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Abstract—Automatic detection of prohibited objects within
passenger baggage is important for aviation security. X-ray
Computed Tomography (CT) based 3D imaging is widely used
in airports for aviation security screening whilst prior work on
automatic prohibited item detection focus primarily on 2D X-
ray imagery. Whilst some prior work has proven the possibility
of extending deep convolutional neural networks (CNN) based
automatic prohibited item detection from 2D X-ray imagery to
volumetric 3D CT baggage security screening imagery, it focuses
on the detection of one specific type of objects (e.g., either bottles
or handguns). As a result, multiple models are needed if more
than one type of prohibited item is required to be detected in
practice. In this paper, we consider the detection of multiple
object categories of interest using one unified framework. To
this end, we formulate a more challenging multi-class 3D object
detection problem within 3D CT imagery and propose a viable
solution (3D RetinaNet) to tackle this problem. To enhance the
performance of detection we investigate a variety of strategies
including data augmentation and varying backbone networks.
Experimentation carried out to provide both quantitative and
qualitative evaluations of the proposed approach to multi-class
3D object detection within 3D CT baggage security screening
imagery. Experimental results demonstrate the combination of
the 3D RetinaNet and a series of favorable strategies can achieve
a mean Average Precision (mAP) of 65.3% over five object classes
(i.e. bottles, handguns, binoculars, glock frames, iPods). The overall
performance is affected by the poor performance on glock frames
and iPods due to the lack of data and their resemblance with the
baggage clutter.

Index Terms—3D volumetric data, deep convolutional neural
network, X-ray computed tomography, baggage data, multi-class
3D object detection.

I. INTRODUCTION

X-ray baggage security screening is widely used to maintain
aviation security. Currently, multi-view X-ray is predominantly
used in aviation security for cabin baggage screening. This tra-
ditional baggage screening process, using 2D X-ray scanners,
has the disadvantage of both inter-object occlusion and clutter
within any given image projection of the scanned baggage
item. As a result, it poses a considerably challenging visual
search task for the human operators to discover prohibited
items (e.g., liquids, firearms, knives, etc.) overlapped with
other benign items (e.g., electronic devices) within a con-
strained time frame. For this reason, passengers are currently

required to divest large electronic devices and liquids which
decreases checkpoint throughput significantly. Furthermore,
human operator performance can be subjective and is heavily
affected by many factors such as the experience, fatigue,
monotony and concentration, although many successful mea-
sures have been taken to alleviate the problem in practice
(e.g., Threat Image Projection (TIP) [1], [2] and shorter shift
rotations [3]).

By leveraging recent advances in object classification and
detection, significant progress has been made in automatic
prohibited item detection within 2D X-ray imagery [4]. The
use of deep learning techniques allows real-time and accurate
detection of prohibited items even in cluttered X-ray images
[5]–[7]. However, performance can be affected when the
baggage contains significant clutter and inter-object occlusion
due to the fundamental limitation of projected 2D X-ray
imagery. To improve the detection rate without affecting the
checkpoint throughput, airports are currently increasing the
use of 3D CT screening which does not require the removal
of electronic devices and liquids during baggage screening.
The reconstructed 3D CT images provide more information
and make it possible for the human operators to inspect the 3D
CT images from differing views. However, current technology
does not facilitate the automatic detection of (non-explosive)
prohibited items such as prohibited items and liquid containers.
Prior work [8] has shown the possibility of using deep 3D
CNN models for object classification and detection within
baggage security imagery. However, this study was limited to
the detection of only one specific object category (i.e. either
bottles or handguns) by one model. It is unknown how the
detection performance will be affected for multi-class object
detection in a unified framework and which strategies are
beneficial to the enhancement of detection performance in 3D
CT baggage security screening imagery?

To answer the above questions, in this paper we extend
the prior work [8] in single-class object detection to a more
challenging multi-class object detection problem in a unified
framework and propose a viable solution to this problem.
The proposed approach is evaluated in real volumetric 3D
CT baggage security screening imagery to get insightful



observations and conclusions for this emerging research topic.
Specifically, we investigate different CNN architectures (i.e.
ResNet [9]) with variable depths under the RetinaNet object
detection framework [10]. We also evaluate the effectiveness
of data augmentation techniques including 3D volume flipping
and rotation.

The contributions of this work are summarized as follows:
– a unified framework using deep CNN models for multi-

class prohibited item detection within volumetric 3D CT
baggage imagery;

– an evaluation of different 3D CNN models in the detec-
tion of prohibited items within volumetric 3D CT bag-
gage imagery and the effect of data/feature augmentation.

II. RELATED WORK

Automatic object detection and recognition algorithms have
been proposed and evaluated for baggage aviation security
screening based on 2D X-ray images [1], [4]. The use of
CNN architectures and object detection frameworks boosts the
performance with a high detection rate and a low false positive
rate. For instance, Gaus et al. [11] evaluate the effectiveness
of Faster R-CNN [12], Mask R-CNN [13] and RetinaNet [10]
in detecting six different objects (i.e. bottle, hairdryer, iron,
toaster mobile and laptop) in 2D X-ray baggage images.

To enable automatic baggage screening using 3D CT im-
agery, a variety of studies have been carried out in recent years
[2], [14]–[21].

One research direction is object segmentation based on
the material and morphological structure [14], [19], [21].
Specifically, Mouton et al. [19] propose a two-stage approach
for object segmentation within 3D CT imagery. A CT volume
is firstly coarsely segmented based on the voxel intensity
ranges of pre-defined materials. Subsequently, a variety of
shape descriptors are computed as features for the random
forest classifier to determine a segment resulted from the first
stage is good (containing only one object) or bad (containing
multiple objects and hence need further segmentation). Wang
et al. [21] studied the issue of object segmentation and classi-
fication in 3D CT imagery and focused mainly on the material
characteristics without considering any specific prohibited item
(e.g., firearm, knife, etc.). An approach to 3D segmentation
is proposed based on recursive morphological operations and
the Support Vector Machines (SVM) were employed for the
classification of three types of materials.

3D object detection within 3D CT baggage security screen-
ing imagery has been studied in [8], [22], [23]. Flitton et al.
[23] evaluate the effectiveness of different 3D descriptors in a
search-based detection approach. Their approach is limited to
detect known objects for which the reference data are assumed
to be available. Such an assumption hinders its application
in practice when the reference data are usually unavailable.
Wang et al. [8] use contemporary object detection frameworks
based on 3D CNN and evaluate its performance on individual
object detection independently. Based on this work, we present
a unified framework for multi-class object detection within 3D
CT imagery for baggage security screening.

Fig. 1. 3D RetinaNet object detection framework with ResNet [9] as the
backbone model.

III. METHOD

RetinaNet is employed in this study since it has proved
better than its counterpart Faster R-CNN in the prior work
[8]. We extend the RetinaNet framework to the 3D version
used for 3D object detection in our study. Subsequently, data
augmentation is described as a favourable technique to boost
detection performance.

A. 3D RetinaNet

RetinaNet [10] is one of the most successful object detection
frameworks designed for 2D natural images. Follow the same
spirit, we extend it for 3D object detection within 3D CT
imagery. As shown in Figure 1, our 3D RetinaNet consists of
a feature pyramid network (FPN) implemented by ResNet [9]
and a 3D bounding box regression and classification module
which is implemented by a few 3D convolutional layers.

The ResNet based FPN is formed by four ResNet blocks
and the 3D feature volumes (corresponding to the feature maps
in 2D) output from these four blocks are considered as {C2,
C3, C4, C5} which have strides of {4,8,16,32} voxels with
respect to the input volume. The top-down pathway and lateral
connections are used to enhance the features generated in the
bottom-up pathway (i.e. C2-5). The top-down feature volumes
corresponding to C2-C5 are denoted as P2-P5. The highest-
level feature volumes P5 are generated by a 3D convolutional
layer with the stride of 1 and the kernel size of 3 from input
C5. The feature volumes P4 are the summation of upsampled
P5 and the output of a 3D convolutional layer with C4 as the
input. Similarly, the feature volumes P3 and P2 are calculated.

Multi-scale feature volumes {P2, P3, P4, P5} are fed into
the bounding box regression and classification module. The
module consists of a branch for 3D bounding box regression
and a branch for classification. These two branches have the
same architecture with four 3D convolutional layers and an
output layer. The output of the regression branch is a 3D



3D TIP

Fig. 2. An illustration of 3D threat image projection for synthetic CT image
generation (a signnature of binocular is inserted into the bottom part of the
baggage CT volume).

volume with 6 × na channels corresponding to the bounding
box biases with respect to the pre-defined anchor in a specific
location. na denotes the number of anchors pre-defined in each
location. The output of the classification is a 3D volume with
6 × na channels corresponding to one background class and
five foreground object classes under consideration in this study
for each pre-defined anchor in a specific location.

The cross-entropy loss and smooth L1 loss are used for the
classification and regression respectively. The positive targets
are calculated by comparing the pre-defined anchors against
the ground truth bounding boxes with the Intersection Over
Union (IOU) threshold of 0.1 which is also used as the
threshold for detection during testing.

B. Data Augmentation

We investigate data augmentation for 3D volumetric CT
data to enhance the object detection performance in our study.
The 3D data augmentation strategies considered in this study
are 3D threat image projection (TIP), data flipping and data
rotation.

1) Threat Image Projection: Threat image projection is
a technique used in baggage security screening for training
human screeners and automatic threat recognition algorithms
[1]. Specifically, TIP approaches superimpose a threat item
signature onto a benign baggage image to generate a realistic
synthetic baggage image containing threat objects. Recently,
the technique has been extended to 3D volumetric CT imagery
[2]. We employ the approach presented in [2] to generate
synthetic 3D volumes containing objects of interest. The
isolated objects are first extracted from a CT volume and then
inserted to other target CT volumes to generate more volumes
with the objects of interest. As illustrated in Figure 2, we use
3D TIP techniques to insert a signature of binocular into a
baggage CT volume. We use this technique to address the
issue of training data sparsity.

2) 3D Volume Flipping and Rotation: To alleviate the
overfitting issue in training, we employ volume flipping and
rotation to augment training data randomly. For 3D volumetric
CT data, the flipping can be conducted in three planes (i.e.
x-y, y-z and x-z). The rotation of a 3D volume is limited

to 90 degrees around a specific axis which can be easily
implemented by swapping axes. Each type of flipping and
rotation (6 + 6) has a probability of p to be activated during
training so that the training data can be diversified significantly
to alleviate the overfitting issue. We will investigate how
the use of data augmentation and the value of p can affect
detection performance.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for the
evaluation of multi-class object detection within baggage CT
volumes. We describe the dataset used in our experiments and
implementation details of the detection methods.

A. Dataset

We create a dataset for experimental evaluation with data
collected from a CT80-DR dual-energy baggage-CT scanner
manufactured by Reveal Imaging Inc. Five object categories
(i.e. bottle, handgun, binocular, glock frame and iPod) are
considered in our experiments to simulate a multi-class 3D
object detection problem. Due to the limited number of
instances of binocular, glock frame and iPod (i.e. 16, 29
and 12 respectively) in the original CT volume data, we use
the 3D Threat Image Projection (TIP) technique proposed
in [2] to generate synthetically composited 3D CT volumes
containing these object signatures of interest. As a result, the
dataset is a combination of 478 real CT volumes and 287
synthetically composited ones generated by the TIP algorithm.
The dataset is randomly divided into two subsets for training
(70%) and testing (30%) respectively. Three random splits are
used throughout our experiments. The detailed numbers of
different object signatures within the dataset and three splits
are shown in Table I.

TABLE I
STATISTICS OF THE DATASET AND DATA SPLITS.

Object Split 1 Split 2 Split 3 Total(train/test) (train/test) (train/test)
Bottle 483/223 501/205 498/208 706
Handgun 269/108 263/114 267/110 377
Binocular 86/33 83/36 86/33 119
Glock frame 81/40 82/39 80/41 121
iPod 77/39 80/36 81/35 116

B. Implementation Detail

The detection models evaluated in this work are imple-
mented in PyTorch [24] based on the work in [25]. In the
experiments, we use the Adam [26] optimiser with an initial
learning rate of 1e− 3 for the first 100 epochs followed by a
decreased learning rate of 1e−4 for 100 epochs and 1e−5 for
last 100 epochs. This learning rate scheduler has been used
throughout our experiments if not otherwise specified since
it has been proved effective empirically in most cases. All
experiments are conducted on a GTX 1080Ti GPU.



TABLE II
MULTI-CLASS PROHIBITED OBJECT DETECTION RESULTS (P: PRECISION; R: RECALL; MAP: MEAN AVERAGE PRECISION).

Model Bottle Handgun Binocular GlockFrame iPod mAP (%)P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)
ResNet-10 80.2 ± 1.4 70.9 ± 3.6 77.5 ± 3.7 83.1 ± 1.9 75.4 ± 5.0 84.3 ± 5.0 72.3 ± 3.3 44.1 ± 7.0 29.4 ± 1.8 37.6 ± 7.2 58.2 ± 4.2
ResNet-18 81.6 ± 3.6 68.0 ± 4.0 78.4 ± 0.6 81.9 ± 1.1 81.4 ± 3.4 86.3 ± 8.7 69.7 ± 8.9 46.7 ± 7.0 28.3 ± 3.8 49.3 ± 6.1 57.3 ± 4.4
ResNet-34 84.8 ± 2.8 68.2 ± 2.9 80.8 ± 7.4 81.3 ± 1.2 80.9 ± 2.0 86.5 ± 7.9 78.5 ± 9.6 36.5 ± 10.5 33.1 ± 4.4 47.3 ± 1.9 57.7 ± 3.8
ResNet-50 81.0 ± 2.2 74.0 ± 3.1 74.8 ± 2.4 91.0 ± 1.1 78.4 ± 4.8 87.3 ± 5.0 63.9 ± 7.7 53.5 ± 7.9 32.8 ± 2.3 56.6 ± 6.2 65.3 ± 3.6
ResNet-101 80.6 ± 1.6 71.1 ± 2.8 71.3 ± 4.7 89.8 ± 0.5 75.5 ± 3.5 85.1 ± 6.8 70.6 ± 9.7 51.8 ± 4.9 30.2 ± 4.1 53.6 ± 1.7 62.8 ± 4.3

TABLE III
EXPERIMENTAL RESULTS OF MULTI-CLASS OBJECT DETECTION WITH DIFFERENT DATA AUGMENTATION STRATEGIES.

Data Augmentation Average Precision (%) mAP (%)Flipping Rotation Bottle Handgun Binocular GlockFrame iPod
7 7 65.3 ± 1.5 79.7 ± 1.5 69.2 ± 3.1 32.5 ± 3.8 28.2 ± 10.0 55.0 ± 1.2

0.2 7 67.5 ± 3.0 84.5 ± 0.3 81.5 ± 1.9 48.3 ± 4.8 37.6 ± 4.6 63.9 ± 2.6
7 0.2 70.1 ± 2.2 77.8 ± 1.4 74.9 ± 8.3 43.0 ± 10.2 28.1 ± 6.1 58.8 ± 5.0

0.2 0.2 70.0 ± 3.6 84.9 ± 0.3 83.7 ± 4.5 48.9 ± 7.1 38.9 ± 4.3 65.3 ± 3.6
0.5 0.5 62.8 ± 2.1 85.6 ± 2.2 84.6 ± 3.0 41.4 ± 8.7 27.0 ± 8.5 60.3 ± 2.6

V. EXPERIMENTAL RESULTS

Thorough experiments are conducted to evaluate the effec-
tiveness of the proposed approach to multi-class object detec-
tion in 3D CT baggage security screening imagery. Specif-
ically, we evaluate varying ResNet [9] architectures as the
backbone FPN models, the effectiveness of data augmentation
strategies, varying anchor sizes and scaling factors.

A. On the Backbone Networks

ResNet architectures [9] with variant depths are employed
as the backbones for FPN in the RetinaNet. We investigate the
effect of different backbone models (i.e. ResNet10, ResNet18,
ResNet34, ResNet50 and ResNet101) in this experiment. The
experimental results are shown in Table II. The precision
and recall are reported for each object category with the
mean and standard deviation over three splits. In addition,
we also report the mean Average Precision (mAP) as the
overall evaluation metric in Table II. We can see ResNet50
performs the best overall with a mAP of 65.3% over five object
categories, followed by ResNet101 with a slightly lower mAP
of 62.8%. The other three architectures with less depth perform
comparably with one another with the mAP around 57-58%.
Although ResNet50 achieves the best overall performance
and the best recall rates, ResNet34 always results in better
precision for all five object classes. By comparing the results
of different object classes, we can see that Glock Frames and
iPods have lower precision and recall than other three objects.
This is due to the fact that glock frames are plastic hence more
challenging to distinguish from background clutter within the
baggage CT imagery whilst iPods, as a piece of electronic
device, have less salient features to detect. In conclusion,
the proposed approach, an extension of RetinaNet to 3D CT
imagery, has the capability of detecting different objects within
3D CT baggage screening imagery but the performance varies
across different object categories.

B. On the Data Augmentation

This experiment aims to investigate the effect of data
augmentation strategies (i.e. volume flipping and rotation). It

has shown using ResNet50 as the backbone network for FPN
gives the best overall performance in the previous experiments,
we use ResNet50 in this experiment. We compare the detection
performance when no data augmentation is used and the
performance when data augmentation is applied with different
values of p (i.e. 0.5 and 0.2).

The experimental results are presented in Table III. When
the data augmentation strategies are not used, a mAP of 55%
is achieved which can be boosted by the use of either random
flipping or random rotation of the training data during training.
The combination of two data augmentation strategies generates
the best performance with the mAP of 65.3% over five object
categories. By increasing the probability of random flipping
and rotation from 0.2 to 0.5, the overall performance degrades
by a significant margin (as shown in the last row of Table
III). These results provide evidence that data augmentation is
beneficial to the performance when properly used.

C. On the Anchor Size and Scaling Factor

It is observed during the experiments that input CT volume
scaling and anchor sizes have a significant effect on the
performance of detection. We investigate how these two factors
affect the detection results in this experiment. The scaling
factor s is a parameter used to down-sample the input CT
volumes so that the down-sampled volumes will have 1/s of
the original sizes in all three dimensions. The anchor size is the
other crucial factor affecting the detection performance. Proper
anchor sizes should be comparable with the ground truth
bounding box sizes. It is easy to understand the anchor sizes
should be adaptive to values of scaling factor s for optimal
detection performance. To these ends, in this experiment, we
investigate different values of scaling factor s as well as the
anchor sizes.

The experimental results are displayed in Table IV. The
best performance is achieved when the input CT volumes are
down-scaled by a factor of 3 with an appropriate combination
of anchor sizes for features in different pyramid levels. When
the input CT volumes have higher or lower resolutions (i.e.
scaling factor of 2 or 4), performance can be degraded



TABLE IV
EXPERIMENTAL RESULTS ON VOLUME SCALING AND ANCHOR SIZE.

Scaling factor Anchor size Average Precision (%) mAP (%)Bottle Handgun Binocular GlockFrame iPod
2 8-16-32-64 52.0 ± 1.5 72.0 ± 4.8 64.0 ± 4.3 22.1 ± 7.0 30.2 ± 6.2 48.1 ± 4.3
3 4-8-16-32 61.0 ± 2.6 81.7 ± 0.7 77.0 ± 8.7 32.8 ± 4.5 19.3 ± 7.5 54.4 ± 4.1
3 8-16-32-64 70.0 ± 3.6 84.9 ± 0.3 83.7 ± 4.5 48.9 ± 7.1 38.9 ± 4.3 65.3 ± 3.6
4 4-8-16-32 61.2 ± 0.4 74.1 ± 2.3 57.3 ± 8.2 28.4 ± 2.6 18.5 ± 7.8 47.9 ± 1.9
4 8-16-32-64 64.2 ± 3.0 81.7 ± 1.5 76.1 ± 3.8 36.3 ± 7.2 10.6 ± 4.4 53.8 ± 3.0

TABLE V
EXPERIMENTAL RESULTS ON HIGH AND LOW ENERGY DATA

Data Bottle Handgun mAP (%)Precision (%) Recall (%) AP (%) Precision (%) Recall (%) AP (%)
Low 89.7 ± 2.1 70.8 ± 2.6 68.7 ± 2.7 82.5 ± 1.5 94.5 ± 2.4 85.7 ± 3.7 77.2 ± 3.0
High 90.4 ± 1.0 68.5 ± 0.8 66.3 ± 1.3 83.6 ± 3.9 92.6 ± 1.7 85.7 ± 3.0 76.0 ± 2.0

High+Low 90.2 ± 2.1 71.0 ± 2.7 68.9 ± 2.7 82.9 ± 2.0 92.9 ± 3.1 84.0 ± 2.0 76.4 ± 2.3

Fig. 3. Detection results using the 3D RetinaNet with ResNet50 as the
backbone network (the 3D bounding boxes for bottles, handguns, binoculars,
glockframes and iPods are represented by blue, red, magenta, yellow and black
colours respectively).
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Fig. 4. Exemplar false positive and false negative detection results (the false
detection are emphasized with red arrows).

significantly as shown in Table IV even the anchor sizes are
adaptively adjusted. This observation may be caused by the
fixed convolution kernel sizes and network architectures of the
FPN which is worth further investigating in our future work.

D. On the Raw Data

We investigate how low- and high-energy raw data affect
the object detection performance in this experiment. The CT
volumes are reconstructed from raw CT slices generated by
low or high energy X-ray. We also combine low and high
energy data as two channels before feeding them into the 3D
object detection networks. We use the optimal experimental
settings derived from previous experimental findings and the
results are shown in Table V. We use Bottles and Handguns
as two representative prohibited items in this experiment since
there are the most numbers of instances of them in the dataset
(Table I). It is demonstrated the low-energy and high-energy
data lead to comparable object detection performance and the
combination of them does not improve the performance. As
a result, either low- or high-energy data from a dual-energy
machine is necessary for the purpose of automatic object
detection.

E. Qualitative Evaluation

To give qualitative evaluations of the proposed approach
to 3D object detection within 3D CT baggage imagery, we
present exemplar detection results in Figures 3 - 4. Figure 3 list
the detection results of eight typical CT volumes containing
bottles, handguns or binoculars. The detected 3D bounding
boxes are shown in different colours (i.e. blue, red, magenta,
yellow and black for bottles, handguns, binoculars, glock
frames and iPods respectively). The visualization in Figure 3
demonstrates that the proposed approach can detect objects in
varying orientations with relatively high localization accuracy.
On the other hand, the approach also suffers from false
positives and false negatives as shown in Figure 4. False
positives can be caused by misclassification of the target
objects or non-target objects (i.e. background clutter having
similar appearance characteristics to the target objects). False



negatives can be caused by cluttered background or over-
compact objects in the real baggage images. Overall, the
poor detection performance of glock frames and iPods are
caused by the high number of false positives and hence a low
precision rate. It is also frequently observed that two predicted
bounding boxes corresponding two different object categories
(especially for binocular and iPods) overlap with each other
with a high IOU value. This phenomenon can be caused by the
artefacts introduced by 3D TIP in the synthetic CT volumes.
Specifically, the artefacts rather than the real characteristics of
the objects have been learned by the model for classification.
This needs to be further investigated in future work with more
real data available.

VI. CONCLUSION

We address the multi-class object detection problem within
volumetric 3D baggage security screening CT imagery. 3D
RetinaNet is employed as the detector incorporated with
different FPN architectures. 3D TIP and data augmentation
techniques are employed to generate a synthetic dataset to
alleviate the data sparsity issue. Experimental results validate
the effectiveness of the proposed approach to the detection of
five object categories in baggage CT volumes and also disclose
the limitations of the current study (e.g., the lack of real data).

A few research directions will be considered in our future
work. Firstly, it is essential to scale up the dataset used for
experiments in terms of both CT volumes and prohibited item
types. Secondly, it is interesting to compare the effectiveness
of 3D and 2D (slice based) CNN models in object detection
within CT imagery. Finally, it is of great value to complement
current approach by enabling the detection of material based
prohibited items without specific shapes and appearances (e.g.,
explosive materials).

REFERENCES

[1] N. Bhowmik, Q. Wang, Y. F. A. Gaus, M. Szarek, and T. P. Breckon,
“The good, the bad and the ugly: Evaluating convolutional neural
networks for prohibited item detection using real and synthetically
composited X-ray imagery,” in British Machine Vision Conference
Workshops, 2019.

[2] Q. Wang, N. Megherbi, and T. P. Breckon, “A reference architecture for
plausible threat image projection (TIP) within 3D X-ray computed to-
mography volumes,” Journal of X-Ray Science and Technology, vol. 28,
no. 3, pp. 507–526, 2020.

[3] R. F. Meuter and P. F. Lacherez, “When and why threats go undetected:
Impacts of event rate and shift length on threat detection accuracy during
airport baggage screening,” Human factors, vol. 58, no. 2, pp. 218–228,
2016.

[4] S. Akcay, M. E. Kundegorski, C. G. Willcocks, and T. P. Breckon,
“Using deep convolutional neural network architectures for object clas-
sification and detection within X-ray baggage security imagery,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 9, pp.
2203–2215, 2018.

[5] Y. Gaus, N. Bhowmik, S. Akcay, and T. Breckon, “Evaluating the
transferability and adversarial discrimination of convolutional neural
networks for threat object detection and classification within x-ray
security imagery,” in Proc. Int. Conf. on Machine Learning Applications.
IEEE, December 2019.

[6] N. Bhowmik, Y. Gaus, S. Akcay, J. Barker, and T. Breckon, “On the
impact of object and sub-component level segmentation strategies for
supervised anomaly detection within X-ray security imagery,” in Proc.
Int. Conf. on Machine Learning Applications. IEEE, December 2019,
pp. 986–991.

[7] N. Bhowmik, Y. Gaus, and T. Breckon, “Using deep neural networks
to address the evolving challenges of concealed threat detection within
complex electronic items,” in Proc. Conf. on Homeland Security. IEEE,
November 2019, pp. 1–6.

[8] Q. Wang, N. Bhowmik, and T. P. Breckon, “On the evaluation of
prohibited item classification and detection in volumetric 3d computed
tomography baggage security screening imagery,” in International Joint
Conference on Neural Networks, 2020, to appear.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. computer vision and pattern recognition, 2016,
pp. 770–778.

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. Int. conf. on computer vision, 2017,
pp. 2980–2988.

[11] Y. F. A. Gaus, N. Bhowmik, S. Akçay, P. M. Guillén-Garcia, J. W.
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