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Abstract—Among many domains application of information 
technologies has also transformed electricity markets. Price 
directed markets refer to the driving the electricity consumption 
by controlling the electricity prices in real time. This paper 
frames itself in such an electricity market, where consumers 
receive the prices and they respond with their demand for the 
next hour in real time. Response is performed by a smart meter 
that is equipped with tailored algorithms that make decisions 
based on the preferences of the customer. In this paper, a 
responding method is proposed that is based on Extreme 
Learning Machine (ELM) and Fuzzy Logic Inference. The 
synergism of the two tools allows the automated decision making 
where the interference of the human customer is minimal. The 
proposed method, called ELM-Fuzzy, is presented and tested on 
a set of real-world data. Results demonstrate the efficiency of the 
ELM-Fuzzy method to make fast and optimal decisions aiming 
at reducing the electricity expenses of the customer. 

Index Terms—ELM, Fuzzy Logic, Decision-Making, Price-
Directed Markets. 

I. INTRODUCTION 
In the last decades, the vast penetration of information 

technologies in various domains of our everyday lives has 
transformed the form of services as we knew to data driven 
ones. One of the service domains that have been significantly 
impacted is the electrical power transmission and distribution 
services [1]. 

The traditional vertical power market, where the electricity 
from generation to transmission and distribution was 
controlled by a single entity has been replaced by a multiple 
vendors operation [2]. Therefore, a different entity is 
responsible for generation, different for transmission, while 
distribution may be controlled by one or more companies. 
This transformation of the power delivery system gave birth to 
new types of electricity markets. In practice, these new 
markets were simply the adaptation of existing market of other 
commodities to the special case of electricity. Development of 
the new electricity markets were based on the assumption that 
electricity is also a commodity [2]. 

Generally speaking, the driving force behind the operation 
of a market is the commodity price. Following a rationale 
behavior, market participants aim at maximizing their profit 
quantified as the amount of money spent or saved [3]. In 
particular, sellers aim at selling their whole quantity of 
products at the maximum possible price, while buyers aim at 
fully satisfying their need at the minimum possible price. 
Electricity marker are not an exception: producers and 
consumers try to maximize income and minimize expenses 
respectively [4]. 

This work place itself in the framework of price directed 
electricity markets where consumption is driven by prices. In 
particular, electricity consumers receive pricing signals at 
specific time points and decide the amount of electricity 
consumption that will be consumed for the next time interval 
accordingly [5]. In these electricity markets customers are 
connected to the distribution grid through smart meters that 
place electricity orders and make purchases according to 
customer preferences. The decisions are made automatically 
using price information and a set of thresholds, which denote 
the preferences or comfort zone of the customer. The use of 
price thresholds frees customers from the need to monitor 
energy prices 24/7. The framework of price-directed markets 
requires utilization of real-time decision-making based on 
dynamic information [6]. More particularly, pricing signals 
reflect the specifics of the state of the power system (i.e., 
distance between supply and demand, possible congestion, 
specific locational issues, emergent severe weather conditions, 
etc) while thresholds reflect electrical customer priorities and 
capacity for monetary cost [7]. 

Smart meters equipped with intelligent algorithms can 
automate the operation of the electricity purchase and increase 
its efficiency. Furthermore, an algorithm that receives the 
price signals from the market directly can make decisions 
about the electricity purchase in a way that is not only efficient 
but also less costly [8]. The connectivity of meters to the smart 
power grid promotes the adoption of intelligent algorithms 
that receive and process the information, adapt to system 
conditions and make optimal decisions for the benefit of their 
consumer (i.e. human consumer) [9]. 
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In this paper, an intelligent algorithm that implements an 
automated decision-making approach for electricity markets 
consumers is introduced. The proposed system adopts a 
artificial intelligence system to control the operation of a smart 
meter connected to the smart power system. In particular, the 
integration of extreme learning machines (ELM) – ELM is a 
two layer neural network [10] - with fuzzy logic [11] allows 
automated decision making by i) predicting future states (i.e., 
using neural network) of the market with respect to prices, and 
ii) fusing current and predicted information and make a 
decision (i.e., using a fuzzy logic based decision engine). The 
use of ELM in the proposed method allows the fast retraining 
of the neural network and subsequent prediction of market 
prices in very short times (<1 sec) [12]. 

The roadmap of the paper is as follows: section II briefly 
discusses ELM and fuzzy logic, while section III presents the 
ELM-Fuzzy method. Section IV provides the obtained results, 
and lastly section V concludes the paper. 

II. BACKGROUND 

A.  Elements of Fuzzy Logic 
The basis of classical set theory is the binary classification 

of an object with respect to a given set: an object either 
belongs to a set or not. However, in several engineering 
problems, the use of classical theory fails to accurately 
describe and represent the problem parameters. 

 On the other hand, fuzzy logic extends the classical set 
theory by assuming that objects belong to a set with some 
degree [11]. Thus, an object may belong to several sets with 
different degrees, which is knowns degrees of membership. 
The degrees of membership in each set are assigned by a 
specific function that is called the membership function. 
Therefore, a fuzzy set is fully defined by its membership 
function, which might be discrete or continuous depending on 
the type of variable. It should be noted that the range of 
values of a variable may be spanned by one or more fuzzy 
sets that overlap: overlapping sets designate that some objects 
belong concurrently to different sets [11]. An example of 
fuzzy sets that span a variable X is provided in Fig. 1.  
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Figure 1.  Example of fuzzy sets spanning the value range of variable X. 

In Fig. 1 we observe that the membership functions of the 
fuzzy sets take values in the interval [0 1]. When �A(x) = 0, 
then the x does not belong to the set A, while �A(x) = 1 
indicates that x fully belongs to set A [11]. Every other value 

between 0 and 1 indicates that x partially belongs to set A 
with a degree equal to �A(x). 

Two or more fuzzy variables may be associated via the 
use of IF, THEN rules. These rules, which are called fuzzy 
rules, express the associations between the fuzzy sets of a 
variable with the fuzzy sets of the second variable. For 
instance, a fuzzy variable X spanned by sets A,B and is 
associated with a fuzzy variable Y spanned by sets S,T as 
follows: 

IF X is A, THEN Y is T, 

IF X is B, THEN Y is S. 

Association of two variables via fuzzy rules allows the 
development of fuzzy inference systems that utilize a set of 
rules to associate a cause (the IF part), with the results (the 
THEN part) [11]. Notably, the strength of fuzzy sets and 
rules, is the quantification of the inherent uncertainty of the 
variables. 

B. Extreme Learning Machine 
One of the most common tools within the machine 

learning realm are artificial neural networks (ANN). ANN are 
utilized for both classification and regression problems by 
utilizing a set of parameters that are called weights [11]. 
There are several type of neural networks, with ELM being 
one of them. 

ELM is a two layered feedforward neural network 
comprised of a single hidden layer, an input and an output 
layer (it should be noted that the input layer is not a 
computational layer and thus it is not counted in the layer 
architecture). The parameters of ELM are expressed as two 
sets of weights: the first set of weights connects the input to 
hidden layer, and the second set connects the hidden to 
output. The basic architecture of ELM is depicted in Fig. 2.  
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Figure 2.  Basic architecture of ELM. 

The main difference of ELM with the rest of the neural 
networks lies in the training process. In particular, the set of 
weights of the first layer is randomly evaluated, whereas the 
second set of weights is defined via a simple linear 
optimization problem. The optimization problem is defined 
via the use of the training target values and the outputs of the 
hidden layer. Further details on the ELM training and 
operation may be found in [13] and [14]. The main strength 
of ELM is its extremely fast training [15], which makes it 
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suitable for real time applications as the one discussed in the 
current paper. 

III. ELM-FUZZY METHOD 

A. Price Directed Electricity Markets 
In this work, we consider price directed markets, where the 

prices are announced and the consumers respond with their 
demand. In the ideal case, the consumers the market operator 
announces the prices in very short-term intervals [16], 
whereas the consumers respond with their demand 
instantaneously. In that market, the resolution of the market is 
fully defined by the consumer response time, where a real 
time assumes that the process of price announcement and 
response takes some seconds. 

In such time constrained time environments, the 
consumers must be able to monitor the prices nonstop, while 
making the decisions within seconds. Notably, this is 
impossible for human operators and inevitably they have to 
trust smart meters and intelligent algorithms to participate in 
the market on their behalf. Furthermore, the human consumer 
anticipates that his/her smart meter will follow the decision 
strategy that the human would follow if he/she could be able 
to follow the market prices 24/7. To that end, artificial 
intelligence offers the necessary tools to monitor the market, 
process the data and make decisions. 

B. Method 
In this section the newly developed method for automated 

decision making in price directed electricity markets. The 
overall goal of the method is to make optimal decisions 
regarding the electricity orders in real time. The driving force 
behind decision making is the minimization of the 
consumption cost. To that end, a new anticipatory method that 
for autonomous decision making in price directed method is 
proposed. In particular, the method is comprised of two 
components: a learning component that anticipates the future 
prices, and a rule-based component makes the final decision 
about the amount of electricity that will be purchases in the 
next cycle. 

The block diagram of the proposed method is depicted in 
Fig. 3, where its individual steps are clearly shown. The first 
component of the method contains the ELM that is utilized for 
price prediction making. In particular, the current price, which 
was just announced by the market operator, and the 10 most 
recent prices are put together to form a dataset. The newly 
formed dataset is forwarded to the ELM where it is utilized to 
evaluate the network parameters, i.e. training phase. In the 
current work the ELM architecture is the following: 1 input, 5 
hidden neurons and output neuron. The input to the ELM is 
the time and the output is the electricity price [17]. 

The training of the ELM is followed by prediction making. 
In particular, the trained network model is utilized for 
predicting the next five prices denoted in Fig. 3 as p(t+1), 
p(t+2), p(t+3), p(t+4) and p(t+5) where t stands for the current 
time instance. In the next step, the current price together with 
the five predicted values are fed to a fuzzy inference engine. 
The goal of the engine is to utilize the current (known value) 
and the projected prices (projected values) for deciding the 

amount of energy to be ordered. In addition, to the price 
values the fuzzy inference engine has as an input the Demand 
Zone of the consumer that is expressed by two values: the 
minimum demand that must be purchased and the maximum 
demand that the consumer can afford. Therefore, the fuzzy 
engine determines the amount of electricity within the demand 
zone that can be purchased. To make it clearer, the output of 
the fuzzy inference is a single value obtained from the demand 
zone of the consumer. 

At this point it should be noted that the fuzzy inference 
system implements a set of rules of the IF, THEN form. In this 
work, a set of 25 rules have been implemtented with some 
examples are given below: 

IF Price(t) is LOW, THEN Order(t) is HIGH 

IF Price(t+1) is LOW, THEN Order(t) is HUGH 

IF Price(t+1) is LOW and Price(t+2) is HIGH, THEN 
Order(t) is MEDIUM 

where the Order(t) is also a fuzzy variable that determines the 
percentage of the demand zone that needs to be ordered. The 
fuzzification of the variable Order(t) is depicted in Fig. 4. The 
fuzzy engine utilizes the Mamdani Min implication operator 
[11] to evaluate the rules and the center of area technique for 
defuzzification [11]. 
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Figure 3.  Block diagram of the presented ELM-Fuzzy method. 
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The output of the fuzzy engine determines the amount of 
the demand zone that may be ordered. Then, the final decision 
is taken as the addition of the percentage of the demand zone 
with the minimum demand value. The added value is 
forwarded as the final decision of the smart meter pertained to 
electricity purchase. 
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Figure 4.  Fuzzy representation of consumer’s demand zone. 

It should be noted that the presented method allows the 
automated decision making in price directed methods. Notably 
the ELM allows fast predictions that lead to fast decision 
making. The ELM training is at the scale of a second, while 
the inference making using the 25 rules is also computational 
inexpensive (less than a second as well). 

Lastly, it should be mentioned that the presented method 
requires no human intervention, while it follows the human 
consumer purchase strategy. The latter is implemented via the 
fuzzy rules: each consumer may define its own rules based on 
its preferences, intuition and needs. 

IV. RESULTS 
In this section the presented ELM-Fuzzy method is tested 

on a set of real-world household data [18]. The test dataset 
contains the power consumption in 5-minute intervals. The 
presented method is tested for 10 different days. Furthermore, 
the price data used in this work was taken from the New 
England Iso [19] and in particular from the date of June 3, 
2019. The price data was used for assessing the method for all 
the tested seven days. Furthermore, the demand zone is 
assumed to be +/- 30% from the real consumption power. The 
obtained results are recorded in terms of expenses per day 
(amount is recorded in US dollars), while it is compared with 
the expense taken if the presented approach is not applied. 

The obtained results are recorded in terms of daily 
electricity consumption costs, and are provided in Table I. 
According to the obtained results, the ELM-Fuzzy method 
provided lower daily cost for all tested 10 days than the case 
that no ELM-Fuzzy is utilized. This results shows that the 
decrease of cost is independent of the day; this independence 
is explained by the fact that ELM utilizes the most recent 
measurements, instead of using consumption patterns from 
previous days for training. A more careful observation 
exhibits that the decrease of cost is average $2 per day, which 
scales up to 60$ per month. This amount is a significant 

amount of savings especially for a household as is the case in 
our testing. For visualization purposes, the load ordered by 
ELM-Fuzzy as compared to the original load pattern (i.e. no 
use of ELM-Fuzzy) for the Day 10 is presented in Fig. 5. 

TABLE I.  OBTAINED RESULTS IN TERMS OF EXPENSES (US DOLLARS 

Day ELM-Fuzzy No use of 

ELM-Fuzzy 

Day 1 (5/1/07) $ 13.44 $ 15.74

Day 2 (6/1/07) $ 6.99 $ 8.40 

Day 3 (7/1/07) $ 14.01 $ 15.20

Day 4 (8/1/07) $ 11.22 $13.87

Day 5 (9/1/07) $ 9.55 $12.61

Day 6 (10/1/07) $ 10.92 $ 14.28

Day 7 (11/1/07) $ 13.73 $ 15.69

Day 8 (12/1/07) $8.79 $ 9.92 

Day 9 (13/1/07) $ 15.55 $ 19.25

Day 10 (14/1/07) $ 14.65 $ 18.16

 

 

Figure 5.  Load pattern taken with ELM-Fuzzy as compared to original load 
pattern (i.e. no use of ELM-Fuzzy) for Day 10 in Table I. 

With regard to execution time, the ELM-Fuzzy method 
had an average execution time that was below 1 sec. This time 
was enough for our case that assumed that the prices were 
announced every 5 min. 

At this point it should be noted that the results show that 
the proposed method has high potential to be incorporated in 
the smart meters of consumers to make decisions with regard 
to electricity ordering decisions in price directed markets. 
Furthermore, the presented method enables a market that may 
operate in very short time intervals (e.g. shorter than 1 minute) 
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given that the ELM-Fuzzy is able to make decisions in a scale 
of seconds. Furthermore, the ELM-Fuzzy allows the human 
consumer to have minimum interference in the monitoring of 
the market: his/her goal is to set the rules in the fuzzy engine. 

However, there were some limitations in the presented 
method. The main limitation is the use of the fuzzy rules. On 
one hand a well thought set of rules may allow the consumer 
to exhibit optimal behavior in the market, but on the other a 
shallow thought of the rules may also lead to a bad decision 
making pattern. Therefore, the ELM-Fuzzy performance 
strongly depends on the developed fuzzy rules. 

V. CONCLUSION 
In this paper, a new method for decision making in price 

directed markets is presented. the paper assumes that the 
consumer is connected to the power market via a smart meter 
and receives in predetermined intervals the electricity price. 
Then the consumer must respond with the amount of energy 
he/she wants to purchase. However, in such a market the 24/7 
monitoring of prices is impossible for human consumers. 
Therefore, the need for automated algorithms that monitor the 
market and make decisions is high. 

The presented ELM-Fuzzy method implements an 
automated decision making in two steps: in the first step, the 
ELM predicts the future prices, and in the second step a fuzzy 
inference engine utilizes the current and the predicted prices as 
well as the demand zone of the consumer to make a decision 
regarding the amount of electricity to be purchased. The use of 
ELM is crucial given that its fast training time allows fast 
decision-making time, while the fuzzy inference system 
implements the human consumer purchasing strategy. Resutls 
taken on a set of 10 days from a household load patterns 
exhibited that the ELM-Fuzzy attained to reduce the expenses 
by an average of $2 per day by morphing the household load 
pattern.  

The limitations of the method include the definition of 
fuzzy rules, that require thorough thinking. Future work, will 
include the extensive testing of the method in a higher number 
of testing days, and the expansion of the fuzzy inference 
engine with a higher number of rules. 
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