Martín. 2017. Case-Based Recommendation for Online Judges
Using Learning Itineraries. In International Conference on Case-Based Reasoning.
Springer, 315–329.

[40] SzymonWasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal.
2018. A survey on online judge systems and their applications. ACM Computing
Surveys (CSUR) 51, 1 (2018), 1–34.

[41] Wayne Xin Zhao, Wenhui Zhang, Yulan He, Xing Xie, and Ji-Rong Wen. 2018.
Automatically learning topics and difficulty levels of problems in online judge
systems. ACM Transactions on Information Systems (TOIS) 36, 3 (2018), 1–33.

Paper Session: Feedback / Tutoring A SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

100

https://github.com/makcedward/nlpaug

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Problem Definition
	3.2 Categorisation of Problems
	3.3 Dealing with Class Imbalance
	3.4 Preprocessing and Feature Extraction
	3.5 Classification and Validation
	3.6 Evaluation by Humans

	4 Results and Discussion
	5 Pedagogical Implications
	6 Conclusions, Limitations and Future Work
	References

