
On verifying and maintaining connectivity of

interval temporal networks

Eleni C. Akrida1 and Paul G. Spirakis1,2

1 Department of Computer Science, University of Liverpool, UK
2 Computer Engineering & Informatics Department, University of Patras, Greece

{Eleni.Akrida,P.Spirakis}@liverpool.ac.uk

Abstract. An interval temporal network is, informally speaking, a net-
work whose links change with time. The term interval means that a link
may exist for one or more time intervals, called availability intervals of
the link, after which it does not exist (until, maybe, a further moment
in time when it starts being available again). In this model, we consider
continuous time and high-speed (instantaneous) information dissemina-
tion. An interval temporal network is connected during a period of time
[x, y], if it is connected for all time instances t ∈ [x, y] (instantaneous
connectivity). In this work, we study instantaneous connectivity issues
of interval temporal networks. We provide a polynomial-time algorithm
that answers if a given interval temporal network is connected during a
time period. If the network is not connected throughout the given time
period, then we also give a polynomial-time algorithm that returns large
components of the network that remain connected and remain large dur-
ing [x, y]; the algorithm also considers the components of the network
that start as large at time t = x but dis-connect into small components
within the time interval [x, y], and answers how long after time t = x
these components stay connected and large. Finally, we examine a case
of interval temporal networks on tree graphs where the lifetimes of links
and, thus, the failures in the connectivity of the network are not con-
trolled by us; however, we can �feed� the network with extra edges that
may re-connect it into a tree when a failure happens, so that its con-
nectivity is maintained during a time period. We show that we can with
high probability maintain the connectivity of the network for a long time
period by making these extra edges available for re-connection using a
randomized approach. Our approach also saves some cost in the design of
availabilities of the edges; here, the cost is the sum, over all extra edges,
of the length of their availability-to-reconnect interval.

1 Introduction and motivation

A great variety of systems in society, technology and nature can be modeled as
networks, linked with edges; from the Internet to the web of social acquaintances,
from the transport network of a city to the nervous system of the human body.
The structure of a network describes the several connections between the par-
ticipating entities and helps us understand or predict the behavior of dynamical

2 E.C.Akrida, and P.G.Spirakis

systems. However, in many cases the links between the participating entities do
not always remain active but change or disappear as time progresses. A temporal
network is, informally speaking, a network that changes with time. Both tradi-
tional and modern networks, such as communication networks, social networks,
transportation networks and physical systems, can be modeled as temporal.

Dynamic networks in general have been attracting attention over the past
years, exactly because they model real-life applications. The study of temporal
networks in particular is quite interdisciplinary, which is also re�ected in liter-
ature where the object of study may have di�erent names - temporal graphs,
temporal networks, time-varying graphs, evolving graphs, time-stamped graphs
etc. Kempe et al. [14] considered the single-labeled discrete-time model of tem-
poral graphs, where every edge may become available (for use) only at a discrete
moment in time, called the label of the edge; their main motivation was to
examine how basic graph properties change in this temporal setting. In their
multi-labeled model, Mertzios et al. [17] extended the model of [14] to many la-
bels per edge and mainly examined the number of labels needed for a temporal
design of a network to guarantee several graph properties with certainty. They
also provided an algorithm to compute foremost time-respecting paths; in this
discrete-time model, a time-respecting path is a path in which successive edges
have strictly increasing time labels and a foremost time-respecting path is one
that reaches the destination vertex at the earliest possible time. Random edge
availabilities in the discrete-time model of temporal networks were �rst consid-
ered by Akrida et al. [1] in order to study the Expected Temporal Diameter of
temporal graphs.

Assuming the availability of an edge for a whole time-interval [t1, t2] or mul-
tiple such time-intervals, and not just for discrete moments, is a clearly natural
assumption since time is indeed a continuous measure. Bui-Xuan et al. [4] con-
sider a class of dynamic networks where the changes in the topology can be
predicted in advance and in which each node and each edge comes with a list
of time intervals; they give algorithms for computing foremost time-respecting
paths, shortest (minimum hop count) time-respecting paths and fastest (mini-
mum time) time-respecting paths in this model. Fleischer and Tardos [11] con-
sider a continuous-time model of dynamic graphs and prove continuous versions
of known discrete-time �ow algorithms for dynamic �ow problems. Fleischer
and Skutella [10] and Koch et al. [15] also engage in the study of �ows in a
continuous-time model of dynamic graphs.

Further relevant studies on networks labeled by time units or segments, in
addition to the ones mentioned above, include:

� Labeled Graphs: Labeled graphs have been widely used both in Computer
Science and in Mathematics [19].

� Dynamic Distributed Networks: In recent years, there is a growing interest
in distributed computing systems that are inherently dynamic [2,3,5,6,9,16,
18,20,21].

Connectivity of interval temporal networks 3

� Distance labeling: A distance labeling of a graphG is an assignment of unique
labels to vertices of G so that the distance between any two vertices can be
inferred from their labels alone [12,13].

1.1 Our contribution

In this work, we restrict our attention to continuous time and consider systems
in which only the connections between the participating entities may change,
while the entities themselves remain unchanged. So we consider networks of a
�xed vertex set, each edge e of which is available over a set of time intervals
Le = {[t1, t′1], . . . , [tk, t′k]}. Each interval indicates a period of availability of e;
the unprimed times mark the start of the availability period and the primed times
mark the end. This is a model that could naturally represent several systems,
such as proximity networks where a link may represent that two entities have
been close to each other for some extent of time, or infrastructural systems like
the Internet, or even seasonal food webs where a time interval may represent the
fact that one species is the main food source of another for a speci�c period of
the year.

We give a polynomial-time deterministic algorithm that decides if a given
interval temporal network is connected during a given period (cf. Section 3); if
the network is not connected, the algorithm returns the maximal interval from
the beginning of the given period during which the network stays connected.
We then provide a polynomial-time algorithm that decides if a given interval
temporal network has large enough connected components during a given time
period; here, the size of the components in question is determined by a parameter
provided by the user as input to the algorithm (cf. Section 4). Finally, we provide
a probabilistic analysis of a scenario where the lifetime of the intervals assigned
to the edges of a network on a tree graph are not designed via a deterministic
process and are unknown to us; instead, the edges may fail unexpectedly and
we are required to supply the network with more available edges so that, when
a break in the connectivity of the network happens, we can re-connect it. We
wish not to keep all these extra edges available for re-connection at all times,
i.e., we wish to maintain connectivity but by paying a low cost on keeping extra
edges available. Assuming that the cost of keeping additional edges available
is linear to the sum of lengths of their availability intervals, we show a low
cost construction. Other work for maintaining some structure or property like
connectivity in probabilistic dynamic graphs includes [7, 8].

2 Preliminaries

We focus here on networks, the links of which are not always available. The
availability of a link is described via a set of time intervals, one set Le per edge
(arc) e.

De�nition 1 (Interval temporal network). Let G = (V,E) be a (di)graph.
An interval temporal network on G is an ordered triplet G(L) = (V,E, L),

4 E.C.Akrida, and P.G.Spirakis

where L = {Le = {[t1, t′1], . . . , [tke , t′ke]}, for some ke ∈ N, ti, t′i ∈ R+, i =
1, 2, . . . , ke : e ∈ E} is an assignment of availability intervals to the edges (arcs)
of G. L is called a labeling of G.

The availability intervals of an edge (arc) e represent the continuous time
intervals at which e is active. When we say that an edge (arc) is active or available
during the interval [a, b], for some a, b ∈ N, it means that the edge exists in the
network ∀t ∈ R+, t ∈ [a, b]. For the analysis throughout the paper, we assume
the intervals [t1, t

′
1], . . . , [tke , t

′
ke
] to be disjoint.3 Every time a change in the

network happens, i.e., an edge starts or stops being available, we have changes
in the topology of the network; so, in a sense, an interval temporal network can
be viewed as a sequence of graphs, one after every topology change. However,
representing such networks as evolving graphs, i.e., the sequence of states of
the network after each change, is not as e�cient. The interval representation is
indeed a very compact representation of such kinds of evolving graphs.

A basic assumption that we follow is that when a message or an entity passes
through an available link at time t, then it can pass through a subsequent link
only at some time t′ ≥ t and only at a time at which that link is available.
However, unlike what is assumed in the discrete-time model of [1, 14, 17], here
we consider instant information dissemination through a path of the underlying
(di)graph, if the consecutive edges (arcs) are consistently labeled In fact, our
model considers very high speed of information dissemination, resembling �ber-
optic communication, but the small time needed to send a message through a
link is considered negligible for the analysis. Consider, for example, the interval
temporal network of Figure 1, where the availability intervals of each edge are
drawn next to the edge; here, information may start at time t = 2.5 from vertex
u and arrive at time t = 2.5 at vertex z, since all three consecutive edges are
available at time t = 2.5 (their availability intervals are overlapping).

u

v

w

z

[2, 5] [1, 3]

[1, 4], [5, 8]

Fig. 1. A model of �Fiber-optic�-like communication.

De�nition 2 (Connectivity of interval temporal networks). An interval
temporal network G(L) = (V,E,L) is connected at a given time instance t0 if

3 We can assume this, because if an edge e ∈ E has overlapping availability intervals,
then we can consider their union as an availability interval of e.

Connectivity of interval temporal networks 5

the edges that are available at time t0, i.e., the edges that have an availability
interval which includes t0, induce a spanning tree.

3 Connectivity of interval temporal networks during a

given time period

A fundamental issue for any given network, dynamic or not, is to verify if the
network is connected (over time, in the dynamic case), i.e., information can travel
via edges between any ordered pair of vertices in it. In this section, we consider
interval temporal networks and address the issue of their connectivity.

One can think of an interval temporal network as a dynamic network, where
the changes in the topology of the network happen whenever an availability
interval of an edge starts or �nishes, but can view it as static in between these
(instantaneous) changes. Since information can travel instantaneously in interval
temporal networks, for such a network to be connected over a time period, all
the instances of the �static� networks that are formed during that period need
to be connected.

We provide below a polynomial-time procedure to determine if a given inter-
val temporal network is connected throughout a particular time period. Hence-
forth, we denote by E(t) the set of edges that are available at time t, and t is
not the �nish time of the availability interval that includes t.4

Theorem 1. There is a polynomial-time algorithm (cf. Algorithm 1) which,
given an interval temporal network G(L) on n vertices and numbers x, y ∈
R+, x < y, answers whether G(L) is connected during the time period [x, y], i.e.,
is connected for every time instance t ∈ [x, y]. If for some a ∈ [x, y], [x, a] ⊆ [x, y]
is the maximal sub-period of [x, y] during which G(L) remains connected, then
the algorithm also returns the length of that period, a− x.

Description of the algorithm. The idea behind Algorithm 1 is that G(L) is
connected during a period [x, y] if and only if G(L) has a spanning tree for every
time instance in [x, y].

Initially, Algorithm 1 �nds a spanning tree of the input network G(L) at
time x. If no such tree exists, then at time x the network is disconnected and
the algorithm terminates. If a spanning tree T exists at time x, then T remains
connected until one (or more) of its edges stop being available. Denote by b1
the �rst moment in time at which T disconnects. T consists now of a number
of connected components and, in fact, T is a forest (collection of trees). The
algorithm checks whether there are edges of G(L) that are available at time
b1, which can be added to T and re-connect it. More speci�cally, the algorithm
�nds an edge that is available at time b1 and has endpoints in di�erent connected
components of T . The algorithm adds that edge to T and checks if this addition

4 E(t) are the edges that are available at t and do not stop being available (immedi-
ately) after time t.

6 E.C.Akrida, and P.G.Spirakis

Algorithm 1 Connectivity of interval temporal networks

Input: A temporal network G(L) of n vertices and numbers x, y ∈ R+ such that x < y
Output: Answer if G(L) remains connected during the time interval [x, y]

1: if E(x) induces a spanning tree, T , of G then

2: Sort the edges in T according to the �nish time of their availability interval;
// For every edge in T , we only consider the interval that includes x

3: Let A = {ei, with interval [ai, bi] : i = 1, . . . , n− 1} be the sorted list;
4: if b1 ≥ y then

5: return �Network is connected� and �Duration of survival =� y − x; // If all

edges in T remain available until (at least) time y

6: else

7: E′ := {e ∈ E(T) : be = b1}; // b1 is the �rst time instance at which T becomes

disconnected. E′ is the set of edges of T that stop being available at time b1.

8: T := T \ E′; // T is now a forest, i.e., consist of a collection of trees

9: Remove E′ from A;
10: Let T1, T2, . . . , Ti, i ∈ N be the connected components of T ;
11: while T is disconnected do

12: if ∃j, k = 1, 2, . . . , i : ∃e = (u, v) ∈ E(b1) : u ∈ V (Tj) ∧ v ∈ V (Tk) then
13: Find the Tj , Tk trees of T that e connects; // If there is an edge of G with

endpoints in di�erent connected components of T and is available at time b1, then

add it to T

14: Merge Tj , Tk and e into a single tree;
15: Update the number i of connected components of T ;
16: Insert e in the sorted list A;
17: else

18: return �Network is disconnected� and �Duration of survival =� b1 − x;
19: Break;
20: Go to line 4
21: else
22: return �Network is disconnected� and �Duration of survival =� t− x;

re-connects it. If not, then it looks for yet another edge that is available at time
b1 and has endpoints in di�erent connected components of (the current) T . This
process continues until T is re-connected or we cannot �nd any more edges of
G(L) that are available at time b1 and have endpoints in di�erent connected
components of T . If at any step of the process there do not exist edges that
can re-connect T , then the algorithm returns that the network is disconnected.
However, if we can �nd appropriate edges to re-connect T , then we form another
spanning tree of the network, available from time b1 onwards, and the same
procedure continues. The algorithm answers that the network is connected if we
form a spanning tree, all the edges of which are available until the end of the
period in question, namely until time y.

Note that Algorithm 1 not only answers whether the given network is con-
nected for all times t ∈ [x, y], but also gives the duration of connectivity of the
network (survival duration) within the interval [x, y].

Connectivity of interval temporal networks 7

Correctness of the algorithm. Clearly, by de�nition of connectivity in the
model of interval temporal networks, G(L) is connected during a period [x, y]
if and only if G(L) has a spanning tree for every time instance in [x, y]. We
will now show that if G(L) is connected during [x, y], then Algorithm 1 answers
that the network is connected, and if G(L) is not connected during [x, y], then
Algorithm 1 answers that the network is disconnected.

If G(L) is disconnected at some point t0 ∈ [x, y], then at time t0, the set of
available edges E(t0) will induce no spanning tree. Algorithm 1 will then look
for edges to reconnect the connected components of T but will fail to do so.
Therefore, it will answer that the network is disconnected and return duration
of survival equal to t0 − x.

Now, suppose that the given G(L) remains connected in [x, y]. Let T be
the spanning tree that the algorithm considers at time x. If all the edges of T
remain available until time y, then the algorithm will answer that the network is
connected with duration of survival equal to y − x. Suppose now that there are
edges in T which stop existing at some moment in [x, y] and let t0 be the �rst
such moment. The algorithm removes from T all the edges that stop existing at
time t0. T is now disconnected but still contains all the vertices of G. Let Gt0
be the subgraph of G induced by E(t0).

5 Clearly, Gt0 is connected since G(L) is
connected during [x, y]. Also, at time t0, T is a subgraph of Gt0 . We will show by
contradiction that there exist edges in Gt0 with endpoints in di�erent connected
components of T , which can be added to T to re-connect it. Indeed, suppose we
cannot do that, i.e., we have added as many edges as possible, if any, to T and
we can �nd no more edges with endpoints in di�erent connected components of
(the current) T . Let T1, T2, . . . , Ti, for some i ∈ N be the connected components
of T at that point. Let w, z be two vertices of G which belong in Tj , Tk, j, k ∈
{1, . . . , i}, j 6= k, respectively. Since Gt0 is connected, there exists a path p from
w to z in Gt0 . Let w

′ be the last vertex in p which belongs to Tj and let w′′ the
vertex following w′ in p. Since w′ and w′′ are in di�erent connected components
of T and {w′, w′′} ∈ E(Gt0), there is an edge, namely {w′, w′′}, with endpoints
in di�erent connected components of T , which we can add to T . This contradicts
our assumption. Therefore, we can keep adding edges, as the algorithm indicates,
until we re-connect T .

The above process goes on until time t = y, or until we have a spanning
tree that remains intact until time t = y. Then, Algorithm 1 answers that the
network is connected and returns duration of survival equal to y − x.

Running time. The running time of Algorithm 1 depends on the number of
times that the spanning tree changes during [x, y]. The spanning tree can only
change when one or more edges stop being available, so the above number is in
general upper bounded by the total number of intervals assigned to the edges of
the network:

M =
∑
e∈E
|Le|

5 Recall that E(t0) is the set of all available edges of G(L) at time t0.

8 E.C.Akrida, and P.G.Spirakis

Initially, to �nd E(x) we need to look at every edge e ∈ E and decide if x is
between the start and �nish time of one of e's availability intervals. Performing
a binary search on the ordered set of start times and the ordered set of �nish
times of e's availability intervals, we can decide if e ∈ E(x) in time O(log |Le|).
So, to compute E(x) and check if it induces a spanning tree, we need time:

M ′ = O(
∑
e∈E

log |Le|)

Next, time O(n log n) is required to sort the edges in T , where n is the number
of vertices in the network. Then, for every time T changes, we need time M ′ to
�nd the new set of available edges at the time. We need time O(n) to �nd the
connected components that can be re-connected by the addition of an available
edge at the time and update T . Since we add at most O(n) edges to re-connect
T , the addition of all edges and the updates of T take a total of O(n2) time. Also,
time O(n) is required to insert the added edges in the sorted list A. Therefore, the
running time of Algorithm 1 isO

(
M ′+n log n+M ·(M ′+n2)

)
= O

(
M ·(M ′+n2)

)
.

4 Large connected components during a given time

period

In this section, we examine if, given an interval temporal network G(L) of n
vertices, numbers x, y ∈ R+ and a parameter 0 ≤ ε ≤ 1, we can �nd one or more
large enough subsets of the vertices of G which remain connected and remain
large within the time interval [x, y]. The matter of how large we want these
components to be can be handled by adjusting the parameter ε, which gives
us a lower bound of ε · n on the size of the components we are looking for. In
this section, we provide an algorithm that e�ciently solves the above problem.
Henceforth, a �large enough� connected component will be a component of size
at least ε · n.

Notice that any connected component C of G(L), at time t = x, that is not
large enough can be omitted by any algorithm that solves the above problem.
Even if the vertices of C connect with more vertices in G(L) at a later moment in
time within [x, y], resulting in a large enough connected component C ′ of G(L)
at that time, C ′ is not a component that was connected throughout [x, y].

Theorem 2. There is a polynomial-time algorithm which, given an interval
temporal network G(L) on n vertices and numbers x, y ∈ R+, x < y, returns all
subgraphs of G of size ε·n, 0 ≤ ε ≤ 1, that remain connected and large (i.e., is al-
ways of size at least ε·n) during the time period [x, y]. If [x, a] ⊆ [x, y], a ∈ [x, y],
is the maximal sub-period of [x, y] during which such a component remains con-
nected, then the algorithm also returns the length of that period, a− x.

Connectivity of interval temporal networks 9

Algorithm 2 Connectivity of interval temporal graphs

Input: A temporal network G(L) of n vertices, numbers x, y ∈ R+ such that x < y
and parameter ε : 0 ≤ ε ≤ 1

Output: All components of G(L) of size ε · n that remain connected during the time
interval [x, y]

1: Find the set E(x) of available edges at time x, distinguish the connected compo-
nents and delete those of size smaller than ε · n;

2: for each of the remaining connected components do
3: Find a spanning tree, T ;
4: n′ = |V (T)|;
5: Sort the edges in T according to the �nish time of their availability interval;

// For every edge in T , we only consider the interval that includes x

6: Let A = {ei, with interval [ai, bi] : i = 1, . . . , n− 1} be the sorted list;
7: if b1 ≥ y then

8: return V(T) and �Duration of survival of component = � y − x;
9: else

10: E′ := {e ∈ E(T) : be = b1}; // b1 is the �rst time instance at which T becomes

disconnected. E′ is the set of edges of T that stop being available at time b1.

11: T := T \ E′;
12: Remove E′ from A;
13: Let T1, T2, . . . , Ti, i ∈ N be the connected components of T ;
14: while T is disconnected and |V (T)| = n′ do

15: if ∃j, k = 1, 2, . . . , i : ∃e = (u, v) ∈ E(b1) : u ∈ V (Tj) ∧ v ∈ V (Tk) then
16: Find the Tj , Tk trees of T that e connects; // If there is an edge of G with

endpoints in di�erent connected components of T and is available at time b1, then

add it to T

17: Merge Tj , Tk and e into a single tree;
18: Update the number i of connected components of T ;
19: Insert e in the sorted list A;
20: else

21: for each connected component C of T with size smaller than ε · n do

22: T = T \ C;
23: return �Duration of survival of component = � b1 − x;
24: for each connected component, C′, of T do

25: T := C′;
26: n′ = |V (T)|;
27: Go to line 7;

Description of the algorithm Algorithm 2 receives as input an interval tem-
poral network of n vertices and an interval [x, y] during which we want to check
whether one or more large components of the network remain connected. The al-
gorithm also takes a non-negative parameter ε no larger than 1. This parameter
de�nes how large we want our components to be; more speci�cally, the algo-
rithm will only look for components of size (number of vertices) at least ε · n.
The algorithm returns all those subsets of the vertices of the initial graph, if
any, that remain connected (and large) during [x, y]. Furthermore, it returns the

10 E.C.Akrida, and P.G.Spirakis

duration of connectivity (survival duration) of any large enough component that
was connected at time t = x but disconnects at some point in [x, y].

To do so, the algorithm initially checks which connected components, if any,
are large enough at time x, and ignores all the rest. Then, the algorithm treats
each and every one of these large components similarly, but separately. Namely,
for each one of them the algorithm �nds a spanning tree T and sorts all its edges
according to the �nish time of their availability interval, considering only the
interval that includes time x. If the same tree remains connected during [x, y],
then the algorithm returns the respective component. Otherwise, if the tree
disconnects at a moment t0 in time, the algorithm employs a similar process to
the one used in Algorithm 1, i.e., tries to reconnect the remainder of the tree via
edges that are available at t0. If T cannot be re-connected, then the algorithm
checks the sizes of its connected components; it ignores those that are not large
enough, while �processing� the rest similarly and separately as before. For each
component that is ignored in the process, the algorithm returns the duration of
its survival, meaning how long its vertices stayed connected since time x. The
algorithm stops when there are no more components that are large enough or
when the last component stays connected until time y.

Correctness of the algorithm A component (subgraph) of G(L) is connected
during a period [x, y] if and only if there are paths between all pairs of its vertices
for all t ∈ [x, y], i.e., if it induces a spanning tree for every time instance in [x, y].
We will now show that if there is a large enough component of G(L) that is
connected during [x, y] then Algorithm 2 will �nd it, and if there is no such
component of G(L) then Algorithm 2 will answer that. Clearly, if at time x a
connected component of G(L) is not large enough, then we can ignore it; even
if at a later moment in time, its vertices connect with more vertices forming a
large enough component, that newly formed component is not one that survived
throughout [x, y].

Suppose that no large enough connected component of the given G(L) sur-
vives through [x, y]. Then, either there is no large enough component connected
at time x, or there are large enough connected components at time x that get
disconnected at some later point t0 ∈ (x, y], and break into small connected com-
ponents. In the �rst case, Algorithm 2 will delete all the components induced
by E(x) and terminate. In the second case, it only processes the large enough
components, separately; again, we separate the components because, even if at
a later moment in time their vertices connect with other vertices forming a
large enough component, that newly formed component is not one that survived
throughout [x, y]. Since no component survives through [x, y], there is a break-
ing point for each component, at which there is no tree connecting its vertices.
Algorithm 2 realizes the latter (cf. line 20), removes all small sub-components
and continues processing the remaining ones separately. Clearly, for each of these
sub-components there will be a moment where they disconnect without possibil-
ity of re-connection and with all their components being not large enough; that
is where the algorithm terminates (cf. line 23).

Connectivity of interval temporal networks 11

Now, suppose that the given G(L) has large enough components that remain
connected in [x, y]. Again, we can view each component separately. Let T be the
spanning tree of the component that the algorithm considers at time x. If all the
edges of T remain available until time y, then the algorithm will answer that the
component remains connected throughout [x, y]. If, however, there are edges in T
that stop existing at some moment in [x, y], then the algorithm considers the �rst
such moment, t0. It removes from T all the edges that stop existing at time t0.
T is now disconnected but still contains all the vertices of G. If the subgraph of
G(L) induced by the vertices of T and the edges between them available at time
t0 is connected, then the algorithm �nds edges to reconnect T (analysis is similar
to the analysis of Algorithm 1). If, however, the subgraph is not connected,
then the algorithm connects as many components of the subgraph as can be
connected (argument similar to the one used in Algorithm 1); it then ignores the
small components and proceeds to process the large enough components. Since
G(L) has large enough components that remain connected in [x, y], eventually
the algorithm �nds the component(s) that remain connected throughout [x, y]
and terminates (cf. line 8).

Running time The running time of Algorithm 2 depends on the number of
times that the spanning trees of the connected components change during [x, y].
The spanning trees can only change when one or more of their edges stop being
available. The edges on di�erent spanning trees are not overlapping, so the above
number is in general upper bounded by the total number of intervals assigned
to the edges of the network:

M =
∑
e∈E
|Le|

Initially, to �nd E(x) we need to look at every edge e ∈ E and decide if x is
between the start and �nish time of one of e's availability intervals. Performing
a binary search on the ordered set of start times and the ordered set of �nish
times of e's availability intervals, we can decide if e ∈ E(x) in time O(log |Le|).
So, to compute E(x), distinguish the connected components and remove those
that are not large enough, we need time:

M ′ = O(
∑
e∈E

log |Le|)

After that, the algorithm proceeds for each component separately. It is easy
to see that the running time of the algorithm for each separate component is the
same as the running time of Algorithm 1. Since there are at most 1

ε connected
components of size at least ε · n in G(L) during [x, y], the running time of

Algorithm 2 is O
(

1
ε

(
M · (M ′ + n2)

))
.

5 Low cost maintenance of a tree structure

In this section, we consider an interval temporal network on an underlying clique
of n nodes, i.e., all

(
n
2

)
links between nodes of the network may exist.

12 E.C.Akrida, and P.G.Spirakis

The connectivity of the network needs to be maintained at all moments in
time via a tree structure, i.e., a spanning tree of the clique. Each node of the tree
performs an individual application determined by the operator of the structure
and each link (edge) is active (alive) during a time-interval also decided by the
operator, after which the link fails. We have the liberty to provide the operator
with extra edges from the clique to re-connect a spanning tree when a link fails;
note here that after a new edge is added to the tree structure, the operator then
assigns to it a �lifetime� interval, which is determined by the application, anew.
The extra edges that we can provide come from the edges of the clique that
are not currently used in the tree structure, i.e., a total of

(
n
2

)
− (n − 1) edges.

We need to assign to every such edge e out of the
(
n
2

)
− (n − 1) an availability

interval, Ie, so that when the tree structure becomes dis-connected, there is an
appropriate such edge available to re-connect it. We call those edges reserved
edges and the set that consist exactly of all those edges (with their availability
intervals) reservoir, denoted by R.6

De�nition 3 (Cost of the reservoir). The cost of the reservoir is de�ned as
the sum, over all reserved edges, of the length of the edges' availability interval:

c =
∑
e∈R
|Ie|

Let T be the tree structure that is handled by the operator. We consider
the time period between 0 and n and we assume that the breaks/failures in the
connectivity of T happen once inside every consecutive time interval of length
∆ ≥ α log n, for some α > 1.2 (Low-frequency-of-link-breaks assumption). We
are not able to predict when exactly the failures happen, nor are we able to
foresee which link will fail next. We also assume worst case breaks in the tree
topology within each ∆-interval. The trivial design of the availabilities of the
reserved edges would be to make them all available throughout the considered

time period [0, n]. However, this yields cost c =
∑(n2)−n+1

i=1 n ∈ O(n3). We will
show how to provide the network with available reserved edges with lower cost,
so that the network connectivity is maintained with high probability (whp).7 In
order to re-connect the tree in the worst case of breaks in the tree topology, each
reserved edge needs to have been randomly assigned to an availability interval
to allow for the same probability of re-connection for all edges.

Theorem 3. Let α ∈ {x ∈ R|x ≥ 0.75}. If failures of the edges happen once
in every consecutive ∆ ≥ α log n time-intervals, then there exists a reservoir of
cost O(n2 log n) that keeps a spanning tree available during [0, n] whp.

6 Notice, here, the distinction between the availability of an edge and the lifetime of
an edge: availability refers to the interval that we assign to a reserved edge with the
purpose to re-connect the tree when it breaks, and lifetime refers to the interval that
the operator assigns to an edge after it is inserted in the tree structure and is the
time interval after which the respective link in the tree structure will fail.

7 An event occurs with high probability if, for any γ ≥ 1, the event occurs with
probability at least 1− cγ

nγ
, where cγ depends only on γ.

Connectivity of interval temporal networks 13

Proof. Partition the time interval [0, n] into consecutive equisized sub-intervals
b1, b2, . . . , b n

β logn
of length β log n, β ∈ R, 0.75 ≤ β ≤ α, called boxes.8 For every

reserved edge e ∈ R independently, select a box uniformly at random to be the
availability interval of e. For every edge e ∈ R, the probability that e is assigned
a particular box bi, i = 1, 2, . . . , n

β logn as its availability interval is:

Pr[Ie = bi] =
β log n

n

Denote by m′ the number of edges in R that are assigned to a particular box
bi, i = 1, 2, . . . , n

β logn , m
′ = |{e ∈ R : Ie = bi}|. The expected value of m′ is:

µ = E[m′] =
β log n

n
·
(n(n− 1)

2
− n+ 1

)
=
βn log n

2
− 3β log n

2
+
β log n

n

By Cherno� bounds, we get that the probability that m′ is close to the
expected number of edges in a particular box bi, i = 1, 2, . . . , n

β logn is:

Pr[m′ ∈ (1± 1

2
)µ] ≥ 1− e− 1

4µ

= 1− e− 1
4 ·
β logn
n ·(n2

2 −
n
2−n+1)

≥ 1− 1

n
βn
16

, for n large enough (n ≥ 6)

We now show that when a failure happens in T , we can whp �nd an edge in
R which is available at that particular moment in time. Consider the speci�c box
bi that includes the time moment at which the failure in T happens. The number
of edges in bi that can re-connect T depends on where the failure happens, i.e.,
on the sizes9 of the two connected components after the failure. If n1 and n2 are
the sizes of the connected components of T after a failure, then the probability
that a particular edge e ∈ bi can re-connect T after being added to the structure
is:

Pr[e ∈ bi re-connects T] =
n1 · n2

(n1+n2)·(n1+n2−1)
2

≥ 2n1n2
(n1 + n2)2

The probability that no edge of bi reconnects T after a failure is:

Pr[no e ∈ bi re-connects T] ≤
(
1− 2n1n2

(n1 + n2)2
)m′

So, the probability that there is an edge in bi that re-connects T is:

Pr[bi re-connects T] ≥ 1−
(
1− 2n1n2

(n1 + n2)2
)m′

≥ 1−
(
1− 2n1n2

(n1 + n2)2
) 3µ

2

8 The last box is not necessarily of size exactly β logn but this does not a�ect the
analysis.

9 The size of a component is the number of its vertices.

14 E.C.Akrida, and P.G.Spirakis

In the worst case, T dis-connects into a component of size n− 1 and a single
vertex. So, we can reconnect T after a failure with probability:

Pr[bi re-connects T] ≥ 1−
(
1− 2(n− 1)

n2
) 3βn logn

4 − 9β logn
4 + 3β logn

2n

≥ 1−
(
1− 2(n− 1)

n2)

) 3
4βn logn

≥ 1− 1

n0.9
3
2β

, for n large enough (n ≥ 10)

= 1− 1

n1.35β
n→+∞−−−−−→ 1

We require β ≥ 0.75 so that the above event happens whp. The probability
that within the time period [0, n], there is a box that will not re-connect T is:

Pr[∃bi, i = 1, . . . ,
n

β log n
: bi doesn't re-connect T] ≤

n
β logn∑
i=1

1

n1.35β

=
n

β log n
· 1

n1.35β
n→+∞−−−−−→ 0

So, we can almost surely10 re-connect T during [0, n] by employing the above
random assignment of availability intervals to the reserved edges, having total

cost c =
∑(n2)−n+1

i=1 β log n ∈ O(n2 log n). ut

Conjecture 1. If failures of the edges happen once in every consecutive ∆ ≥
α log n time-intervals, we conjecture that there is no reservoir of cost o(n2 log n)
that keeps a spanning tree available during [0, n] whp.

Open Problem 1 For spanning tree breaks of frequency o(log n) within the
time period [0, n], the reservoir of Theorem 3 does not re-connect T whp. It
remains an open question to derive a scheme that does so for breaks of so high
frequency.

Open Problem 2 What is a low cost reservoir to maintain a spanning tree of
the clique network, if the failures in the links of the tree happen randomly, e.g.,
if each link receives a lifetime given by the Exponential Distribution?

6 Conclusions and further research

In this work, we study the veri�cation and maintenance of the connectivity in
interval temporal networks. We pose an open question to maintain the spanning
tree in the interval [0, n] with cost o(n2 log n). An extension of this research
includes the construction of a reservoir to maintain a spanning tree of the clique
network, in cases where the failures in the links of the tree happen randomly,
e.g., if each link receives a lifetime given by the Exponential Distribution.

10 Note that increasing the size of the boxes by a constant factor, i.e., increasing the
lower bound for β and α, can enforce the re-connection probability to also increase.

Connectivity of interval temporal networks 15

References

1. E. C. Akrida, L. G¡sieniec, G. B. Mertzios, and P. G. Spirakis. Ephemeral networks
with random availability of links: Diameter and connectivity. In SPAA, 2014.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Computation in
networks of passively mobile �nite-state sensors. Distributed Computing, pages
235�253, 2006.

3. C. Avin, M. Koucký, and Z. Lotker. How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In ICALP, pages 121�132,
2008.

4. B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and fore-
most journeys in dynamic networks. International Journal of Foundations of Com-
puter Science, 14(2):267�285, 2003.

5. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems (IJPEDS), 27(5):387�408, 2012.

6. A. E. F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding
time of edge-markovian evolving graphs. SIAM Journal on Discrete Mathematics,
24(4):1694�1712, 2010.

7. C. Cooper, R. Klasing, and T. Radzik. A randomized algorithm for the joining pro-
tocol in dynamic distributed networks. Theoretical Computer Science, 406(3):248�
262, 2008.

8. P. Duchon and R. Duvignau. Local update algorithms for random graphs. In
LATIN, pages 367�378, 2014.

9. C. Dutta, G. Pandurangan, R. Rajaraman, Z. Sun, and E. Viola. On the complexity
of information spreading in dynamic networks. In SODA, pages 717�736, 2013.

10. L. Fleischer and M. Skutella. Quickest �ows over time. SIAM Journal of Comput-
ing, 36(6):1600�1630, 2007.

11. L. Fleischer and É. Tardos. E�cient continuous-time dynamic network �ow algo-
rithms. Operations Research Letters, 23(3-5):71�80, 1998.

12. C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In
SODA, pages 210�219, 2001.

13. M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for �ow and
connectivity. SIAM Journal on Computing, 34(1):23�40, 2004.

14. D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems
for temporal networks. In STOC, pages 504�513, 2000.

15. R. Koch, E. Nasrabadi, and M. Skutella. Continuous and discrete �ows over time
- A general model based on measure theory. Mathematical Methods of Operations
Research, 73(3):301�337, 2011.

16. F. Kuhn, N. A. Lynch, and R. Oshman. Distributed computation in dynamic
networks. In STOC, pages 513�522, 2010.

17. G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Temporal
network optimization subject to connectivity constraints. In ICALP, pages 657�
668, 2013.

18. O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Causality, in�uence, and com-
putation in possibly disconnected synchronous dynamic networks. In OPODIS,
pages 269�283, 2012.

19. M. Molloy and B. Reed. Graph colouring and the probabilistic method, volume 23
of Algorithms and Combinatorics. Springer, 2002.

16 E.C.Akrida, and P.G.Spirakis

20. R. O'Dell and R. Wattenhofer. Information dissemination in highly dynamic
graphs. In DIALM-POMC, pages 104�110, 2005.

21. C. Scheideler. Models and techniques for communication in dynamic networks. In
STACS, volume 2285, pages 27�49, 2002.

