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Abstract—Facial makeup style transfer is an extremely chal-
lenging sub-field of image-to-image-translation. Due to this dif-
ficulty, state-of-the-art results are mostly reliant on the Face
Parsing Algorithm, which segments a face into parts in order
to easily extract makeup features. However, this algorithm can
only work well on high-definition images where facial features
can be accurately extracted. Faces in many real-world photos,
such as those including a large background or multiple people,
are typically of low-resolution, which considerably hinders state-
of-the-art algorithms. In this paper, we propose an end-to-end
holistic approach to effectively transfer makeup styles between
two low-resolution images. The idea is built upon a novel weighted
multi-scale spatial attention module, which identifies salient pixel
regions on low-resolution images in multiple scales, and uses
channel attention to determine the most effective attention map.
This design provides two benefits: low-resolution images are
usually blurry to different extents, so a multi-scale architecture
can select the most effective convolution kernel size to implement
spatial attention; makeup is applied on both a macro-level
(foundation, fake tan) and a micro-level (eyeliner, lipstick) so
different scales can excel in extracting different makeup features.
We develop an Augmented CycleGAN network that embeds our
attention modules at selected layers to most effectively transfer
makeup. Our system is tested with the FBD data set, which
consists of many low-resolution facial images, and demonstrate
that it outperforms state-of-the-art methods, particularly in
transferring makeup for blurry images and partially occluded
images.

I. INTRODUCTION

Current state-of-the-art makeup style transfer methods [1],
[2], [3], [4] display a common trend when applied to low
quality images: only lipstick colour is consistently transferred.
Eyeliner and mascara occasionally make the transition. Foun-
dation, eye shadow, blusher, fake tan, concealer, powder, and
contours are largely disregarded. Bags under the eyes, that
want to be concealed, are ignored. For real-world applications,
such as makeup-invariant face verification [5] or beautification
[6], this does not suffice. We postulate that the fault lies with
the hard attention that current makeup transfer methods use to
handle the difficulty of the task.

Convolutional neural networks struggle to generalise to dif-
ferent data sets [7]. This also extends to GANs. For example,
PULSE [8] applied to external data, converted a downsampled
image of Barack Obama into a white man. To minimise
generalisation error and to help to defend against model bias,

it is beneficial for the algorithm to be able to train on a large
variety of data, whereas current state-of-the-art makeup style
transfer methods can only train on high-quality lab data sets. In
practical applications of makeup transfer, low-resolution faces
are prominent, because faces often take up a small proportion
of an image. After cropping, they appear at a low resolution.
As this scenario will frequently occur, it is important that
models can handle it. Because we cannot reliably depend on
models to generalise to this low-resolution setting, we design
our framework to be able to train directly on low-resolution
data.

A naı̈ve approach to transfer makeup style is to use off-
the-shelf image-to-image translation techniques, such as Cy-
cleGAN [9]. However, this performs poorly because the two
domains are highly overlapping; both domains comprise of
face images, with the greatest difference usually appearing
on the lips and around the eyes. It is challenging to describe
a makeup style since it consists of multiple non-requisite
components. A face only wearing lipstick and the same face
only wearing eyeliner should both belong in the makeup
domain. This is difficult for standard models to gauge without
being directly pointed to.

CycleGAN’s ineffectiveness for makeup style transfer ef-
fectuates a part-by-part solution to apply a style from one
face image to another. Current works develop a hard attention
module where face parts likely to consist of makeup (eyes,
lips and cheeks) are segmented and optimised upon separately
[1], [2], [3]. However, to segment the image, these methods
are dependent on the Face Parsing Algorithm (FPA) [10]. We
demonstrate that FPA is limited in handling low-resolution
face images due to the lack of detailed features to identify face
parts. As a consequence, state-of-the-art makeup style transfer
algorithms cannot be applied successfully to lower-resolution
faces.

We discard the hard attention and develop an analogous soft
attention module that to transfer makeup style in a holistic
manner, rather than piece by piece. To tackle the problem of
identifying salient parts of low resolution images without FPA,
a novel weighted multi-scale spatial attention module is pro-
posed. The module consists of spatial attention with multiple
convolutional kernels. These convolutional layers determine
salient areas of the image at different scales, which are then
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Fig. 1. (a) low quality source images; (b) makeup images from which to
extract the makeup style; (c) the inferred result. Our method is capable of
handling noisy, partially cropped, real-world data.

processed by an intermediate channel attention module, which
determines the importance of different scales and assigns
respective weights. This attention module serves two main
purposes. Firstly, attention at different scales can focus on
transferring different aspects of a makeup style: smaller scales
capture fine-grained information such as fake eyelashes and
lipstick, whereas larger scales focus on transferring foundation
and fake tan that appear across the entire face. Secondly,
faces can appear at any size in an image, so it is important
to be able to effectively handle different resolutions. Our
attention module can dynamically adjust which convolutional
kernels are assigned high weights, and therefore extract more
information from lower quality images. This results in a better
face representation, and a better encoded makeup style. As
shown in Figure 1, our framework is able to transfer makeup
style under a wide range of difficult conditions, including low-
resolution images, cropped faces and radical makeup styles.

Quantitative results show that the weighted spatial attention
module outperforms the state of the art at transferring makeup
style on low quality data. We also provide qualitative examples
to show that our model compares favourably to state of the
art on difficult tasks.

In this paper, the following contributions are provided:

1) We propose a new weighted multi-level spatial attention
module to capture high-level and fine-grained style in-
formation. Such a mechanism is employed to encode the

Input 1080p mask 144p mask 144p (Ours)

Fig. 2. Hard attention, used in current state-of-the-art frameworks, on different
resolutions. In the top row, due to facial pose and good lighting, the low
resolution image can be segmented well. However, on row 2, closed eyes and
occlusion from the hand causes segmentation failure. Multi-scale attention
(lighter means higher weight) is more capable of handling these challenges
and gives a more detailed attention map. Note that current state of the art
is dependent on the attention maps, whereas ours still attains reasonable
performance without attention.

makeup style from the reference image and apply it to
the source image with generative adversarial networks.

2) We demonstrate that state-of-the-art makeup style trans-
fer techniques such as [2], [4] struggle to handle
lower resolution data encountered in the real world.
To handle this issue, an end-to-end framework based
on Augmented CycleGAN is designed, with attention
modules included within the generator, discriminator,
and encoder.

3) We design a metric to quantitatively evaluate makeup
style transfer.

The rest of the paper is organised as follows. Related studies
are outlined in Section II. Section III describes the spatial
attention mechanism and explores the full network for many-
to-many image translation. Section IV demonstrates our results
compared to state-of-the-art methods. The paper is concluded
in Section V.

II. RELATED WORK

A. Attention

Attention is incorporated into Convolutional Neural Net-
works (CNNs) to highlight salient regions of an image that
the network should focus on. There are several ways in which
this can be done.

Self-Attention Networks [11] split an input into three
streams: a key, query, and value. The higher the similarity
between the key and query, the higher the weight attributed to
the value.

Spatial Attention [12] is calculated via a residual convo-
lutional block and aims to identify pixel regions the most
contribute to minimising the loss, whereas Channel Attention
[13] focuses on identifying the most important channels at
each convolutional layer, which results in a better final feature
representation. Harmonious Attention Networks [14] combine
Spatial Attention with Channel Attention, and add a hard
attention module, for the task of person re-identification. This



combination of attention modules improves performance with
negligible change in computational complexity.

Attention has also been applied within Generative Adver-
sarial Networks (GANs) for image generation. Zhang et al.
[15] propose Self-Attention GAN, which makes use of a key,
query, value set to perform attention similarly to traditional
transformers [11]. Tang et al. propose AttentionGAN [16] for
image-to-image translation, where the attention masks focus
on key areas to translate.

B. Makeup Style Transfer

For digital makeup, an early work from Guo and Sim [17]
can be used to transfer makeup style from one portrait to
another. The source and target images are decomposed into
three different layers: face structure layer, skin detail layer, and
the colour layer. By altering the skin detail and colour layers,
makeup style can be transferred. Xu et al. [18] proposed using
face landmark detection to locate more important regions on
the face and edit the skin colour and local details for each
landmark. Li et al. [19] presented a physically-based model to
alter the optical properties in the reflectance layers extracted
from an image to simulate the digital makeup effects. More
recent work by Liu et al. [20] proposed an end-to-end deep
learning framework to i) recommend the suitable reference
makeup style for the input image, ii) transfer the commonly
used cosmetics (such as foundation, eye shadow and lip gloss)
for different facial parts locally using the proposed Deep
Transfer Network. The aforementioned approaches facilitate
makeup style transfer based on underlying models or facial
landmarks. Sub-optimal results will be produced if the model
extraction and landmark detection are inaccurate.

CycleGAN [9] and other image-image translation works
[21], [22], [23] variants demonstrated encouraging results
on image-to-image translation tasks. PairedCycleGAN [1]
improves the preservation of face identity by incorporating
both a makeup transfer and a makeup removal networks. The
face is separated into three parts, the eyes, lips and skin,
and a generator-discriminator pair is trained for each part
to capture unique characteristics. In addition to the typical
cycle consistency loss and perceptual loss for ensuring the
quality of the style transfer and realism of the resultant images,
BeautyGAN [2] further includes the makeup loss to improve
the appearance of the lips, eye shadow and face regions.
Zhang et al. [4] are able to not only transfer the makeup
style from one image to another, but control the strength
with which it is applied, or apply a hybrid of two different
makeup styles. BeautyGlow [3] decompose makeup and non-
makeup images into latent vectors, then combine them in the
latent space. They then generate the new makeup image from
the combination vector. Unfortunately, none of these methods
have demonstrated the ability to work effectively on low-
resolution images that are frequently encountered in real world
applications of makeup style transfer.

III. WEIGHTED MULTI-SCALE SPATIAL ATTENTION

Many current state-of-the-art makeup style transfer frame-
works are reliant on hard attention to segment the face into
parts. Figure 2 shows that the same image taken at a low
resolution can result in drastically worse performance. As real-
world applications would benefit from efficacy on low-quality
data, the state of the art should capably handle this data.

We propose a new weighted multi-scale spatial attention
module that is composed of spatial attention and channel
attention as an alternative to the face parsing algorithm. The
spatial attention extracts saliency information from the image
at different scales. The channel attention learns the relative
importance of these scales to give these attention maps an
associated weight. This design is motivated by the observation
that one makeup style is composed of different aspects of
makeup: foundation covers a large area over the face while
eyeliner is only visible across a few pixels. Using multiple
scales of spatial attention allows us to capture all of the
information necessary for makeup style transfer. Computing
spatial attention with a large kernel size may result in eyeliner
being overlooked. Our module combines three different kernel
sizes to help avoid this issue.

In the rest of this section, we will formally define the
problem, then describe the proposed attention module that can
capture makeup information of each image. The full procedure
is outlined in Figure 3.

A. Problem Formulation
Given a set of images without makeup, X , and a set of

images with makeup, Y , we aim to convert any image pair
(x ∈ X, y ∈ Y ) into a new image x̃y , that has transferred
the makeup style from image y onto image x. Most image-
to-image translation tasks apply an arbitrary style to image
x ∈ X to obtain x̃ ∈ Y . For each x ∈ X , we only get one
x̃ ∈ Y . However, we want to apply the specific makeup style
from y ∈ Y .

To accomplish this, we will use the Augmented CycleGAN
[23] model as a baseline. Here, we provide an outline of how
it obtains a many-to-many mapping.

As visualised in Figure 4, we simultaneously train two
generators and two encoders with associated discriminators:

GXY :X × ZY −→ Y , DY : Y −→ {0, 1},
GY X :Y × ZX −→ X , DX : X −→ {0, 1},
EX :X × Y −→ ZX , DZX

: ZX −→ {0, 1},
EY :Y ×X −→ ZY , DZY

: ZY −→ {0, 1}.

 (1)

We optimise this with a standard GAN Loss, LY
GAN; an en-

coder generator equivalent, LZX

GAN; an image cycle-consistency
loss, LX

CYC; and an encoder cycle-consistency loss, LZY

CYC.
These are combined with hyperparameters γ1 and γ2 to obtain
the loss function in the non-makeup to makeup direction:

LY
GAN(GXY , DY ) + LZX

GAN(EX , GXY , DZX
)

+γ1LX
CYC(GXY , GY X , EX) + γ2LZY

CYC(GXY , EY ). (2)
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Fig. 3. Our proposed weighted, multi-scale attention module. a) the input is squeezed along the channel dimension to obtain the representation matrix; b)
the representation matrix is convolved through different sized kernels to extract the intermediate attention maps consisting of different scale information; c)
the intermediate attention maps are concatenated and passed through a squeeze and excitation mechanism to assign each map a weight; d) this weighted
multi-scale representation is passed through a final convolutional layer to obtain an h× w × 1 representation; this representation is multiplied by the input
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Fig. 4. An overview of the Augmented CycleGAN baseline: a four step
algorithm (denoted by blue, orange, green and red arrows, respectively) to
maintain cycle-consistency for both the input image x and the input latent
code zy .

A symmetric equation is simultaneously optimised in the
opposite direction. In our experiments, we assign γ1 = 1,
γ2 = 0.5. γ1 is given a higher weight because the task to
reconstruct a 32-dimensional latent code through a cycle is
easier than to reconstruct an image. However, we find that
assigning γ2 a reasonably large weight encourages the network
to pursue more dramatic changes, even if they are less realistic.
We prefer this because unaltered images are not at all useful
for practical applications. The full details of the individual
losses can be found in the Appendix.

B. Multi-scale Spatial Attention

Spatial Attention aims to identify the most salient pixels.
We develop a multi-scale spatial attention map to determine
saliency at different granularities.

First, given a facial image, p = (i, j), 0 ≤ i ≤ h, 0 ≤ j ≤
w, are averaged across all channels, sp = 1

N

∑N
k=1 pk, where

N is the total number of channels to obtain a representative
h× w feature map Z.

We define the intermediate attention map, An, via An =
ln(Z) where ln is the convolutional layer with kernel n× n.

We process Z with three different convolutional layers, with
1 × 1, 3 × 3, and 5 × 5 kernels simultaneously to obtain
A1, A3, and A5. Smaller kernels extract more detailed fine-
grain information, such as eyeliner and lipstick that may be
present. Larger kernels will be more adept at learning the
importance of information that may cover larger areas, such
as blusher applied to the cheeks.

The intermediate multi-scale attention is obtained by con-
catenating the attention maps in the channel dimension,

A = [A1, A3, A5] , (3)

and bilinearly upsampled, so A has dimensions h× w × 3.
Finally, a 1× 1 convolutional layer processes A to produce

the final h × w × 1 multi-scale attention map, AMS, which
combines information from the weighted intermediate atten-
tion maps. AMS is then multiplied by the initial input; this
forces the spatial attention network to learn to assign greater
values to more salient pixels.

Our network is entirely self-contained and end-to-end. Un-
like current state of the art, the framework is not reliant on
any external models, algorithms, or software that can inhibit
performance.

C. Channel Attention

Channel attention identifies which channels are most salient
and weights them appropriately. As seen in Equation 3,
A1, A3, and A5 are concatenated along the channel dimension,
so they act as three channels, which allows us to perform
channel attention with reduction rate r = 3. Thus, the
intermediate attention maps are weighted associated to the
kernel size importance.

Each intermediate attention map Ak of size h × w is
squeezed into a channel descriptor, c ∈ R, via Global Average
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Pooling. For the k-th attention map, the channel descriptor ck
is found via ck = squeeze(Ak) :=

1
h×w

∑h
i=1

∑w
j=1A

i,j
k .

As we are working with three channels, these channel de-
scriptors form a vector z = [c1, c2, c3]. z is then processed by
an excitation neural network that learns a non-linear interaction
between channels to obtain channel importance from z. The
excitation network consists of a dimensionality reduction layer
(so relatively few parameters are added to the overall network)
followed by a dimensionality increasing layer,

C = excite(z) := σ (W2δ(W1z)) , (4)

where W1 ∈ R1×3,W2 ∈ R3×1 are the parameters of the
dimensionality-reduction and -increasing layers respectively,
δ is the ReLU function and σ is a sigmoid activation. Note
that this formulation allows multiple high-importance channels
rather than a one-hot output. C represents the importance
scores of each channel and is multiplied by the input.

D. Network Architecture

The architecture of our full system as described in Equation
1 can be found in Figure 5. Rather than applying the attention
model indiscriminately, we select where to apply attention to
get maximum benefit without sacrificing efficiency.

1) Encoder: We first explore the encoder as it is the
network that benefits most from the attention module. The
attention module is applied in early layers where the feature
maps most resemble the input image. In fact, we apply atten-
tion directly to the image before feeding it into the network.
We find that this significantly improves the encoder’s ability
to identify the makeup style to be encoded and incorporate it
into the final feature representation.

2) Discriminator: The discriminator attempts to discover
whether an image that has had the encoded makeup applied
to it is real or fake, in the context of the makeup domain.
By incorporating attention, the discriminator is more capable
of identifying makeup in real images. In order to fool the
discriminator, it becomes more important for the generator
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Fig. 6. Comparison with DMT and BeautyGAN on challenging makeup
styles: a) our method is the only one that captures skin tone, and best
approximates the colour contours in the original image; b) our method best
transfers fake eyelashes and comes closest to transferring the butterfly wings.

to apply makeup. However, if we add too much attention, or
incorporate it too early, the discriminator becomes too good at
identifying fake makeup images, so the generator can’t fool it.
The ramification is that the system attempts only to maintain
cycle consistency and very little image editing is performed.
We settle on one weighted multi-scale attention module after
the first convolutional block.

3) Generator: The inputs are a source image and a 32-
dimensional latent code obtained from the encoder. This latent
code is injected into convolutional feature maps at every layer
via conditional instance normalisation [24]. Because the final
layers contribute most to the generated image, we incorporate
attention towards the end of the image generation process
- before and after the final injection of the latent code of
the makeup style. The attention module before the final style
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Fig. 7. Comparison with DMT and BeautyGAN demonstrating our ability to
cover blemishes compared with state of the art.

injection attends to areas where makeup should be applied,
guiding the injected code towards those areas. The attention
module at the final layer attends to important areas of the face
where makeup has been applied.

IV. RESULTS

The experiments were performed on a workstation with four
NVIDIA GeForce RTX 1070 Ti GPUs with 8GB of VRAM
each. The training process took around 8 hours, while the
testing process was within 5 seconds.

A. Set Up

We train and evaluate our model on the FBD data set [5],
a data set for makeup invariant face verification. It contains
2527 paired makeup and non-makeup images. We follow
their pre-processing: the Viola Jones face detector [25] is
applied to localise faces, then faces are cropped and aligned
as per Shan et al. [26]. Pre-processing facial images to align
facial landmarks is common; however, it has a propensity
to introduce noise to images due to automatically scaling,
skewing, cropping and zooming.

We also collect our own data set of 10 subjects from
YouTube makeup tutorials, at 1080p and 144p, to allow us to
perform quantitative evaluation, as explained in Section IV-C.

We compare against two state-of-the-art models: DMT [4]
and BeautyGAN [2], because they are the best performing
makeup style transfer frameworks that provide pre-trained
models to test against.

Note that we are handicapped as DMT and BeautyGAN
are trained on the MT data set [2], a lab created data set with
mostly forward facing, high quality images with good lighting.
In contrast, our models are trained on the low quality data
set, which sometimes results in noise being added into the
generated image.
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Fig. 8. Comparison on source image with occluded lips and eyes.

B. Comparative Studies

In Figure 6, we create a challenging task to transfer radical
makeup styles onto a source image. Our framework outper-
forms the state-of-the-art methods, best transferring the skin-
tone from fake tan and powder and in the makeup images. Ours
also best approximates the colour distribution of the makeup
face, applying blusher on the cheeks, whereas the other meth-
ods only apply a generic pale skin tone across the entire face.
Other methods only apply a bold line around the perimeter of
the eyes, whereas ours accurately applies fake eyelashes. We
also best succeed at transferring the unconventional butterfly
wings found in the source image. This shows that our soft
attention is more accurately able to adapt to unconventional
and extreme styles, compared to hard attention that is only
capable of handling styles similar to what it has seen during
training.

In Figure 7, we demonstrate our framework’s ability to cover
blemishes compared with state of the art. The first reference
image shows the same subject as in the source image. By
applying makeup, the subject has clearly chosen to conceal
the blemishes on her forehead. Our framework is the only
method capable of accurately transferring the makeup style in
order to cover blemishes as desired. This highlights a major
flaw with current state of the art methods. Because they use
hard attention to identify regions such as lips and eyes, they
cannot adjust to different challenges. Our method is far more
flexible in being able to handle outlier cases due to the holistic,
soft attention approach.

Figure 8 provides a comparison on an image where both
the lips and eyes are partially occluded. Ours best transfers
the lip colour across all three images and is the only method
able to apply fake lashes behind glasses in the first column.
In the second column, DMT applies an unnatural pale green



TABLE I
COMPARISON WITH STATE OF THE ART METHODS

Method Eyes Skin Lips Total
BeautyGAN [2] 0.230 0.086 0.215 0.532
DMT [4] 0.238 0.084 0.218 0.541
Ours 0.197 0.089 0.229 0.515

Lower numbers are better

TABLE II
ABLATION STUDY ON ATTENTION

Method Eyes Skin Lips Total
Ours 0.197 0.089 0.229 0.515
w/o Multi-scale Attention 0.188 0.105 0.236 0.529
w/o Any Attention 0.274 0.126 0.247 0.647

Lower numbers are better

tinge that, far from beautifying the image, makes the subject
appear unwell.

Readers are referred to the supplementary material to see
further results. Our framework can consistently apply makeup
style on low-quality images without suffering from the prob-
lems that current state-of-the-art methods experience.

C. Quantitative Studies

1) Proportionate Face Distance Metric: The collected
YouTube data set contains makeup and non-makeup images
of subjects at 144p and 1080p. CelebAMask-HQ [27] was
applied to the 1080p images (second column in Figure 2) to
extract segmentation masks, and use them as ground truths
of the 144p images for quantitative comparison. Each non-
makeup image was then augmented with the makeup style
from its own video. We did not add makeup styles from other
videos to ensure that external factors, such as natural skin tone
and different lighting, did not affect the results.

To perform quantitative analysis, we use the extracted masks
to segment the eyes, face, and lips of the real 144p makeup
images and the generated images. We then obtain the colour
histograms of each segmented face part, and calculate the L1
distance, D, between colour histograms of equivalent face
parts. This process is visualised in Figure 9. Because the
skin takes up most of the pixels of the face, without any
additional consideration, whichever method performed best at
transferring skin tone would be adjudged to have performed
best overall. We ensure a fair comparison by assigning a
weight to each face part based on the inverse of the number of
pixels that each face part has. This proportionate face distance
is therefore found via

Dtotal = P

(
1

peyes
Deyes +

1

pskin
Dskin +

1

plips
Dlips

)
, (5)

where P is the total number of pixels in the face mask of the
generated image, pi is the number of pixels in the masks of
face part i, and Di is the distance of the colour histograms of
face part i, with i ∈ {eyes, skin, lips}.

a) b) c)

Downsample then 
transfer makeup

Compute L1 distance 
between different face parts

Fig. 9. We design a quantitative evaluation metric for low resolution
makeup style transfer: a) extract segmentation masks from 1080p images; b)
downsample images to 144p and transfer makeup style; c) apply segmentation
masks to the real and fake makeup image, compute colour histograms for each
face part then calculate the L1 distance between similar face parts.

2) Comparison with State of the Art: We compare against
state-of-the-art methods on our YouTube data set in Table
I. Our model outperforms the other methods at transferring
makeup style on low quality images with a proportionate
face distance of 0.515, 0.017 lower than the next best model.
We obtain similar performance at transferring the makeup on
the skin and lips, but significantly outperform both methods
at transferring makeup around the eyes. Eyeliner and fake
eye-lashes are usually represented on an image by a small
number of pixels. The lowest scale of our attention module
incorporates this information into the learned makeup style.

3) Ablation Studies: Table II shows the impact of dropping
components of our attention module. Our model performs best
at transferring the total face makeup, attaining the strongest
performance on skin and lips. Removing multi-scale attention
gives better eye makeup transfer, to the detriment of the rest of
the face. Due to the presence of larger convolutional kernels,
our multi-scale attention better identifies the importance of the
skin and outscores regular spatial attention by 0.016.

The model without any attention at all is considerably
weaker at transferring all three face parts because, without
attention, the background has a large contribution on the
encoded makeup style. As a result, the makeup style injected
into the generator contains superfluous information.

V. CONCLUSION AND DISCUSSION

In this paper, we have developed an end-to-end framework
for transferring makeup style that attains state-of-the-art per-
formance on low-quality images. The framework does not
suffer from the issues commonly seen among state-of-the-art
methods, such as focusing only on lips, due to the developed
novel weighted multi-scale spatial attention module.

One limitation of our method is that occasionally it can
go too far with translating skin colour, and overly affect the
background. Our framework favours riskier, more dramatic
changes over safer ones. From an application perspective, it is
more useful to have an extreme change than no change. If we
wish to augment data for makeup invariant face recognition,
extreme changes propose tough new challenges during training
whereas little change does not assist training.
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APPENDIX

A. Loss Functions

Generator Losses: The loss for the image generator is
similar to a typical conditional GAN.

LY
GAN(GXY , DY ) = E

y∼pd(y)

[
logDY (y)

]
+ E

x∼pd(x)
zy∼p(zy)

[
log(1−DY (GXY (x, zy)))

]
,

(6)

while the loss for the encoder network, which generates a 32-
dimensional latent code from input faces is

LZX

GAN(EX , GXY , DZX
) = E

zx∼p(zx)

[
logDZX

(zx)
]

+ E
x∼pd(x)
zy∼p(zy)

[
log(1−DZX

(z̃x)))
]
,

(7)

where z̃x = EX(x,GXY (x, zy)). Other symbols are defined
in preliminaries of Section III-A.

Cycle-consistency Loss: Both losses have an associated
cycle-consistency restraint. For image generation, the loss is
similar to cycle-consistency loss of CycleGAN.

LX
CYC(GXY , GY X , EX) = E

x∼pd(x)
zy∼p(zy)

∣∣∣∣x̃− x∣∣∣∣
1
, (8)

where x̃ = GY X

(
ỹ, EX(x, ỹ)

)
and ỹ = GXY (x, zy).

For the encoder, we reconstruct makeup style zy via

LZY

CYC(GXY , EY ) = E
x∼pd(x)
zy∼p(zy)

∣∣∣∣z̃y − zy∣∣∣∣1, (9)

where z̃y = EY (x,GXY (x, zy)). Once more, symbols are
defined in Section III-A.
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