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Abstract—This paper presents an intelligent data driven method for forecasting minute ahead wind speed, which 
is essential in predicting the power output coming from wind generators. The proposed methodology, is based on 
the principle that “the most recent past should be used to predict the near future”, and implements a two-stage 
forecasting method. In the first stage a Gaussian Process Regression model is trained multiple times on different 
length time window, and forecasts a set of next minute wind speed values. In the second stage, a fuzzy inference 
system collects the forecasts, rejects some of them and then provides a mean and a variance of a single forecast 
value. The proposed method is applied to a dataset of real-world data, and benchmarked against the 
autoregression (AR) model. Results exhibit the superiority of the proposed method over AR as well as over GPR 
which uses a single train set. 

Index Terms—Wind speed forecasting, GPR, Fuzzy Inference, Renewable Energy. 



 

I. INTRODUCTION 

The vision of an intelligent power grid entails the coupling of information and intelligent systems with 
the power system infrastructure. The overarching goal is via his coupling to ensure the reliable, safe and 
non-stop delivery of electrical power from the generation areas to the load centers [1]. The cornerstone 
for implementing an intelligent grid exhibiting the above features is forecasting; forecasting of the values 
of grid operational parameters will contribute in attaining effective action-taking [2].  

Machine learning offers a variety of tools with different capabilities in learning from data that may 
provide forecasts over monitored variables. In particular, machine learning allows pure data driven 
models that learn from observed data, and subsequently conduct forecasting [3]. Implicitly, utilization of 
data driven tools aims at capturing data patterns that may be observed in the near future. Thus, from a 
data driven perspective forecasting may be seen as the attempt of identifying past patterns the reoccur in 
the future [4]. Overall, utilization of data-driven approaches is a convenient way for modeling complex 
physical processes without explicitly considering every of the factors that affect the process. 

Effective integration of renewable sources of energy in the power grid has been identified as one of the 
main characteristics of an intelligent power grid [5]. Forecasting of renewable power and especially of 
wind power is challenging due to the stochastic nature of renewable sources. Wind speed is the driving 
force behind wind power, and thus, its accurate forecasting may accommodate the efficient utilization of 
wind power [6]. Furthermore, it allows market operators to provide financial incentives to consumers 
increasing their consumption at time points where wind power is available. Furthermore, availability of 
wind power may also affect the electricity prices in a competitive electricity market given that there is 
excess supply that should preferably be consumed rather than wasted [7]. 

Wind speed forecasting has been extensively studied and several methodologies have been 
presented. Most of the presented methodologies utilize machine learning tools as the backbone of wind 
forecasting. A set of three different type of neural networks have been applied for wind speed forecasting 
in [8] and [9]. Neural networks have also been utilized for developing hybrid forecasting methods: neural 
networks with Bayesian statistics is presented in [10], neuro-fuzzy approaches [10], and synergism of 
neural networks with wavelet processing is introduced in [11]. Furthermore, an adaptive neuro fuzzy 
inference system (ANFIS) for wind speed forecasting has been discussed in [12], while empirical mode 
decomposition is integrated with neural networks in [13]. Other methods include kernel density estimators 
as presented in [14], and dynamic regression in [15]. Wind speed forecasting using support vector 
machines is introduced in [16], and fuzzy logic in a fuzzy logic approach in [17]. Time series methods 
such as autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) 
have been studied and tested in wind speed forecasting in [18] and [19] respectively, while the integration 
of Gaussian processes and particle swarm optimization has been proposed in [20].  More recently, 
several methods have been introduced in wind forecasting for time horizon of some minutes ahead of 
time: deep learning has been utilized for 10-minute forecasting in [21] and [22], and extreme learning 
machines in [23]. The majority of the methodologies have been utilized for hourly speed prediction and 
only a few have been used for minute ahead forecasting. In addition, most methodologies adopt large 
historical datasets to train the machine learning models that inherently introduce high uncertainty in 
forecasting.  

In this paper, a new methodology is proposed for wind speed forecasting in renewable integration. The 
proposed methodology utilizes the synergism of a kernel modeled Gaussian process (GP) [24] with a 
fuzzy inference system [25]. The goal of the methodology is to forecast the next minute wind speed by 
utilizing the most recent measurements. The novelty of the work lies in the selection of various forecasts 
and assimilation of them into a single one, a process that is conducted by a proposed fuzzy inference 
system and a sliding time window. 

In the next step, a brief introduction to Gaussian process regression (GPR) is given, while section III 
presents the wind speed forecasting methodology. Section IV discusses the results obtained on a set of 
real-world data, and lastly, section V concludes the paper. 



II. GAUSSIAN PROCESS REGRESSION 

In statistics, as a Gaussian distribution is a probability distribution function that is modeled as a 
function of two parameters, i.e., the mean and the variance. Furthermore, the set of Gaussian 
distributions that share a joint distribution are identified as a Gaussian process [24] that is also modeled 
as a function of two parameters, namely, the mean and the covariance functions, as shown below: 
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where m(x) is the mean, and C(xT,x) is the covariance function [24]. 

In the realm of machine learning, a Gaussian process is identified as kernel machine model. The 
reason is the ability of Gaussian processes to be expressed as a function of a kernel [24]. A kernel is any 
valid mathematical function that may be expressed as: 
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with f(x) called the “basis function”. 

A GP is modeled as kernel function through the covariance function in (1). In particular, the function 
C(x’,x) is set equal to a kernel function, i.e., C(x’,x) = k(x’,x), and therefore a Gaussian process is 
transformed to kernel machine. Concurrently, the mean function in (1) is set equal to zero, i.e., m(x)=0 
that is a convenient choice for deriving the Gaussian process regression (GPR) model. GPR is the form of 
GP that is used in solving regression problems. 

The starting point of GPR derivation is the simple linear regression model: 
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where coefficient b’s stand for the regression coefficients and N is the number of training datapoints. It 
should be noted that a training dataset consists of pairs of datapoints: a known output t for a known input 
x. 

The underlying idea is that the N training datapoints are part of the same Gaussian process and 
therefore the GPR framework may use all pairs (xn, tn) to predicting the target value tN+1 of an unknown 
input xN+1. Based on the above the joint distribution between the N available datapoints and the unknown 
input xN+1 follows a Gaussian distribution. Utilizing the joint Gaussian distribution, it has been proved in 
[24,26] that the GPR provides a predictive distribution over the unknown target tN+1with mean and 
covariance given by: 
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where CN is the NxN matrix of kernel values among the N training datapoints, k is the vector of kernel 
values between the new N+1 and each of the N training datapoints, and k is a scalar value that 
represents the value k(xN+1, xN+1). 

Overall, we observe from (4) and (5) that the predictive distribution strongly depends on the form of the 
kernel. Thus, the output of the predictive distribution can be controlled by the system modeler. There are 
several kernels that have been proposed in the literature; selection of a kernel depends on the 
requirements of the application at hand and the experience of the modeler [27]. 



III. MINUTE AHEAD WIND SPEED FORECASTING 

A. Problem Statement 

The template is used to format your paper and style the text. All margins, column widths, line spaces, 
and text fonts are prescribed; please do not alter them. You may note peculiarities. For example, the 
heading margin in this template measures proportionately more than is customary. This measurement 
and others are deliberate, using specifications that anticipate your paper as one part of the entire 
proceedings, and not as an independent document. Please do not revise any of the current designations. 

Integration of renewable energy in electricity supplier portfolio is a key point for developing the future 
smart power grid. Generation of renewable energy is not controllable by humans with respect to amount 
and time of generation. Taking into consideration the wind dynamics, wind power is available whenever 
wind blows, while the speed of the wind determines the amount of power that can be generated. 

The variability of wind speed with respect to time, accommodates various type of forecasting based on 
the length of the ahead-of-time forecasting horizon. The length of the horizon, may varies from a minute 
to month ahead, where each forecasting horizon may serve a different purpose in power grid 
management. The focus of the current manuscript is the extremely very-short-term forecasting of wind 
speed, as expressed of forecasting the wind speed in the next minute. Therefore, a single forecast must 
be provided every minute, in which case time also imposes a constraint; computation of forecasting 
should be significantly less than a minute in order to be of practical use to system operator. 

B. Methodology 

The proposed methodology integrates GP forecasting with fuzzy inference. The cornerstone of the 
proposed methodology is that “the future will be similar to the most recent past.” However, there is no 
clear guideline as to how much of the past should it be used in order to predict the future. The underlying 
idea in the current work is that to use a fuzzy inference system to determine the time window of the past 
that should be used for forecasting the future wind speed values. To that end, the fuzzy inference system 
will evaluate previous predictions and observations and will determine the amount of past observations 
that should be used for training the GPR model. The GPR model will be perform the forecasting of the 
minute ahead wind speed value. The overall block diagram of the proposed methodology is depicted in 
Fig. 1 where all the methodology steps are clearly given. 



 

Figure 1.  Block diagram of the proposed wind speed forecasting methodology for every minute. 

Initially, a set of N Gaussian process regression models are created. Each of the GPR models is 
equipped with a kernel function and more specifically the Gaussian kernel whose analytical form can be 
found below: 
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where σ2 is a hyperparameter evaluated using the training data, and x1, x2 are the input datapoints. 

In the next step, each of the GPR models is provided with a set of training data. Each training dataset 
is comprised of various past observations; hence, we ensure that each GPR is trained based on different 
observations. Creation of the training datasets is conducted as follows. Assuming that we want to predict 
the wind speed at time t, we consider that all the wind speed values at past times are known. In other 
words, by assuming measured speed at minute intervals, then the wind speed values at minutes t-1, t-
2,…,-oo are considered known and at our disposal. Given that there are N GPR models, then we create N 
training datasets. Each training dataset is created by a time window of length L where L=1,…,N+1. To 
make it clearer, each training dataset coincides with a time window that includes the observed values 
from t-1 to t-L. A visual representation of the training datasets is given in Fig. 2. 
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Figure 2.  Visual representation of training datasets based on the time windows of part wind speed observations. 

In the next step, each GPR utilizes the training dataset to provide a forecast over the wind speed at the 
next minute. The forecast is provided as a pair of values: the wind speed of the forecast and the variance 
around this value. The GPR computed values coincide with the values obtained by the predictive 
distribution in Eq. (4) and (5) respectively. 

Once the forecasts have been obtained, then the mean value of the forecasts is calculated. The mean 
forecast is then forwarded to the fuzzy inference system, whose task is to assimilate the individual 
forecasts and provide a single one. To that end, the absolute difference between every individual forecast 
and the mean forecast. Denoting the mean forecast as μf and the individual forecasts as GPRi, then we 
compute: 

,    1,..., 1i f iD GPR i N= − = −                 (7) 

and thus, N-1 values are computed. These values are the inputs to the fuzzy inference system. The goal 
of the fuzzy inference engine is to evaluate a set of weight associated with each individual forecast. The 
idea is that the weight evaluation will be based on the difference of the individual forecast with respect to 
the forecast mean. By following this approach, we would like to give more weights to forecasts that are 
closer to the mean and eliminate the outliers (i.e., forecasts far away from the mean). By adopting the 
above approach, we anticipate that the majority of the GPR models will be able to capture the wind speed 
dynamics and provide forecasts that will be close to each other. Therefore, the forecasts that are 
clustered around a value will be evaluated with similar weights and therefore they will significantly 
contribute in the final assimilation. On the other hand, values that are far away from the mean will provide 
small or zero contribution to the assimilation process. Overall, the forecast assimilation process will 
provide a value that is close to the area with higher density of forecasts. 

The fuzzy inference system has as an input the parameter Di and as an output the weight value that 
lies in the interval [0 1]. The input fuzzy sets for the parameter “difference” Di is depicted in Fig. 2, and the 
fuzzy sets for the output “weight” is depicted in Fig. 3 respectively. We observe that each variable is 
modeled by using 4 fuzzy sets. It should be noted that prior to any inference making the “difference” 
values are normalized (divide all values by the largest one). 
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Figure 3.  Fuzzy set modeling of the normalized parameter “difference” Di. 
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Figure 4.  Fuzzy set modeling of the parameter “weight”. 

In addition to the fuzzy sets, the inference system contains a small set of fuzzy rules. The rules that 
are of the IF…THEN form and are the following ones: 

IF Difference is LOW, THEN Weight is HIGH, 

IF Difference is MEDIUM, Then Weight is MEDIUM, 

IF Difference is HIGH, Then Weight is LOW, 

IF Difference is VERY HIGH, Then Weight is ZERO. 

Evaluation of the above rules is done using the Mamdani Min operator [25], while the defuzzifying 
method is the centroid method [25]. Notably, the last rule assigns a zero weight to those predictions that 
are far away from the mean forecast. The latter assignment is conducted by modeling the fuzzy set ZERO 
as a singleton of the form (1,0) [24]. 

Overall, N-1 weights are being computed by the fuzzy inference system, with each weight being 
assigned to the respective GPR forecast. The final assimilation process is performed via two formulas. 
The first formula computed the final forecasted speed value and is given by: 
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while the second formula computed the forecast variance and is taken by: 
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where VGPRi is the variance computed by the GPR model i. 

Overall, we observe that the presented methodology allows the assimilation of various forecasts in 
order to get a single forecast value and the associated variance. With the adoption of several models, we 
anticipate that the majority of them will be able to capture the wind speed dynamics to various degrees, 
and their forecasts will cluster together. 

IV. FORECASTING RESULTS 

A. Setup 

In this section, the proposed methodology is applied on a set of real-world wind speed data that have 
measured by the National Renewable Energy Laboratory (NREL) Observed Atmospheric and Solar 
Information System (OASIS) [28]. The available data contain measurements that have been obtained in 
minute intervals in the time period from April 1, 2017 to April 15, 2017. The wind speed has been 
recorded as the average speed with measurement unit in terms of m/s. 

Furthermore, the presented methodology is benchmarked against a single GPR model that uses N 
measurements for training as well as against the statistical tool of autoregression (AR) of order 8 (p=8). 
The obtained results are recorded with respect to mean square error (MSE) and the variance, while are 
grouped with respect to daily performance. It should be noted that MSE is appropriate for this work 
because it handles cases where the wind speed is zero (as opposed to widely used measures like the 
mean average percentage error MAPE that fails if there are zero values) [29]. 

B. Test Results 

The presented methodology is applied on minute ahead wind speed forecasting for various time 
intervals of the available data. More specifically, our tests contain three cases that contain measurements 
from three different cases in the time interval April 1-April 15. 

In the first case, we forecast the minute ahead wind speed at day April 1, 2017 starting from 4.08am 
and finishing at 8.00pm (overall, there are 953 measurements). In this case, we present the detailed 
process for obtaining the first measurement (forecast at 4.08am) in order to present in a clear way how 
our methodology works; subsequently we provide the results of the whole-time interval. It should be noted 
that in all cases we considered that N=8, i.e., we had 8 GPR models providing predictions. 

Fig. 5 presents the steps for obtaining the first forecast. In the first step the individual GPR models are 
utilized for obtaining the individual forecasts; hence, we get a set of 8 measurements. Next, we compute 
the mean value of the forecasts that is equal to 0.322m/s. Furthermore, we compute the differences 
between forecasts and the individuals and then we normalized those differences. The normalized 
differences are fed to the fuzzy inference system that provides a set of weights. We observe in Fig. 5 that 
there is one weight whose value is set equal to zero; this forecast is the farthest forecast from the mean of 
forecasts and thus the fuzzy system assigns to it a zero value according to the fourth rule. The final step 
assimilates the forecasts by providing a single value equal to 0.218, which is the closest value to real 
value among all forecasts. 

Following are the minute ahead forecasting results of tested interval (April 1, 2017, 4.08am - 8.00pm). 
In particular, we obtained: 

- MSE = 1.1136 for the GPR-fuzzy methodology 

- MSE = 1.2262 for GPR with N=8 

- MSE = 1.3266 for AR(8), 

where the above results may also be found in Table I. Furthermore, we depict the computed forecasted 
values taken with the GPR-fuzzy methodology superimposed to the real wind speed values in Fig. 5. 



There, we also see that the presented methodology was able to provide close forecasts despite the high 
volatility of the data. 

Results for the next two tested cases are provided in Table I (together with the results of case 1 that 
are also provided there). Case 2 contains minute measurements taken from the day April 7, 2017 from 
4.08am-8.00pm, and case 3 contains wind speed measurements from the day April 15, 2017 from 
4.08am to 8.00pm. 

Step 1: GP forecasts for various N 

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

0.06
7 

0.121 0.205 0.581 0.726 0.643 0.19
1 

0.037 

Step 2: Compute the mean of forecasts 

Mean = 0.322 

Step 3: Find the differences 

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

0.25
4 

0.200 0.116 0.259 0.404 0.322 0.13
0 

0.284 

Step 4: Find the Fuzzy Inference Values 

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 

0.20
5 

0.500 0.797 0.200 0 0.163 0.78
9 

0.179 

Step 6: Find the Mean and the variance forecast based steps 3 
and 1 (Assimilation) 

Final Forecasted Value = 0.218 
m/s 

Real Value: 0.3480 m/s 

Final Forecast Variance = 
0.0955 m/s 

Figure 5.  Step by step forecasting of wind speed at 4.08am for case 1. 

 

Figure 6.  Wind speed forecasting using GPR-fuzzy against real values for case 1 (April 1, 2017, 4.08am-8.00pm). 

TABLE I.  RESULTS TAKEN FOR THE THREE TESTED CASES IN TERMS OF MEAN SQAURE ERROR (MSE) 

Forecaster GPR-
Fuzzy 

GPR with 
N=8 

AR(8) 

Case 1 1.1136 1.2262 1.3266 

Case 2 0.5043 0.5308 2.44 



Case 3 0.9595 1.0285 1.6355 

Forecasted 
Variance 

0.1917 0.3018 ---- 

 

Obtained result exhibit that the highest accuracy among the three forecasted is attained by the 
presented methodology, i.e., GPR-fuzzy in Table I. In particular, we observe that the GPR-fuzzy provides 
the lowest MSE in all three cases, while the AR(8) model is the least accurate one in all tested cases. 
Furthermore, we observe that the simple GPR model accuracy is closer to that of the GPR-fuzzy; the 
latter observation designates that success of our methodology by integrating the GPR model with a fuzzy 
inference system. The work done by fuzzy in terms of rejecting some forecasts and assign weights to 
forecast assimilation has driven us to higher accuracy expressed with lower MSE compared to GPR. 
Regarding the variance of the forecast variance the GPR-fuzzy provides a lower mean variance 
compared to single GPR model. Lastly, with respect to execution time, the GPR-fuzzy methodology 
required about 2 sec to provide a forecast that is significantly lower than the upper limit of 60 sec. 

V. CONCLUSION 

In this paper, a new methodology for very short-term speed forecasting applicably to renewable power 
is presented. In particular, the methodology integrates a set of GPR models, which have been trained on 
various, with a fuzzy inference system. The fuzzy inference system allows the assimilation of the multiple 
GPR forecasts into a single one by weighting the forecasts according to their distance from the mean of 
forecasts. Results exhibit that the presented GPR-fuzzy methodology provided higher accuracy compared 
to single GPR and to AR(8) model for a set of three days comprised of minute ahead wind speed 
measurements taken from the April 2017. 

Future work will focus on improving the fuzzy inference system, by adding a higher number of fuzzy 
sets and fuzzy rules. Furthermore, it will focus on adopting other kernel function beyond the Gaussian 
kernel and on testing on a higher volume of datasets taken from various time seasons. 
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