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Figure 1: The aim of our method is to estimate the stable 3D hand pose under tremor. Left: the environment setting for collecting
test data. Right: input consecutive frames and hand poses of neighbor frames before and after tremor compensation.

ABSTRACT

Hand pose estimation, which predicts the spatial location of hand
joints, is a fundamental task in VR/AR applications. Although exist-
ing methods can recover hand pose competently, the tremor issue
occurring in hand motion has not been completely solved. Tremor
is an involuntary motion accompanied by a desired gesture or hand
motion, leading to hand pose that deviates from user’s intentions.
Considering the characteristic of tremor motion, we present a novel
Graph Neural Network for stable 3D hand pose estimation. The
input is depth images. The constraint adjacency matrix is devised
in Graph Neural Network for dynamically adjusting the topology
of a hand graph during message passing and aggregation. Firstly,
since there are rich potential constraints among hand joints, we uti-
lize the constraint adjacency matrix to mine the suitable topology,
modeling spatial-temporal constraints of joints and outputting the
precise tremor hand pose as the pre-estimation result. Then, for
obtaining a stable hand pose, we provide a tremor compensation
module based on the constraint adjacency matrix, which exploits the
constraint between control points and tremor hand pose. Concretely,
the control points represented the voluntary motion are employed
as constraints to edit the tremor hand pose. Our extensive quantita-
tive and qualitative experiments show that the proposed method has
achieved decent performance for 3D tremor hand pose estimation.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision—Computer vision problems; Human-centered
computing—Human computer interaction—Interaction techniques—
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Gestural input

1 INTRODUCTION

Human-computer interaction (HCI) plays a key role in VR/AR ap-
plications. Gesture interaction is the most intuitive and natural way
in HCI. During the interaction, users may feel fatigued or nervous,
especially after a long duration. The user’s hand may involuntarily
shake in this case. This is called physiological tremor. In addition,
hand shaking may also be caused by some diseases [29], such as
Parkinson’s. This is called pathological tremor. These tremor mo-
tions are relatively slow and local, shaking around a desired pose.
The tremor motions are different from the fast hand motion [26],
which typically distorts the depth image captured the hand pose due
to motion blur. However, the tremor motions affect the robustness
of human-computer interaction. Taking the selection gesture as an
example, tremor motions make the user’s hand deviate from the
target object and shake around the target object. In this work, we
study the task of estimating a stable hand pose to cope with the
tremor issue in VR/AR applications.

Existing state-of-the-art methods have achieved considerable per-
formance in hand pose estimation. Because a hand is articulated
by bones, many researchers have attempted to apply hand skele-
ton constraints to improve the accuracy. These methods can be
divided into two categories. The first one is called the structured-
based method [17, 21–24, 31, 43]. These methods implicitly embed
physical constraints into Convolutional Neural Network (CNN) or
loss function. The second one is called the multi-branch based
method [4, 7, 12]. These methods utilize the hand anatomy knowl-
edge to explicitly split hand pose estimation into multiple sub-tasks.
The latter improves the discriminative ability of networks by the
pre-defined constraint among joints. However, these methods cannot
fully utilize potential constraints among joints, the performance of
which is limited by hand-crafted constraints. For example, some
researchers only considered the constraint relationship between the
palm and fingers, without defining the constraint relationship among
other fingers [7].

Another difficulty is that existing methods cannot handle the



tremor problem. A tremor hand pose consists of both involuntary
tremor motion and voluntary motion. The tremor component can be
eliminated by tremor compensation methods based on Fourier Linear
Combiner (FLC) and its variants [1, 10, 25, 28, 32, 36]. Nevertheless,
these filters are sensitive to parameter adjustments, making them
difficult to be generalized to tremor data. Moreover, the tremor data
of these methods is collected with an acceleration sensor [27]. In
some VR/AR applications, there is no acceleration sensor, tremor
data can only be captured through camera as images. These meth-
ods are inapplicable in these cases, since the frequencies of image
data and sensor data are inconsistent. Furthermore, existing tremor
compensation algorithms only focus on the tremor of a hand joint. A
direct deployment of these algorithms for compensating the tremor
of all hand joints will be computationally experience and will lead
to the loss of physiological consistency among the joints.

Specifically, we observe that there are rich structural relation-
ships among hand joints. The Graph Neural Network (GNN) [42]
studied by many researchers recently can fully model the struc-
tural constraint, through defining and updating a hand graph. This
method captures more structure information than CNN-based meth-
ods. Cai et al. [2] proposed a GNN-based method to perform 3D
pose estimation. The local-to-global network based on a fixed graph
structure is designed to learn multi-scale features. However, the
fixed graph structure potentially limits the ability of GNN to exploit
the relationship among joints.

In this paper, we propose a novel method based on Graph Neural
Network for stable hand pose estimation under tremor. The novel
Graph Neural Network is named as CAM-GNN. We define a learn-
able constraint adjacency matrix called CAM, which is a weighted
adjacency matrix representing the graph topology to characterize
the dynamic graph structure. The input is depth images. Firstly,
we design a pre-estimation module to produce the accurate hand
pose under tremor. CAM dynamically adjusts the topology of a
hand graph by the joint-by-joint message passing mechanism, estab-
lishing the spatial-temporal constraint. The constraint is more rich
than any manual and fixed design. Secondly, we devise a tremor
compensation method that utilizes control points to eliminate the
tremor component of all joints. The tremor compensation method is
inspired by the characteristic that the tremor is often accompanied by
a target object. In this module, we first adopt the WaveNet [35] to ex-
tract control points, which represent non-tremor fingertips. Then, we
introduce a motion editing method based on control points, which
is an extension of CAM-GNN to stabilize the tremor hand pose
towards control points..

To verify the performance of our method, we employ TIM-Tremor
[27] and NYU [34] datasets to form suitable datasets for tremor hand
pose estimation. A set of experiments have been conducted through
the datasets to demonstrate that our proposed method effectively
eliminates the tremor component. We also conducted a significant
number of experiments on the NYU and MSRA15 [32] datasets,
demonstrating that the proposed CAM-GNN module can be used as
a transplantable module to boost existing methods in enhancing the
accuracy of hand pose estimation. The main contributions of this
work are summarized as follows:

• We propose a novel GNN-based method to estimate the stable
hand pose under tremor in VR/AR applications.

• By introducing a constraint adjacency matrix in GNN module,
the spatial-temporal constraint is dynamically learned and the
error estimation of existing methods is corrected.

• According to the characteristic of tremor motion, we design
a novel tremor compensation method to eliminate the tremor
component, thereby extending the hand pose estimation algo-
rithm to tackle the tremor problem in VR/AR applications.

2 RELATED WORK

This work is closely related to following topics: 3D hand pose
estimation, tremor compensation and Graph Neural Network. In this
section, we review related works on these topics.

2.1 3D Hand Pose Estimation

As the performance of computing equipment and Convolutional
Neural Network has been improved, there are many CNN-based
methods developed for 3D hand pose estimation. These methodolo-
gies can be categorized into detection-based and regression-based
methods [6]. The former generates a heat map for each joint [8, 37].
The location of each joint is obtained by an argmax operation. In
contrast, the latter directly predict the location of each joint [5,9,22].
Besides, Spurr et al. [30] applied the VAE framework to learn a
cross-modal latent space, estimating 3D hand poses from RGB or
depth images. However, these methods just learn the mapping be-
tween images and 3D pose space, without modeling and utilizing the
hand structure. Hence, some researchers introduce the structural con-
straint into CNN. These methods can be divided into two categories,
structured-based methods and multi-branch based methods.

Structure-based Methods. These methods embed physical
structural constraints into the CNN model [21, 22] or loss func-
tion [17]. Zhou et al. [43] proposed a model-based approach that
adopted a forward kinematics based layer to ensure the geometric
validity of estimations. Madadi et al. [17] included the structural con-
straint in the loss function. Sun et al. [31] used phalanges instead of
joints for representing pose and defined a loss function that encoded
long-range interaction between phalanges. For fitting a 3D pose,
Oberweger et al. [22,24] trained a feedback loop to correct mistakes.
Oberweger et al. [21, 22] learned a prior model and integrated it into
the network by introducing a bottleneck in the last convolution layer.
These methods establish limited structural constraints based on the
kinematic skeleton.

Multi-branch Based Methods. These methods mine discrimi-
native cues with multi-output branches. These methods fuse features
of different joints according to a tree-like structure of hand, forming
the constraint among joints. Guo et al. [12] employed multi-output
branches to predict coordinates of each finger. On the basis of Guo’s
work [12], Chen et al. [4] fused features of different joints according
to the hand topology. Concretely, joint features belonging to the
same finger were integrated into the first layer. Features of all fingers
were fused in following layers to predict the accurate hand pose.
Other methods divided hand joints by joint types [11] instead of
fingers. Du et al. [7] decomposed the hand pose estimation task
into the palm pose estimation and the finger pose estimation. They
adopted a two-branch cross-connection structure to share the ben-
eficial complementary information between sub-tasks. However,
the performance of these methods is limited, because the structural
relationship is hand-crafted.

2.2 Tremor Compensation

The purpose of the tremor compensation is to eliminate the tremor
component and to retain the voluntary motion. This technology plays
an important role in the fields of medical diagnosis and surgical robot
control. The tremor compensation eliminates the tremor component
by estimating tremor motion. Some researchers used the Fourier
Linear Combiner (FLC) to model the tremor signal. Such a method
requires model parameters to be adjusted in order to deal with the
variations of tremor frequency and magnitude [1, 10, 25, 28, 32, 36].
Veluvolu [36] used the band limited multiple Fourier Linear Com-
binator to track the frequency and magnitude. Sun [32] proposed
a correction method based on the enhanced band-limited multiple
Fourier Linear Combiner. These methods based on FLC have poor
generalization, because of complex parameter settings.



Figure 2: The overview of our proposed method for hand pose estimation under tremor. For the t-th frame of consecutive frames, the CNN-based
processing module estimates the rough result H. Then, the tremor pose pre-estimation module outputs the more accurate tremor hand pose Lp.
Finally, the tremor compensation module eliminates the tremor component to obtain the stabilized hand pose L. Lc represents control points.

Mask Tip Dip Palm, Wrist

Figure 3: Shape-aware heat maps for several joints. Tip: the fingertip,
Dip: the digital pulp, Palm Wrist: the joints of palm and wrist. Given a
hand mask, shape-aware heat maps of fingertips are related to the
hand shape. In contrast, the heat map of palm is still a Gaussian heat
map, since the palm joint is in the hand region.

2.3 Graph Neural Network
Graph Neural Network is a connectionist model that captures the
dependence of graph via message passing and aggregation from its
neighbors with arbitrary depth [41, 42]. Due to the powerful ability
to learn features of structured data, GNN has been widely used in
recognition [13], classification [14], Natural Language Processing
[19] and other fields. For example in object detection, Liu et al.
[16] presented the Structure Inference Network to exploit the scene
information and the relationship among objects.

Unlike Convolutional Neural Network, the data processed by
GNN is a graph. According to the way of processing graph, GNN
can be divided into two categories, spatial-based and spectral-based
methods. The latter transforms the graph from the spatial domain to
the frequency domain through Fourier transformation. Cai et al. [2]
adopted the spectral-based method to learn the mapping of 2D hand
pose to 3D hand pose. Simultaneously, they proposed a temporal
graph representation for hand to exploit the temporal relationship
among frames. A local-to-global network architecture is designed
to capture multi-scale features based on the fixed graph structure.
These methods for hand pose estimation exploit limited structure
information based on the fixed graph structure. Besides, Wang et
al. [39] devised a Dynamic Graph CNN (DGCNN) for point cloud
learning, by dynamically selecting K-nearest points as graph nodes.
DGCNN changes graph nodes, not the graph topology.

3 METHODOLOGY

The aim of this work is to estimate stable 3D hand pose under tremor,
which is represented by a vector of the size of 3×N×F , where
3 is the coordinate dimension of joints, N is the number of joints
and F is the number of frames, given consecutive depth images I as

the input. Our method includes three modules: 1) preprocessing, 2)
tremor hand pose pre-estimation and 3) tremor compensation. The
framework of our method is shown in Figure 2. The preprocessing
step roughly estimates the hand pose with tremor. The pre-estimation
module computes a more accurate tremor hand pose. Finally, the
tremor compensation module is employed to obtain the stable 3D
hand pose L. In this section, we describe our method based on the
processing of an input depth image It captured at frame t.

3.1 Preprocessing Module
The preprocessing module, as the backbone network, estimates a
rough hand pose from a depth image. We apply an existing CNN-
based method as the backbone network, DenseReg [37]. For an input
depth image It , the preprocessing module outputs a heat map H for
joints, H =

{
hi|hi ∈ RH×W×C, i = 1 : N

}
, where C is the channel

number of heat maps. The value of C is 9 referred to DenseReg. The
peak of heat maps represents the location of joints.

In this work, we propose a shape-aware heat map to represent the
ground-truth position of each joint, which is generally represented
as a Gaussian heat map. The strategy is inspired by Li’s work [15]
that gradually reducing the kernel size of Gaussian can refine the
localization accuracy. In other words, the Gaussian distribution
outside the object region is invalid. Our shape-aware map is obtained
by the intersection between a Gaussian heat map and a hand mask,
as shown in Figure 3. For hand pose estimation, the distribution in
the hand region can effectively supervise the training of the network
under L2 loss. As listed in Table 1, the shape-aware heat map is a
simple but practical strategy.

3.2 Tremor Pose Pre-estimation
Before eliminating the tremor component, the tremor pose pre-
estimation module is proposed to obtain an accurate hand pose.
The preprocessing module generates a rough estimation, since CNN-
based methods only capture the structural constraint by hand de-
signed. There is rich structure information among hand joints, which
is limitedly captured by CNN-based methods.

We design a CAM-GNN module to refine the rough estimation by
establishing the spatial-temporal constraint. This is motivated by the
fact that GNN can learn the rich structural constraint by propagating
and aggregating messages among neighbors. The input is the rough
estimation result H. Firstly, the single-frame CAM-GNN refines H
to yield the refined result Lst , Lst =

{
lst

i |lst
i = (xi,yi,zi), i = 1 : N

}
.

The multi-frame CAM-GNN further optimizes Lst to produce a
more accurate result Lpt , Lpt =

{
l pt

i |l pt
i = (xi,yi,zi), i = 1 : N

}
.

3.2.1 Constraint Adjacency Matrix
Recapping Graph Neural Network. Typically, the Graph Neural
Network handles the graph-structured data. Given a graph G =
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Figure 4: (a): The aggregation of node features. A hand graph (the
graph is simplified for illustration purpose.) The thickness of each
edge indicates the value of CAMi j. For the red node, FA accumulates
features of neighbor nodes multiplied by CAMi j. (b): The visualization
of learned CAM ∈ R32×32 on NYU dataset. The value of 32 is defined
based on the total number of joints, which comprise 30 finger joints
(6 joints of each finger) as well as one palm joint and one wrist joint.
Both the rows and the columns of CAM maintain the same order of
different hand joints, including the little finger tip, the digital pulp of
the little finger, the palm, etc. Each CAM entry shows the correlation
between a joint pair, where brighter color indicates that the two joints
are more correlative. Values of the blue box and the yellow box are
the cumulative sum of row and column, respectively.

(V,E), where nodes are represented as V = {vi|i = 1 : N} and edges
are defined as E =

{〈
vi,v j

〉
|i, j = 1 : N

}
, the graph is updated by a

node-to-node message passing mechanism. For the node vk, features
of neighbor nodes Ω are first aggregated by an aggregate function
FA defined as follows:

f Ω
k = FA( f in

k ) =
m

∑
j=1

( f in
j ) (1)

where f in
j is the feature of the neighbor node v j and m is the number

of neighbor nodes. Then, the feature of vk and neighbor information
f Ω
k are concatenated to update the new state of vk as follows:

f out
k = h( f Ω

k , f in
k ) (2)

where the output function h is neural networks, such as fully con-
nected networks or convolutional neural networks.

Single-frame CAM-GNN. For tremor hand pose estimation, we
define a hand graph Ghand with rough estimation results H, where
the number of nodes is set based on the number of hand joints and
the feature of each node is a heat map of a joint. The graph topology
is vital for hand pose estimation, which represents the constraint
relationship among joints.

A straightforward and brute force way is to define a complete
graph to model the structural relationship among nodes. For hand
pose estimation, it means that each joint is related to other joints and
the contribution of each joint is equal when aggregating neighbor-
hood information. Experiments show that a network trained based
on this graph topology does not coverage. The reason is that the ag-
gregated information is redundant. Besides, such a topology setting
also resembles the structural and multi-branch methods, offering
only a fixed skeleton relationship.

Hence, we propose a learnable constraint adjacency matrix
(CAM) to characterize the graph topology dynamically. This al-
lows covering the rich potential constraint among joints, as oppose
to a manually defined topology that has limited coverage. CAM
is defined as CAM = (CAMi j) ∈ RN×N , where N is the number of
joints. Each value of CAM is initialized to a random number be-
tween -1 and 1, forming an uncertain graph. During training, the

The heat maps 
outputted by DenseReg

The output of 
FA

                                                                  Input image GT DenseReg With CAM

The output 
of hInput image

Figure 5: Some qualitative results obtained by our CAM-GNN module.
Top: Our CAM-GNN module corrects the result of ring fingertip esti-
mated by DenseReg. The first row shows the case that DenseReg
estimates well. In the following two rows, the CAM-GNN module
corrects the incorrectly predicted heat maps by DenseReg. Bottom:
The failed case (first row) and the success case (second row) about
correcting errors of DenseReg.

graph topology is dynamically adjusted along with other network
parameters under a gradient-based optimizer, such as Adam. Edges
beneficial to the loss function are strengthened, and vice versa. Fi-
nally, the trained CAM defines the optimal topology for the hand
graph. With CAM, the aggregation function FA is updated by:

f Ω
k = FA(CAM,H) =

N

∑
j=1

(CAMk j ∗h j) (3)

The aggregation of node features is shown in Figure 4(a). The func-
tion h is implemented by the non-local module [38] and a convolu-
tion layer. This CAM-GNN module is trained under the supervision
of the cross entropy loss. Finally, after an argmax operation on
output heat maps, the pre-estimation Lst is obtained, which is a
coordinate vector with the size of 3×N. Lst is the refinement of
the preprocessing result under the spatial constraint formed by the
CAM-GNN module.

Figure 5 shows some results of the heat maps generated by FA and
h. The heat map from FA shows the strength of correlation among
different hand joints, where regions with brighter colors indicate
that joints located nearby have stronger correlation, and vice versa.
As depicted from the second and the third rows of Figure 5, the
heat map from h shows our network can successfully correct the
confusing results obtained from DenseReg [37] through CAM-GNN.

3.2.2 Multi-frame CAM-GNN
While performing CAM-GNN on a single frame image can improve
the accuracy of CNN-based methods, by inspecting the failed case
as shown in Figure 5, we found that it cannot handle hole or noise
artifact very well. Since gestures are continuous, we propose a
novel tactic to address this problem, which extends CAM-GNN for
multi-frame to exploit the multi-frame spatial-temporal constraint.
The extra temporal information utilizes the continuity of gestures to
effectively compensate short-term artifacts.



Figure 6: The pipeline of the tremor compensation module. The hand
pose with tremor Lp is the result of pre-estimation module. The graph
is a simplified graph for exhibition. Fingertips of successive frames
are fed into WaveNet to extract control points Lc in parallel. The
concatenation of control points and fingertip coordinates is the input
feature of fingertip node. L is the result of eliminating the tremor of Lp
based on Lc.

Here, we define a graph Gmulti− f rame for multi-frame CAM-GNN.
The number of nodes is also the number of hand joints. The feature
of each node f in

k , f in
k =

[
ls1

k , ..., ls
t
k
]
, is the concatenation of multi-

frame coordinate vectors outputted by single-frame CAM-GNN. The
multi-frame CAM-GNN module also includes an aggregate function
FA and an output function h. The function FA is structurally similar
to Equation 3, which is shown as follows:

f tmp1
k = FA(CAM,LsT ) =

N

∑
j=1

(CAMk j ∗ f in
j ) (4)

We set T as 8, which is mentioned in the experiment section. The
function h is implemented with fully connected layers. With the
supervision of L2 loss, the topology is also dynamically adjusted to
the optimal by CAM. The more accurate result Lpt is yielded under
spatial-temporal constraints formed by multi-frame CAM-GNN.

3.3 Tremor Compensation Module
A tremor hand pose Lpt consists of both tremor component α and
voluntary motion L, which is defined as follows:

Lpt = g(L,α) (5)

where g is a combination function. The tremor compensation module
is proposed to eliminate the tremor component of Lpt . Applying an
existing tremor compensation method to estimate the stable state
of each joint in parallel, the estimated hand pose will not meet
the physiological constraint, because of cumulative error and other
factors. Hence, we propose a tremor compensation method based on
control points. As illustrated in Figure 6, this method is constituted
by two components, extracting control points and motion editing
based on CAM-GNN.

3.3.1 Extracting Control Points
The Definition of Control Points. The tremor motion is around a
target object or a desired pose. We extract some points to restrain
tremor hand poses, which is named as control points Lc. Generally,
fingertips are end controllers of 3D manipulations in VR applications,
which represent the user intent. As shown in Figure 4(b), values in
the blue box indicate that fingertips have stronger weights than other
joints. Values in the yellow box reveal that other joints have weaker
weights than fingertips in message propagating. Hence, we extract
voluntary motions of fingertips as control points.

Extracting Control Points with WaveNet. We adopt WaveNet
[35] to extract control points Lc. WaveNet is a deep neural net-
work for generating raw audio waveforms. Analogously, we exploit

WaveNet to generate fingertip coordinates without tremor in parallel.
In other words, WaveNet generates a control point for one fingertip
at a time. Given coordinates of fingertip i from successive frames,
Qi = [l p1

i , l p2
i , ..., l pT

i ], WaveNet builds a conditional probability
model to predict a control point Lci. The probability is factorised as
a product of conditional probabilities as follows:

p(Lci) =
T

∏
t=1

p(l pt
i |l p1

i , l p2
i , ..., l pt−1

i ) (6)

3.3.2 Motion Editing Based on CAM-GNN
For obtaining L in Equation 5, we introduce compensation φ for α

to make Lpt consistent with control points Lc, as follows:

L = φ(Lc,Lpt) (7)

The tremor motion is a temporal movement, shaking around a
desired pose. Hence, we novelly import the motion editing module
based on multi-frame CAM-GNN as φ , which employs tremor hand
poses of successive frames and control points to generate the non-
tremor hand pose. The multi-frame CAM-GNN module models the
constraint between tremor hand poses and control points.

The graph fed into multi-frame CAM-GNN is defined as Gedit .
The number of nodes in Gedit is the number of joints. For each
node corresponding to a fingertip, its feature is the concatenation of
pre-estimation results of T frames and a corresponding control point.
The feature of other nodes is pre-estimation results of T frames. The
formula of a node feature is shown as follows:

f in
k =

{
[Lpt

k,Lck], t = 1 : T vk⇔ fingertip
[Lpt

k], t = 1 : T otherwise (8)

We set T as 8, which is validated in the experiment section.
In this module, the function FA is the same as Equation 4. Since

node features are still coordinates, the function h is also implemented
by fully connected layers. The loss function is also L2 loss. Dur-
ing propagating message and updating feature, CAM dynamically
adjusts the graph topology to the optimal through CAM, forming
the constraint between tremor hand poses and control points. The
motion editing based on CAM-GNN achieves that the stabilized
pose L complies with the desired pose constraint and the spatial
constraint.

4 EXPERIMENTS

4.1 Implementation Details
We employ DenseReg [37] as the preprocessing module to generate
a rough estimation. We form our tremor pose pre-estimation module
by extending DenseReg with our single-frame CAM-GNN module
and multi-frame CAM-GNN module. The whole module is jointly
trained with DenseReg, where the training parameters are adopted
from DenseReg.

For the tremor compensation module, WaveNet is applied to
extract control points. WaveNet is trained separately. The training
parameters refer to WaveNet [35]. After training WaveNet, we freeze
the preprocessing module, tremor pose pre-estimation and WaveNet
to train the motion editing module. When training the motion editing
module, the parameters is the same as the pre-estimation module.

4.2 Evaluation of Tremor Pose Pre-estimation
4.2.1 Datasets and Metrics
Datasets. We evaluate our method for 3D hand pose estimation on
two publicly hand pose datasets, NYU dataset [34] and MSRA15
[32] dataset. The NYU dataset is proposed by Tompson et al. [34].
It provides 8252 test images and 72757 training images captured by
a depth camera. The ground-truth label for a hand is 3D coordinates
of 36 joints. The MSRA15 dataset consists of 76375 RGBD images.
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Figure 7: (a) The visualization of learned CAM ∈ R32×32 for a layer of
GNN on NYU dataset. Here, CAM has the same setting as that in
Figure 4. Brighter color indicates that two joints are more correlative.
(b) The skeleton corresponding to the learned CAM.

Table 1: The result of ablation experiments on NYU dataset.

Methods The mean error of
all joints (mm)

DenseReg 10.241
DenseReg+GNN(Shape-aware heat map) 9.58
DenseReg+CAM-GNN(Gaussian map) 9.73
DenseReg+CAM-GNN(Shape-aware heat map) 9.498

In this dataset, there are 21 joints labeled with 3D coordinates. We
adopt these two datasets because they provide adequate labeled
depth images for hand pose estimation.

Metrics. We evaluate our method on three metrics. One of
metrics is the per-joint mean error, which is averaged on all images.
The second metric is the mean error of all joints. The error is the
Euclidean distance between estimated joints and ground-truth. The
third metric is the error of the phalange length, which is used to
evaluate the physiologically constraint.

4.2.2 Ablation Studies
Ablation Study for CAM. As depicted in Figure 5, our CAM-GNN
corrects the error of DenseReg. The result of ablation experiments
on NYU dataset is listed in Table 1. It indicates that the CAM-
GNN module greatly improves the performance of DenseReg. Mean
errors of the most joints are reduced under the CAM-GNN module
as shown in Figure 8 (a). The error of the phalange length is also
significantly reduced from 4.127mm to 3.577mm with the CAM-
GNN module, indicating that the constraint formed by CAM makes
the estimated hand pose conform to the physiologically constraint
very well.

We compared the performance of GNN on the manual fixed topol-
ogy with the learned topology formed by CAM. In the experiment,
we set the skeleton topology as the fixed topology. As manifested in
Table 1, the mean error of the fixed graph on GNN is 9.58mm, which
exceeded our method, 9.498mm. The learned CAM is visualized
in Figure 7(a). Values in red box indicate the relationship between
the digital pulp and other joints. Values in blue boxes indicate the
relationship between the palm and other joints. The brighter loca-

Table 2: The performance of our CAM-GNN module on detection-
based and regression-based methods. The metric is the mean error
of all joints.

Methods NYU MSRA15

DenseReg 10.241 7.234
DenseReg+(CAM-GNN) 9.498 6.523

CPM 19.85 8.54
CPM+(CAM-GNN) 17.79 7.0
DeepPrior++ 20.75 8.67
DeepPrior+++(CAM-GNN) 18.467 7.185

(a)

(b)

Figure 8: The ablation study for the multi-frame CAM-GNN module on
the NYU dataset. (a): The mean error of per joint. (b): The fraction of
frames within a certain distance. Mean errors of all joints on methods
are shown in the legend.

tions in CAM exactly correspond to joints directly connected by
the skeleton, as shown in Figure 7(b). Moreover, joints that are not
directly connected by the skeleton are also related to each other, as
shown in Figures 7(a) and 7(b). The result demonstrates that the
learned CAM can capture rich potential constraints among joints.

DenseReg is a detection-based method. There are another meth-
ods based on regression, such as CPM [40], DeepPrior++ [21]. We
also carried out experiments on regression-based methods to verify
the effectiveness of CAM-GNN. The result is shown in Table 2.
On NYU dataset, the CAM-GNN module reduces the error of the
regression-based method by 2.04mm and 2.283mm. The maximum
reduced error is 1.54mm on MSRA dataset. The result indicates
that the CAM-GNN module can be used as an independent post-
processing module to improve the accuracy of existing methods.

Ablation Study for the Multi-frame CAM-GNN Module. The
result in Figure 8(a) shows that the multi-frame CAM-GNN module
further reduces the mean error of most joints. The mean error is
reduced from 9.498mm to 8.687mm. Moreover, as in Figure 8(b),
given a maximum allowed error distance from the ground truth, the
fraction of frames that have all predicted joints within the threshold
is significantly increased on the basis of the single frame CAM-GNN.
The improvement is significant at the 20mm threshold. Supancic et
al. [33] stated that the error distance between the manual label and
the ground truth is about 20mm. The improvements of our multi-
frame CAM-GNN module demonstrate that our method effectively
reduces errors by strengthening the spatial-temporal constraint.



Figure 9: The performance of different methods on the NYU validation
set. Left: The mean error of per joint. Right: The fraction of frames
within a certain distance. Mean errors of all joints on methods are
shown in the legend.
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Figure 10: The tremor residue line chart of WaveNet and WFLC on
the motion trajectories of different amplitudes. Amplitude refers to the
amplitude of the tremor.

4.2.3 Comparison with the State-of-the-art

We compare our method on NYU dataset with state-of-the-art
methods, which are committed to explore joint constraints. These
methods are divided into two categories, structural methods and
multi-branch methods. Structural methods include Feedback [23],
Generalized-Feedback [24], DeepPrior [22] and DeepPrior++ [21].
Multi-branch methods include REN [11], Pose-REN [4], and Cross-
InfoNet [7]. In Figure 9 (top), the experiment result demonstrates
that our method achieves the best performance. The proposed
method achieves an error of 8.687mm on the validation set, which is
the least than others.

In addition, we compare our method with other existing methods
[3], not limited to methods that explore joint constraints. As depicted
in Figure 9 (bottom), the result of our method is only inferior to
V2V-PoseNet [20]. The reason is that V2V-PoseNet achieved the
performance by stacking 10 times. The result of V2V-PoseNet
baseline is 9.22mm. In the work of Jameel et al. [18], the mean error
is 8.72mm. It indicates that our method is decent for 3D hand pose
estimation.

Figure 11: The intuitive visualization of motion editing based on the
different control points. The black hand pose is the pose before motion
editing. The red arrows represent different offsets. The color hand
pose is the result of motion editing.

4.3 The Evaluation of Tremor Compensation
For evaluating the tremor compensation module, we firstly evaluate
these two submodules, extracting control points and motion editing
based on CAM-GNN, and then we verify the feasibility.

4.3.1 Evaluation of Extracting Control Points
Dataset and Metric. Since the existing tremor motion dataset TIM-
Tremor [27] is collected with an accelerometer sensor (ACL300,
1000Hz) attached to wrists of 55 patients, the frequency is incon-
sistent with the frequency of image acquisition and the number of
joint is also inconsistent with hand pose estimation. To align with
the frame rate of NYU dataset, we firstly downsample TIM-Tremor
dataset by equidistant sampling. The downsampled tremor signal is
converted to discrete trajectory coordinates by double integral. After
coordinate conversion, the tremor coordinates is added to fingertip
coordinates of NYU dataset, forming a tremor fingertip dataset to
train WaveNet. The non-tremor fingertip coordinates in original
NYU dataset are the ground truth. The division of the training set
and the test set is the same as NYU dataset. For evaluating the per-
formance of extracting control points, we employ the tremor residue
as the metric, which is the proportion of residual tremor to tremor
motion.

Comparison with Other Methods. We compare our method
with other methods based on Fourier Linear Combinator (FLC).
Here, we choose Weighted Fourier Linear Combiner (WFLC) [1] for
comparison. As depicted in Figure 10, there is a considerable gap
between WaveNet and WFLC at different amplitudes. Especially at
low amplitudes, the tremor residue of WFLC is greater than 1, since
the output of WFLC has a time delay. It illustrates that our method
is more accurate than FLC-based methods.

4.3.2 The Evaluation of Motion Editing Based on CAM-GNN
Dataset and Metric. For training and evaluating the motion editing
module, we generate a tremor hand pose dataset, analogous to Sec-
tion 4.3.1. The fingertip in NYU dataset is selected as control points.
The tremor hand pose is formed by superposing the downsampled
TIM-Tremor on NYU dataset. Finally, the data set is constituted
by replacing the tremor fingertip coordinates with control points.
The ground truth is the non-tremor hand pose in NYU dataset. The
division of the training set and the test set is also the same as NYU
dataset. The metric is also the tremor residue.

Quantitative Experiments on Motion Editing. In order to fig-
ure out how many frames can achieve the best performance, we
conduct quantitative experiments on the multi-frame CAM-GNN
module. Experiments indicate that the tremor residue decreases
steadily with the increase of input frames, and gradually becomes
stable when the number of frames reaches 8. It demonstrates that
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Figure 12: The result of tremor compensation on the static hand with tremor. The black and color hand pose are respectively represented as
results of neighbor frames.

Figure 13: The result of tremor compensation on the special hand
motion with tremor. The black and color hand pose are respectively
represented as the hand pose before and after tremor compensation.
The black and color curves show the trajectory of their fingertips.

applying multi-frame CAM-GNN to motion editing can form the
temporal constraint between the desired hand pose and the tremor
hand pose within specific frames, where the desired hand pose is the
intent of tremor hand pose.

Qualitative Experiments on Motion Editing. We carried out
qualitative experiments to evaluate motion editing module on NYU
dataset. The aim of motion editing is to make tremor fingertips
consistent to control points, simultaneously other joints consistent
to anatomical and desired pose constraints. In the experiment, hand
poses of consecutive frames from NYU dataset are fed into the
module. Control points are fingertip coordinates of the last frame
added random offset. The result of motion editing based on the
different control points is presented in Figure 11. It demonstrates
that the motion editing based on control points yields the reasonable
hand pose, which conforms to the constraint of anatomy and control
points.

4.3.3 Qualitative Experiments on Tremor Compensation.

The tremor compensation module is an independent module to elim-
inate the tremor component. For verifying the availability of the
module, we collected two sets of tremor hand motion by a depth
camera (Intel RealSense SR300), the static hand with tremor and the
specific hand motion with tremor. The setting of the environment for
collecting test data is shown in the left part of Figure 1. A user who

stood in front of the camera performed the specific gesture motion.
We take drawing a line as the specific hand motion, as the trajectory
of which intuitively demonstrates the effect of tremor compensation.

For the static hand with tremor, the ideal estimation is stable
and relatively static. Hence, we compare hand poses of neighbor
frames before and after compensation. Results of randomly selected
6 consecutive frames are shown in Figure 12. Before tremor com-
pensation, there are significant variations between hand poses of
neighbor frames. After tremor compensation, hand poses of neigh-
bor frames are more closer to each other and these hand poses are
more stable. It demonstrates that our tremor compensation method
is valid when the tremor occurs on the static hand.

For the moving hand with tremor, the ideal motion trajectory is
smooth and stable. Therefore, we select the motion trajectory of
fingertips as the presentation of results. As shown in Figure 13, the
hand poses are the results of the last frame. Curves are fingertip
trajectories of all preceding frames. In the scenario of drawing a
line, the tremor leads to conspicuous fluctuation on the fingertip
trajectories. We find that the fingertip trajectories are more smooth
under the tremor compensation module. It indicates that our method
works well on the moving hand with tremor.

5 CONCLUSION

The tremor on a hand is a potential obstacle when performing 3D ma-
nipulations on virtual objects. In this work, we proposed a neoteric
method based on Graph Neural Network for 3D hand pose under
tremor. We first generate an accurate 3D hand pose with tremor.
Concretely, we invent a shape-aware heat map in the preprocessing
module to improve the estimation accuracy of CNN-based methods.
Since CNN-based methods limitedly capture potential constraints
among joints, we design a CAM-GNN pre-estimation module for
single frame and multi-frame to learn the spatial-temporal constraint,
which further improves accuracy of CNN-based methods as an in-
dependent module. Then we devise a tremor compensation method
to eliminate tremor components, which adopts multi-frame CAM-
GNN to edit the tremor hand pose based on control points. For
training the tremor compensation module, we build tremor hand
pose datasets based on the NYU and TIM-Tremor dataset. Finally,
experiments demonstrate that our CAM-GNN method improves the
performance of existing CNN-based methods as a transplantable
module. Moreover, the tremor compensation method is a novel
method to effectively eliminate the tremor, which does not need to
wear additional equipments on the hand.
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