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Abstract

The disjunctive temporal problem (DTP) is an expressive
temporal formalism that extends Dechter et al.’s simple tem-
poral problem. The DTP is well studied in the literature and
has many important applications. It is known that deciding
satisfiability of DTPs is NP-hard and that, in many cases,
single-exponential algorithms (running in O(cn) time) do not
exist under the Exponential-Time Hypothesis. The compu-
tational hardness makes it worthwhile to identify restricted
problems that are efficiently solvable. One way of doing this
is to restrict the interactions of variables and constraints. We
show that instances of DTP of any arity with integers bounded
by poly(n) can be solved in nf(w) time, where n denotes
the problem size, w is the treewidth of the incidence graph
and f is a computable function; in other words, this prob-
lem is in the complexity class XP and it can be solved in
polynomial time whenever w is fixed. We complement this
result by showing that binary DTPs that only involve the in-
tegers 0 and 1 are not fixed-parameter tractable with respect
to treewidth, i.e. they do not admit a f(w) · poly(n) time al-
gorithm for any computable function f , under standard com-
plexity assumptions. For instances with unbounded integers,
we show that even binary DTPs parameterized by treewidth
cannot be in XP, unless P = NP.

Introduction
Temporal reasoning is a fundamental task in AI and one of
the most influential temporal formalisms is the simple tem-
poral problem (STP) (Dechter, Meiri, and Pearl 1991). It
is a constraint satisfaction problem (CSP) over a language
with relations {(x, y) ∈ R2 : ` ≤ x − y ≤ u} where
`, u ∈ R∪ {−∞,+∞}. Even though the STP is immensely
useful in a wide range of applications, its expressive power
is limited. Increased expressibility can be achieved by using
disjunctions (Barber 2000; Dechter, Meiri, and Pearl 1991;
Oddi and Cesta 2000; Stergiou and Koubarakis 2000). Such
disjunctive STPs are highly relevant in an AI context: exam-
ples can be found in automated planning (Gerevini, Saetti,
and Serina 2006; Venable and Yorke-Smith 2005) and multi-
agent systems (Bhargava and Williams 2019; Boerkoel and
Durfee 2013), while Stergiou & Koubarakis (2000, Sec. 7),
Tsamardinos & Pollack (2003) and Peintner et al. (2007)
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discuss various other applications. DTPs also have many ap-
plications in areas outside AI such as bioinformatics and
graph theory (Pe’er and Shamir 1997), and in telecommu-
nications via the channel assignment problem (see, for in-
stance, Audhya et al. (2011) and Král’ (2005)).

Augmenting STPs with disjunctions (Oddi and Cesta
2000; Stergiou and Koubarakis 2000) yields a language D
as follows. We consider intervals over Q with endpoints in
Z ∪ {−∞,+∞}. The intervals may be open, closed, half-
closed, and even a single point. Let I denote the set of these
intervals and let D contain all relations

{(x1, . . . , xt) ∈ Qt :
∨m
`=1 xi` − xj` ∈ I`}

for arbitrary t,m ≥ 1 where i`, j` ∈ {1, . . . , t} and I` ∈ I
for all 1 ≤ ` ≤ m. The CSP for D is known as the dis-
junctive temporal problem (DTP). We make, without loss of
generality, the sensible assumption that the bounding values
are integers (see e.g. Tsamardinos & Pollack (2003)): (most)
real values cannot be written down with a finite number of
bits, and rational numbers can be scaled in a suitable way.
We use the rationals as the value domain (also without loss
of generality): if there is a solution to an instance of CSP(D)
over the reals, then there is also a solution over the rationals.

While the STP is a polynomial-time solvable problem, the
DTP is NP-hard (even though a number of polynomial-time
solvable fragments are known, see e.g. (Comin and Rizzi
2018; Kumar 2005)). Dabrowski et al. (2020) have addition-
ally shown that the DTP (and many severely restricted vari-
ants) cannot be solved in O(cn) time (for any constant c)
under the Exponential-Time Hypothesis (ETH), i.e. the hy-
pothesis that 3SAT cannot be solved in 2o(n) time, where n is
the number of variables (Impagliazzo and Paturi 2001). This
motivates the search for efficiently solvable subproblems.

To this end, we use the framework of parameterized com-
plexity (Flum and Grohe 2006; Niedermeier 2006; Downey
and Fellows 2013), where the run-time of an algorithm is
studied with respect to a parameter p ∈ N and the input
size n. The idea is that the parameter describes the struc-
ture of the instance in a computationally meaningful way.
Here, the most favourable complexity class is FPT (fixed-
parameter tractable), which contains all problems that can
be decided in f(p) · nO(1) time, where f is a computable
function. The next best option is the complexity class XP,
which contains all problems decidable in nf(p) time, i.e. the



problems solvable in polynomial time when the parameter p
is bounded. Clearly, FPT ⊆ XP and this inclusion is strict
(see e.g. (Flum and Grohe 2006, Corr. 2.26)). It is signifi-
cantly better if a problem is in FPT than in XP, since the
order of the polynomial factor in the former case does not
depend on the parameter p. Finally, a problem is pNP-hard
if it is NP-hard for some constant value of the parameter. A
problem that is pNP-hard cannot be in XP unless P = NP.

A prominent method for identifying tractable fragments
of CSPs is to restrict variable-constraint interactions (see, for
instance, the survey by Carbonnel & Cooper (2016, Sec. 5));
these are referred to as structural restrictions and are com-
monly studied via the primal and incidence graphs associ-
ated with instances of the CSP. The primal graph has the
variables as its vertices with any two joined by an edge if
they occur together in a constraint. The incidence graph is
the bipartite graph with two disjoint sets of vertices corre-
sponding to the variables and the constraints, respectively.
A constraint vertex and a variable vertex are joined by an
edge if the variable occurs in the scope of the constraint.
The treewidth of such graphs has been used extensively. It
is, for example, known that the finite-domain CSP is in FPT
with the parameter w + d if w is the primal treewidth and d
is the domain size (Gottlob, Scarcello, and Sideri 2002),
while this is not true (under standard complexity assump-
tions) if w is the incidence treewidth (Samer and Szeider
2010). We observe that treewidth has been successfully em-
ployed for many (related) application areas in AI (Gottlob,
Pichler, and Wei 2006) with various relevant practical appli-
cations (Bliem et al. 2020).

To describe our results, let num(R) be the largest absolute
value appearing in the definition of a relation R ∈ D, and
let Da,k (where a, k ∈ N∪{∞}) denote the class of relations
of arity at most a with num(R) ≤ k. The primal treewidth
is bounded from below by the incidence treewidth (Ko-
laitis and Vardi 2000) for arbitrary CSP instances. Thus,
we present algorithms for DTPs parameterized by incidence
treewidth and lower bounds with respect to primal treewidth.
Certain families of infinite-domain CSPs are known to be
in XP when parameterized by primal treewidth (Bodirsky
and Dalmau 2013; Huang, Li, and Renz 2013). We start
by showing that these results are not applicable even to
CSP(D2,1). In contrast to this, we present an XP algorithm
for CSP(D∞,k) when k ∈ N. Additionally, we prove that
CSP(D2,k) for 1 ≤ k < ∞, is not in FPT (under standard
complexity-theoretic assumptions), thus showing that sig-
nificantly faster algorithms for DTP are unlikely. Problems
such as Allen’s Algebra and RCC8 are in FPT (Dabrowski
et al. 2021) so DTP is in fact a substantially harder prob-
lem. We complement all of these results by showing that
CSP(D2,∞) is pNP-hard, i.e. the problem becomes much
harder when the numeric values are unbounded.

We summarize our results in Table 1. All results for k ≥ 1
can be found in this paper. The polynomial-time solvabil-
ity of CSP(D2,0) follows from the fact that the relations
in D2,0 equal the point algebra (Vilain and Kautz 1986). It
is well known that CSP(Dk,0) for k ≥ 3 is NP-hard (this
follows, for instance, from an easy reduction from the BE-
TWEENNESS problem (Garey and Johnson 1979)) and re-

k = 0 1 ≤ k <∞ k unbounded
a = 2 ∈ P 6∈ FPT,∈ XP pNP-h.
a > 2 NP-h., ∈ FPT 6∈ FPT,∈ XP pNP-h.

Table 1: Summary of complexity landscape for CSP(Da,k)

sults by Dabrowski et al. (2021) show that these problems
are in FPT.

Preliminaries
Constraint Satisfaction
Let Γ (the constraint language) denote a set of finitary rela-
tions defined on a set D of values. Observe that we do not
require Γ or D to be finite. The constraint satisfaction prob-
lem over Γ (CSP(Γ)) is defined as follows:
Instance: A tuple (V,C), where V is a set of variables
and C is a set of constraints of the form R(v1, . . . , vt),
where t is the arity of R, v1, . . . , vt ∈ V , and R ∈ Γ.
Question: Is there a function f : V → D such that
(f(v1), . . . , f(vt)) ∈ R for every R(v1, . . . , vt) ∈ C?

Such a function f is a satisfying assignment or simply
a solution. We denote the set of variables appearing in the
scope of a constraint c by S(c).

Treewidth
Treewidth is based on tree decompositions (Bertelè and
Brioschi 1972; Robertson and Seymour 1984): a tree de-
composition (T, χ) of an undirected graph G = (V,E)
consists of a rooted tree T and a mapping χ from nodes
V (T ) of the tree to subsets of V . The subsets χ(t) are called
bags. Tt denotes the sub-tree rooted at t, while χ(Tt) de-
notes the set of all vertices occurring in the bags of Tt, i.e.
χ(Tt) =

⋃
s∈V (Tt)

χ(s). A tree decomposition has the fol-
lowing properties:

1. for every {u, v} ∈ E, there is a node t ∈ V (T ) such that
u, v ∈ χ(t), and

2. for every v ∈ V , the set of bags of T containing v forms
a non-empty sub-tree of T .

The width of a tree decomposition T is max{|χ(t)|−1 : t ∈
T}. The treewidth of a graph G, denoted by tw(G), is the
minimum width of a tree decomposition of G. We simplify
the presentation by using restricted tree decompositions. A
tree decomposition is nice if (1) χ(r) = ∅ for the root r
and |χ(l)| = 1 and for all leaf nodes l in T , and (2) every
non-leaf node in T is of one of the following types:
• An introduce node: a node twith exactly one child t0 such

that χ(t) = χ(t0) ∪ {v} for some v ∈ V .
• A forget node: a node t with exactly one child t0 such that
χ(t) = χ(t0) \ {v} for some v ∈ V .

• A join node: a node t with exactly two children t1 and t2
such that χ(t) = χ(t1) = χ(t2).

Proposition 1 (Bodlaender & Kloks (1996); Kloks (1994)).
Let G = (V,E) be a graph. For fixed w, if G has treewidth
at most w, then a nice tree decomposition of width at most
w with O(|V |) nodes can be computed in linear time.



Parameterized Complexity
The parameterized complexity classes we need were intro-
duced in the introduction. We will prove that certain prob-
lems are not in FPT and this requires some extra machinery.
A parameterized problem is, formally speaking, a subset of
Σ∗ × N where Σ is the input alphabet. Reductions between
parameterized problems need to take the parameter into ac-
count. To this end, we will use parameterized reductions (or
fpt-reductions). Let L1 and L2 denote parameterized prob-
lems with L1 ⊆ Σ∗1×N and L2 ⊆ Σ∗2×N. A parameterized
reduction from L1 to L2 is a mapping P : Σ∗1×N→ Σ∗2×N
such that (1) (x, k) ∈ L1 if and only if P ((x, k)) ∈ L2,
(2) the mapping can be computed by an fpt-algorithm with
respect to the parameter k, and (3) there is a computable
function g : N → N such that for all (x, k) ∈ L1 if
(x′, k′) = P ((x, k)), then k′ ≤ g(k).

The class W[1] contains all problems that are fpt-
reducible to Independent Set when parameterized by the size
of the solution, i.e. the number of vertices in the independent
set. Showing W[1]-hardness (by an fpt-reduction) for a prob-
lem rules out the existence of a fixed-parameter algorithm
under the standard assumption FPT 6= W[1].

Upper bounds
To the best of our knowledge, there are two XP algo-
rithms described in the literature (one by Bodirsky & Dal-
mau (2013) and another by Huang et al. (2013)) that could
potentially be used for solving CSP(D∞,k). We start by
showing that they are not applicable, and continue by pre-
senting a novel XP algorithm for CSP(D∞,k), k <∞.

Earlier Algorithms
Bodirsky & Dalmau (2013) and Huang et al. (2013) proved
that CSP(Γ) is in XP for ω-categorical Γ and binary con-
straint languages Γ that have the atomic network amalga-
mation property (aNAP), respectively. Huang et al. write that
their algorithm is fixed-parameter tractable, but this is due to
non-standard terminology; according to their Theorem 6, the
algorithm runs in O(w3n · ew2 logn) = nO(w2) time. These
two general results apply to certain temporal problems, e.g.
first-order reducts of (Q;<) are ω-categorical (Bodirsky
and Kára 2010), while Allen’s Interval Algebra has the
aNAP (Lutz and Miličić 2007). However, these properties
do not hold for the constraint language D or even its frag-
ment D2,1.

By the theorem of Engeler, Ryll-Nardzewski, and Sveno-
nius (see e.g. (Hodges 1997)), if Γ is an ω-categorical con-
straint language, then for all n > 1, there are finitely many
inequivalent formulas over Γ with n free variables. This is
not true for D2,1: consider the infinite sequence of formulas
φ2(x, y), φ3(x, y), . . . defined as follows:

φk(x, y) ≡ ∃z1, . . . , zk. x = z1∧y = zk∧
k−1∧
i=1

zi+1−zi = 1

and note that φk(x, y) holds if and only if y = x+ k − 1.
If a binary disjunctive Γ has aNAP, then for any pair of

complete atomic instances (V1, C1) and (V2, C2) of CSP(Γ)

that have the same constraints over the variables in V1 ∩ V2,
their union (V1∪V2, C1∪C2) is satisfiable. An instance of Γ
is complete if there is one constraint for every pair of vari-
ables, and it is atomic if no constraints involve disjunctions.
Consider the instances

I1 = ({x, a, y}, {a− x = 1, y − a = 1, y − x ∈ (1,∞)}),
I2 = ({x, b, y}, {b−x = 1, y−b ∈ (0, 1), y−x ∈ (1,∞)}).
I1 and I2 are complete, satisfiable, atomic instances of
CSP(D2,1), and they agree on their intersection. However,
their union is not satisfiable, since I1 implies that y−x = 2,
while I2 implies that y − x ∈ (1, 2).

New Algorithm
We will now present an XP algorithm for CSP(D∞,k),
k ∈ N. To simplify the presentation, we define the set
CD(n, k) = {z+ q

n | z, q ∈ N, 0 ≤ z ≤ (n−1)(k+1), 0 ≤
q < n} for n ∈ N.

We will first show that any solvable instance of
CSP(D∞,k) with n variables has a solution with domain
CD(n, k). We omit the proof.
Lemma 2. Every satisfiable instance I = (V,C) of
CSP(D∞,k) has a solution f : V → CD(|V |, k).

We are now ready to present our dynamic programming
algorithm for CSP(D∞,k).

Theorem 3. CSP(D∞,k) can be solved in (nk)O(w) time,
where w is the treewidth of the incidence graph and n is the
number of variables.

Note that the bound implies that CSP(D) is in XP when-
ever the numeric values are bounded by a polynomial in the
input size. Because of Proposition 1, the computation of a
nice tree decomposition of the incidence graph does not in-
cur an additional run-time overhead. We may thus assume
that a nice tree decomposition is provided in the input,

Let I = (V,C) be an instance of CSP(D∞,k) with n
variables and assume (T, χ) is a nice tree decomposition of
the incidence graph of I of width w. Bags of this decompo-
sition contain vertices corresponding to both variables and
constraints. To distinguish between them, we use varχ(t) to
denote all variables in the bag χ(t) and conχ(t) to denote
all constraints in χ(t). These definitions naturally extend to
the subsets of V (T ). Note that by Lemma 2, we may as-
sume that every solution for I maps the variables into the
set CDC = CD(n, k).

Intuitively, the algorithm behind Theorem 3 works as fol-
lows. It uses a bottom-up dynamic programming approach
on the nodes of T (starting from the leaves and finishing at
the root) to compute a compact representation, in the follow-
ing represented by a set of valid records, of all solutions to I
restricted to the variables and constraints in χ(Tt) for every
node t ∈ V (T ).

A record for t ∈ V (T ) is a pair (α, β), where:
• α : varχ(t) → CDC is an assignment of values in CDC

to the variables in varχ(t), and
• β : conχ(t)→ DB , where DB = {S,U} ∪ { (v, d) | v ∈
V and d ∈ CDC } such that for every constraint c ∈
conχ(t) either:



– β(c) = S signalling that the constraint c is already sat-
isfied,

– β(c) = U signalling that the constraint c is not yet sat-
isfied,

– β(c) = (v, d), where v ∈ S(c) ∩ (varχ(Tt) \ varχ(t))
and d ∈ CDC , signalling that c is not yet satisfied,
but satisfying c can use the assumption that v is set
to d. This also means that c will be satisfied by sat-
isfying a simple constraint on v and some variable in
V \ varχ(Tt).

Note that there are at most |CDC | possible choices for ev-
ery variable in varχ(t) and at most |V ||CDC | + 2 possible
choices for every constraint in conχ(t). Therefore, the total
number of valid records for t is at most (|V ||CDC |+2)w+1.

For X ∈ {S,U}, define the inverse β−1(X) as {c ∈
conχ(t) | β(c) = X} and let β−1(F ) = conχ(t) \
(β−1(S) ∪ β−1(U)), i.e. β(c) = (v, d) for some v ∈ V
and d ∈ CDC for all c ∈ β−1(F ).

The semantic of a record is defined as follows. We say
that a record (α, β) is valid for t if there is an assignment
τ : varχ(Tt)→ CDC such that:

(R1) τ does not satisfy any constraint in Y = conχ(t) \
β−1(S) and satisfies all constraints in conχ(Tt) \ Y ,

(R2) τ(v) = α(v) for every v ∈ varχ(t), and

(R3) τ(v) = d holds for every constraint c ∈ conχ(t) with
β(c) = (v, d).

Let R(t) be the set of all valid records for t. Note that I
has a solution if and only if R(r) 6= ∅ for the root r of T
since the records in R(r) represent solutions for the whole
instance. A concrete solution can be computed by using
standard techniques (Downey and Fellows 2013).

Next, we will show that R(t) can be computed via a
dynamic programming algorithm on (T, χ) in a bottom-up
manner. The algorithm starts by computing the set of all
valid records for the leaves of T and then proceeds by com-
puting the set of all valid records for the other three types of
nodes of a nice tree-decomposition (always selecting nodes
all of whose children have already been processed). The fol-
lowing lemmas show how this is achieved for the different
types of nodes of (T, χ).

Lemma 4 (leaf node). Let t ∈ V (T ) be a leaf node with
χ(t) = {x} for some variable or constraint x. Then, R(t)
can be computed in O(|CDC |) time.

Sketch of Proof. We first show the result when x is a vari-
able. In this case, R(t) consists of all records (α, ∅) for ev-
ery assignment α : {x} → CDC , so R(t) can be computed
by enumerating all assignments α for x in time O(|CDC |).
Correctness follows immediately from the definition of valid
records.

We now show the result for the case that x is a constraint.
Then, R(t) consists of the record (∅, β), where β : {x} →
DB is defined by setting β(x) = U . Hence, R(t) can be
computed in constant time and correctness follows immedi-
ately from the definition of valid records.

Lemma 5 (variable introduce node). Let t ∈ V (T ) be an
introduce node with child t0 such that χ(t) \ χ(t0) = {v}
for some variable v ∈ V . Then, R(t) can be computed in
O(|R(t0)||CDC ||I|) time.

Proof. Informally, the set R(t) is obtained from R(t0) by
extending every record R0 = (α0, β0) in R(t0) with an as-
signment αv : {v} → CDC for the variable v and then
updating the record (i.e. updating β0) if αv causes addi-
tional constraints to be satisfied. More formally, for every
(α0, β0) ∈ R(t0) and every assignment αv : {v} → CDC ,
the setR(t) contains the record (α, β), where:

• α(u) = α0(u) for all u ∈ χ(t0) and α(v) = αv(v),

• β(c) = S for every constraint c ∈ β−1
0 (S) ∪ U ′ ∪ F ′,

where:
– U ′ is the set of all constraints c ∈ β−1

0 (U) that are
satisfied by the (partial) assignment α and

– F ′ is the set of all constraints c ∈ β−1
0 (F ) that are sat-

isfied by setting v to αv(v) and u to d, where (u, d) =
β0(c).

• β(c) = β0(c) for every other constraint c, i.e. every con-
straint c ∈ conχ(t) \ (β−1

0 (S) ∪ U ′ ∪ F ′).

Towards showing correctness of the definition for R(t),
we first show that every valid record R = (α, β) for t is
added to R(t). Because R is valid, there is an assignment
τ : varχ(Tt) → CDC satisfying (R1)–(R3). Let α0 be
the restriction of α to varχ(t0) and let τ0 be the restric-
tion of τ to varχ(Tt0). Let Z be the set of all constraints
in conχ(t) = conχ(t0) that are satisfied by τ but not sat-
isfied by τ0. Moreover, let X ⊆ Z contain the constraints
that are satisfied by α and set Y = Z \ X . Then, for ev-
ery constraint c ∈ Y , there is (at least one) variable, de-
noted by y(c), in varχ(Tt) \ varχ(t) such that the partial
assignment setting y(c) to τ(y(c)) and setting v to α(v) sat-
isfies c. This implies that the record R0 = (α0, β0) defined
by setting β0(c) = β(c) for every c ∈ conχ(t0) \ (X ∪ Y ),
β0(c) = U for every c ∈ X , and β0(c) = (y(c), τ(y(c)))
for every c ∈ Y is contained in R(t0). Finally, U ′ = X and
F ′ = Y holds for the record R0, so R is added toR(t).

It remains to show that if a record R = (α, β) is added to
R(t), then R is valid for t. Suppose that R is obtained from
the record R0 = (α0, β0) ∈ R(t0). Then, because R0 is
valid for t0, there is an assignment τ0 : varχ(Tt0) → CDC
satisfying (R1)–(R3). Now it is straightforward to verify that
the extension τ of τ0 obtained by setting τ(v) = α(v) wit-
nesses that R is a valid record.

Finally, the run-time of the procedure follows because
there are |R(t0)| · |CDC | pairs of records in R(t0) and
assignments αv for v. Computing the record for one such
combination requires evaluating the constraints in conχ(t)
for partial assignments and thus takes O(|I|) time.

Lemma 6 (constraint introduce node). Let t ∈ V (T ) be
an introduce node with child t0 such that χ(t)\χ(t0) = {c}
for some constraint c ∈ C. Then, R(t) can be computed in
O(|R(t0)||I|) time.



Sketch of Proof. Informally, the set R(t) is obtained from
R(t0) by checking, for every record (α0, β0) ∈ R(t0),
whether α0 satisfies the constraint c and if so, extending β0

by setting c to being satisfied, and if not, extending β0 by set-
ting c being to unsatisfied. More formally, for every record
(α0, β0) ∈ R(t0):

• if the constraint c is satisfied by the partial assignment α0,
then R(t) contains the record (α0, β), where β is the ex-
tension of β0 that sets c to S.

• otherwise, i.e. if α0 does not satisfy c, thenR(t) contains
the record (α0, β), where β is the extension of β0 that sets
c to U .

The correctness of the definition for R(t) follows from
the semantics of records and the fact that (T, χ) is a tree de-
composition: the scope of c does not contain any variable
from varχ(Tt) \ varχ(t); otherwise the edge between c and
the variable in varχ(Tt) \ varχ(t) in the incidence graph is
not contained in any bag of T . Hence, it suffices to con-
sider the assignment of the variables in varχ(t) to determine
whether c is already satisfied.

Finally, the run-time follows because we have to consider
every record (α0, β0) in R(t0) and check in O(|I|) time
whether α satisfies c.

Lemma 7 (variable forget node). Let t ∈ V (T ) be a for-
get node with child t0 such that χ(t0) \ χ(t) = {v} for
some variable v ∈ V . Then, R(t) can be computed in
O(|R(t0)|2ww) time.

Proof. Informally, R(t) is obtained from R(t0) by restrict-
ing α0 of every record (α0, β0) ∈ R(t0) to varχ(t), but al-
lowing the assignment that sets v to α0(v) to satisfy any set
of yet unsatisfied constraints in β−1

0 (U) that have v in their
scope. More formally, for every record (α0, β0) ∈ R(t0)
and every subset U ′ of β−1

0 (U) ∩ { c ∈ C | v ∈ S(c) }, the
setR(t) contains the record (α, β), where α is the restriction
of α0 to varχ(t) and β is defined by setting β(c) = β0(c)
for every c ∈ conχ(t) \ U ′ and β(c) = (v, α0(v)) for every
c ∈ U ′.

Towards showing the correctness of the definition for
R(t), we first show that every valid record R = (α, β) for t
is added toR(t). Because R is valid, there is an assignment
τ : varχ(Tt) → CDC satisfying (R1)–(R3). Let X be the
set of all constraints c in conχ(t) such that β(c) = (v, d).
Because τ satisfies (R3), we actually have that d = τ(v) for
all constraints in X . Then, τ witnesses validity of the record
R0 = (α0, β0), where α0 is the extension of α setting v to
τ(v) and β0 is obtained from β by setting β0(c) = U for
every c ∈ X . But then the record R0 together with the set
U ′ = X shows that R is added toR(t).

It remains to show that if a record R = (α, β) is added
to R(t), then R is valid for t. Assume that R is obtained
from the record R0 = (α0, β0) ∈ R(t0). Then, because R0

is valid for t0, there is an assignment τ0 : varχ(Tt0) →
CDC satisfying (R1)–(R3). Moreover, the assignment τ0
witnesses the validity of R. Finally, the run-time follows be-
cause there are at most |R(t0)|2w pairs of a record inR(t0)

and a subset U ′ and the time required to compute a record
for such a pair is at most O(w).

Lemma 8 (constraint forget node). Let t ∈ V (T ) be a
forget node with child t0 such that χ(t0) \ χ(t) = {c} for
some constraint c ∈ C. Then, R(t) can be computed in
O(|R(t0)||χ(t)|) time.

Sketch of Proof. Informally, R(t) is obtained from R(t0)
by taking all records (α0, β0) in R(t0) that satisfy c and
restricting β0 to conχ(t). More formally, for every record
(α0, β0) ∈ R(t0) such that β0(c) = S, R(t) contains the
record (α0, β), where β is the restriction of β0 to conχ(t).
The correctness of the definition for R(t) follows immedi-
ately from the definition of valid records.

Finally, the run-time follows because it takes O(|χ(t)|)
time to check whether β0(c) = S and to compute the re-
striction of β to conχ(t) for a record (α0, β0) inR(t0).

Lemma 9 (join node). Let t ∈ V (T ) be a join node with
children t1 and t2, where χ(t) = χ(t1) = χ(t2). Then,R(t)
can be computed in O(|R(t1)||R(t2)||I|) time.

Sketch of Proof. Informally, R(t) is obtained from R(t1)
and R(t2) by combining all pairs of records (αi, βi) in
R(ti) that agree on the assignments αi to a new record
and updating the set of satisfied constraints. More formally,
we say that two records (α1, β1) ∈ R(t1) and (α2, β2) ∈
R(t2) are compatible if α1 = α2 and for every constraint
c ∈ conχ(t) such that for i ∈ {1, 2}, βi(c) = (vi, di),
and the partial assignment setting vi to di satisfies c. Then,
for every pair of compatible records (α1, β1) ∈ R(t1) and
(α2, β2) ∈ R(t2), the set R(t) contains the record (α, β),
where:

• α = α1 = α2 and
• β(c) = S if either:

– β1(c) = S or β2(c) = S or
– β1(c) = (v1, d1) and β2(c) = (v2, d2) and the (partial)

assignment setting v1 to d1 and v2 to d2 satisfies c.
• β(c) = U if β1(c) = U and β2(c) = U ,
• β(c) = (v, d) if either:

– β1(c) = (v, d) and β2(c) = U or
– β1(c) = U and β2(c) = (v, d)

The correctness of the definition for R(t) follows imme-
diately from the definition of valid records together with the
following observations: (1) every constraint c in conχ(Tt) \
conχ(t) is either satisfied by the variables in varχ(Tt1) or by
the variables in varχ(Tt2), because (T, χ) is a tree decompo-
sition and (2) every constraint c in conχ(t) is either satisfied
by the variables in varχ(Tt1), by the variables in varχ(Tt2),
or it is satisfied by a constraint containing one variable from
varχ(Tt1) and one variable from varχ(Tt2).

Finally, the run-time follows because there are at most
|R(t1)||R(t2)| compatible pairs of records and for every
such pair it takes time at most O(|I|) to compute the com-
bined record forR(t).

We can now conclude the results in this section.



Proof of Theorem 3. The algorithm computes the set of all
valid records R(t) for every node t of T using a bottom-
up dynamic programming algorithm starting in the leaves
of T . It then solves I by checking whether R(r) 6=
∅. The correctness of the algorithm follows from Lem-
mas 4 to 9. The run-time of the algorithm is at most the
number of nodes of T , which can be assumed to be bounded
from above by O(|I|) (Proposition 1), times the maximum
time required to compute R(t) for any of the node types
of a nice tree-decomposition, which is obtained for join
nodes with a run-time of O(|R(t1)||R(t2)||I|). Because
|R(t)| ≤ (|V ||CDC | + 2)w+1, we obtain O((|V ||CDC | +
2)2(w+1)(|I|)2) ∈ (nk)O(w) as the total run-time.

Lower bounds
We continue with lower bounds for CSP(D). We first show
that if there are no restrictions on the size of the numbers
used in the constraints, then CSP(D2,∞) is NP-hard, even
for instances whose primal graph has constant treewidth.
We then provide the complementary lower bound result for
Theorem 3, showing that CSP(D2,1) is already W[1]-hard
parameterized by primal treewidth. Our first hardness result
is based on the NP-hard problem SUBSET SUM (Garey and
Johnson 1979).

SUBSET SUM
Instance: A set of integers S and an integer N .
Question: Is there a set S′ ⊆ S such that N =

∑
s∈S′ s?

Theorem 10. CSP(D2,∞) is NP-hard, even for instances
whose primal graph has treewidth at most 2.

Proof. We present a polynomial-time reduction from the
SUBSET SUM problem to CSP(D2,∞). Let (S,N) be an
instance of SUBSET SUM with S = {s1, . . . , sn}. We con-
struct an equivalent instance I of CSP(D2,∞) as follows. In-
troduce n+1 variables x0, . . . , xn. For every i with 1 ≤ i ≤
n, introduce the constraint xi− xi−1 = 0∨ xi− xi−1 = si.
Finally, add the constraint xn − x0 = N . Note that the pri-
mal graph of I is a cycle, so its treewidth is at most 2. The
equivalence of the instances is obvious, since choosing an
integer si corresponds to setting xi − xi−1 to si.

Our second hardness result is based on a variant of SUB-
SET SUM. Let k denote a natural number and let v̄ denote
a vector of dimension K =

(
k
2

)
. We sometimes refer to the

coordinates of v̄ by a pair (a, b) of natural numbers with
1 ≤ a < b ≤ k; here, we implicitly use an arbitrary bijec-
tion between the K pairs (a, b) satisfying the inequality and
theK coordinates of the vector v̄. We say that v̄ is uniform if
every non-zero coordinate of v̄ has the same value s(v̄). Fi-
nally, for an integer N , we let N̄ denote the K-dimensional
vector that is equal to N at every coordinate.

MULTI-DIMENSIONAL PARTITIONED SUBSET SUM
(MPSS)
Instance: Integers k and N , and sets V1, . . . , Vk and
E1, . . . , EK of uniform K-dimensional vectors over the
natural numbers such that:
• Every vector v̄ ∈ Vi is non-zero only at the coordinates

(a, b) such that a = i or b = i.

• Every vector v̄ ∈ Er is non-zero only at the coordinate r.

Parameter: k
Question: Are there v̄1, . . . , v̄k and ē1, . . . , ēK with v̄i ∈ Vi
and ēi ∈ Ei such that (

∑k
i=1 v̄

i) + (
∑K
i=1 ē

i) = N̄?

Proposition 11. MPSS is strongly W[1]-hard (i.e. it is
W[1]-hard even if all numbers are encoded in unary).

Sketch of Proof. This follows from the construction pre-
sented in the proof of Lemma 6 in (Ganian, Klute, and Or-
dyniak 2018).

Theorem 12. CSP(D2,1) is strongly W[1]-hard parameter-
ized by primal treewidth.

Sketch of Proof. We provide a parameterized reduction
from MPSS, which together with Proposition 11 establishes
the result. To simplify the reduction, we provide it in two
stages. First we show how to construct an equivalent in-
stance I ′′ of CSP(D2) and then we show how to obtain the
desired instance I ′ of CSP(D2,1) from I ′′.

Let I = (k,N, (Vi)1≤i≤k, (Er)1≤r≤K) be the given in-
stance of MPSS. Informally, the main ideas behind the re-
duction are as follows. First, for every vector v̄ in VE =

(
⋃k
i=1 Vi) ∪ (

⋃K
i=1Ei) and every non-zero coordinate c of

v̄, we introduce a segment represented by two variables x
and y at distance exactly s(v̄) from each other. We then cre-
ate a board consisting of two main parts: the bucket part and
the garbage part. While the bucket part provides placehold-
ers for the segments of the vectors chosen to be in a solution
for I, the garbage part provides placeholders for all other
segments. Crucial for the idea is a gadget that ensures that a
segment can only be in one of two places, i.e. its place inside
the bucket part or its place inside the garbage part. To illus-
trate the idea behind this gadget, assume one wants to ensure
that a variable x is either equal to a variable a or equal to a
variable b. This can be achieved by the ternary constraint
x = a ∨ x = b, however, since we are only allowed to use
binary constraints, it becomes more complicated. The idea is
that we additionally ensure that the distance between a and
b is between M and 2M for some number M . Then we can
ensure that x is either equal to a or equal to b by using the
constraints x = a ∨ x− a > M and x = b ∨ b− x > M .

With that in mind, let us provide some details on the
bucket part and the garbage part. The main idea behind the
bucket part is that it provides placeholders for the segments
representing the non-zero coordinates of all vectors that are
in the solution for I. More specifically, consider a solution
for I choosing exactly one vector v̄i from each Vi and ex-
actly one vector ēr from each Er. Then for every coordinate
r = (i, j), the solution contains exactly three vectors that
are non-zero at coordinate r, i.e. the vector v̄i, the vector v̄j ,
and the vector ēr. Thus, the bucket part will provide three
placeholders. This is achieved by introducing four variables
br1, . . . , b

r
4 for every coordinate r with the idea that, the place

between br1 and br2 is a placeholder for the r-th coordinate
of v̄i, the place between br2 and br3 is a placeholder the r-th
coordinate of v̄j , and the place between br3 and br4 is a place-
holder for the r-th coordinate of ēr. Finally, to verify that
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Figure 1: The board consisting of the bucket part and the garbage part defined in the proof of Theorem 12. Here, TA =∑
ā∈A s(ā) for A ∈ {V1, . . . , Vk, E1, . . . , EK}.

the sum of all vectors in the solution is equal to N at each
coordinate r, we introduce the constraint br4 − br1 = N .

The main function of the garbage part is to ensure two
things: (1) if a segment representing a non-zero coordinate
of some vector v̄ in VE is chosen to be in the bucket part,
then all segments representing non-zero coordinates of v̄ are
chosen to be in the bucket part and (2) the segments of at
least one vector from every set Vi and every set Er are cho-
sen to be in the bucket part. To achieve this, the garbage
part consists of k + K parts, i.e. one part for every set Vi
and one part for every set Er. Moreover, the part for a set
A ∈ {V1, . . . , Vk, E1, . . . , EK}, has one placeholder for ev-
ery vector ā ∈ A, which can hold all segments representing
non-zero coordinates of the vector ā. This is achieved by in-
troducing |A|+ 1 variables gA0 , . . . , g

A
|A| such that the place

between gAi−1 and gAi is reserved to hold all segments of the
i-th vector in A. Here, it is important to recall that every
non-zero coordinate of every vector v̄ in VE has the same
value s(v̄). Finally, we ensure (2) by adding the constraint
gA|A| − g

A
0 <

∑
ā∈A s(ā) = TA, which ensures that not all

vectors of A can fit into the garbage part.
Figure 1 illustrates the bucket part and the garbage part

and also shows how these parts are aligned to each other.
Finally, Figure 2 shows the two possibilities (being either
in the bucket part or in the garbage part) for the segment
representing the non-zero coordinate c of the `-th vector v̄`
in Vi. The segment is represented by the two variables xVi

`,c

and yVi

`,c that are at distance exactly s(v̄) from each other.
This provides the main ideas behind the first step of

the construction, i.e. the construction of the instance I ′′
of CSP(D2). The primal treewidth of I ′′ can be shown to
be at most 4K + 3 by observing that the graph obtained

xVi

`,c yVi

`,c

bc1 bc2 bc3 bc4 gVi

`−1 gVi

`

s(v̄`)

N

Figure 2: Possible ways to place the variables xVi

`,c and yVi

`,c

corresponding to the non-zero coordinate c = (i, j) of the
`-th vector v̄` in Vi.

from primal graph after removing all of the 4K bucket vari-
ables has treewidth at most 3. Finally, to show the result for
CSP(D2,1), we need to replace all constraints in I ′′ that use
an integer say z larger than 1. Though this is not possible
in general (without increasing the primal treewidth of the
instance too much), we show that for our constraints this
is possible by replacing those constraints with O(z) auxil-
iary constraints and variables that are arranged in a path-like
manner. Since z can be assumed to be of size polynomial
in the input size (because MPSS is strongly W[1]-hard), re-
placing those constraints withO(z) auxiliary constraints and
variables is achievable in polynomial-time.

Discussion

We have studied the parameterized complexity (with pa-
rameters primal and incidence treewidth) of CSP(Da,k),
where a is relation arity and k bounds the numerical val-
ues. Disjunctive temporal relations are sometimes defined in
a more general way which allows for unary atomic relations
x ∈ I (as opposed to binary atomic relations x−y ∈ I). The
standard trick for handling unary relations is to introduce a
zero variable (see (Barber 2000)). This allows us to express
unary constraints, e.g. the constraint x−z ∈ (0, 2] is equiva-
lent to x ∈ (0, 2] if z is the zero variable. Adding a zero vari-
able can only increase the treewidth of the incidence graph
by 1, so Theorem 3 is still valid for the extended formalism.

This work may be extended in different directions. One
way is to more closely analyze the structure of the rela-
tions in a given constraint language. This approach has been
successful for identifying tractable cases: for instance, the
STP disallows disjunctions, while the tractable class by Ku-
mar (2005) is defined via highly restricted disjunctions. It
seems likely that a parameterized analysis can also gain from
this approach. Another way forward is to study other struc-
tural parameters. The notion of treewidth captures the fact
that trees are structurally simple, but fails to do this for
cliques since the treewidth of an n-clique is n − 1. An al-
ternative graph decomposition with a corresponding qual-
ity measure (known as clique-width) was introduced and
analyzed in a series of articles (Courcelle, Engelfriet, and
Rozenberg 1993; Wanke 1994; Courcelle and Olariu 2000).
This decomposition captures the structure of both sparse
graphs (such as trees) and dense graphs (such as cliques),
and it is known to have algorithmic properties that are sim-
ilar to those of bounded treewidth graphs. It may thus be
highly relevant in connection with temporal reasoning.
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