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Abstract. For the Odd Cycle Transversal problem, the task is to
�nd a small set S of vertices in a graph that intersects every cycle of odd
length. The Subset Odd Cycle Transversal requires S to intersect
only those odd cycles that include a vertex of a distinguished vertex
subset T . If we are given weights for the vertices, we ask instead that S
has small weight: this is the problem Weighted Subset Odd Cycle

Transversal. We prove an almost-complete complexity dichotomy for
Weighted Subset Odd Cycle Transversal for graphs that do not
contain a graph H as an induced subgraph. Our general approach can
also be used for Weighted Subset Feedback Vertex Set, which
enables us to generalize a recent result of Papadopoulos and Tzimas.

1 Introduction

For a transversal problem, one seeks to �nd a small set of vertices within a given
graph that intersects every subgraph of a speci�ed kind. Two problems of this
type are Feedback Vertex Set and Odd Cycle Transversal, where the
objective is to �nd a small set S of vertices that intersects, respectively, every
cycle and every cycle with an odd number of vertices. Equivalently, when S is
deleted from the graph, what remains is a forest or a bipartite graph, respectively.

For a subset transversal problem, we are also given a vertex subset T and
we must �nd a small set of vertices that intersects every subgraph of a speci�ed
kind that also contains a vertex of T . An (odd) T -cycle is a cycle of the graph
(with an odd number of vertices) that intersects T . A set ST ⊆ V is a T -feedback
vertex set or an odd T -cycle transversal of a graph G = (V,E) if ST has at least
one vertex of, respectively, every T -cycle or every odd T -cycle; see also Fig. 1.
A (non-negative) weighting of G is a function w : V → R+. For v ∈ V , w(v) is
the weight of v, and for S ⊆ V , the weight w(S) of S is the sum of the weights
of the vertices in S. In a weighted subset transversal problem the task is to �nd
a transversal whose weight is less than a prescribed bound. We study:

? The research in this paper received support from the Leverhulme Trust (RPG-2016-
258).
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Weighted Subset Feedback Vertex Set
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weight-

ing w of G and an integer k ≥ 1.
Question: does G have a T -feedback vertex set ST with w(ST ) ≤ k?

Weighted Subset Odd Cycle Transversal
Instance: a graph G, a subset T ⊆ V (G), a non-negative vertex weight-

ing w of G and an integer k ≥ 1.
Question: does G have an odd T -cycle transversal ST with w(ST ) ≤ k?

Both problems are NP-complete even when the weighting function is 1 and
T = V . We continue a systematic study of transversal problems on hereditary
graph classes, focusing on the weighted subset variants. Hereditary graph classes
can be characterized by a set of forbidden induced subgraphs. We begin with
the case where this set has size 1: the class of graphs that, for some graph H,
do not contain H as an induced subgraph; such a graph is said to be H-free.

Past Results. We �rst note some NP-completeness results for the special case
where w ≡ 1 and T = V , which corresponds to the original problems Feedback
Vertex Set and Odd Cycle Transversal. These results immediately imply
NP-completeness for the weighted subset problems. By Poljak's construction [14],
for every integer g ≥ 3, Feedback Vertex Set is NP-complete for graphs of
�nite girth at least g (the girth of a graph is the length of its shortest cycle).
There is an analogous result for Odd Cycle Transversal [4]. It has also been
shown that Feedback Vertex Set [10] and Odd Cycle Transversal [4]
are NP-complete for line graphs and, therefore, also for claw-free graphs. Thus
the two problems are NP-complete for the class of H-free graphs whenever H
contains a cycle or claw. Of course, a graph with no cycle is a forest, and a forest
with no claw has no vertex of degree at least 3. Hence, we need now only focus
on the case where H is a linear forest, that is, a collection of disjoint paths.

There is no linear forest H for which Feedback Vertex Set on H-free
graphs is known to be NP-complete, but for Odd Cycle Transversal we can
take H = P2+P5 or H = P6, as the latter problem is NP-complete even for (P2+
P5, P6)-free graphs [5]. It is known that Subset Feedback Vertex Set [6] and

Fig. 1. Two examples (from [3]) of the Petersen graph with the set T indicated by
square vertices. The set ST of black vertices forms both an odd T -cycle transversal and
a T -feedback vertex set. On the left, ST ∩ T 6= ∅. On the right, ST ⊆ T .

.
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Subset Odd Cycle Transversal [3], which are the special cases with w ≡ 1,
are NP-complete for 2P2-free graphs; in fact, these results were proved for split
graphs which form a proper subclass of 2P2-free graphs. For the weighted subset
problems, there is just one additional case of NP-completeness currently known,
from the interesting recent work of Papadopoulos and Tzimas [13] as part of the
following dichotomy.

Theorem 1 ([13]). Weighted Subset Feedback Vertex Set on sP1-free
graphs is polynomial-time solvable if s ≤ 4 and NP-complete if s ≥ 5.

The unweighted version of Subset Feedback Vertex Set can be solved in
polynomial time for sP1-free graphs for every s ≥ 1 [13]. In contrast, for many
transversal problems, the complexities on the weighted and unweighted versions
for H-free graphs align; see, for example Vertex Cover [7], Connected Ver-
tex Cover [8] and (Independent) Dominating Set [9].

The other known polynomial-time algorithm for Weighted Subset Feed-
back Vertex Set on H-free graphs is for the case where H = P4. This can be
proven in two ways:Weighted Subset Feedback Vertex Set is polynomial-
time solvable for permutation graphs [12] and also for graphs for which we can
�nd a decomposition of constant mim-width [2]; both classes contain the class of
P4-free graphs. To the best of our knowledge, algorithms forWeighted Subset
Odd Cycle Transversal on H-free graphs have not previously been studied.

We now mention the polynomial-time results on H-free graphs for the un-
weighted subset variants of the problems (which do not imply anything for the
weighted subset versions). Both Subset Feedback Vertex Set and Sub-
set Odd Cycle Transversal are polynomial-time solvable on H-free graphs
if H = P4 or H = sP1 + P3 [3, 12]. Additionally, Feedback Vertex Set is
polynomial-time solvable on P5-free graphs [1] and sP3-free graphs for every inte-
ger s ≥ 1 [11], and both Feedback Vertex Set and Odd Cycle Transver-
sal are polynomial-time solvable on sP2-free graphs for every s ≥ 1 [4].

Our Results. Our main result is the following almost-complete dichotomy. We
write H ⊆i G, or G ⊇i H to say that H is an induced subgraph of G.

Theorem 2. Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}. Then
Weighted Subset Odd Cycle Transversal on H-free graphs is polynomial-
time solvable if H ⊆i 3P1 + P2, P1 + P3, or P4, and is NP-complete otherwise.

As a consequence, we obtain a dichotomy analogous to Theorem 1.

Corollary 1. The Weighted Subset Odd Cycle Transversal problem on
sP1-free graphs is polynomial-time solvable if s ≤ 4 and is NP-complete if s ≥ 5.

For the hardness part of Theorem 2 it su�ces to show hardness for H = 5P1;
this follows from the same reduction used by Papadopoulos and Tzimas [13] to
prove Theorem 1. The three tractable cases, where H ∈ {P4, P1+P3, 3P1+P2},
are all new. Out of these cases, H = 3P1 + P2 is the most involved. For this
case we use a di�erent technique to that used in [13]. Although we also reduce
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polynomial-time unresolved NP-complete

FVS H ⊆i P5 or
sP3 for s ≥ 1

H ⊇i P1 + P4 none

OCT H = P4 or
H ⊆i sP1 + P3 or

sP2 for s ≥ 1

H = sP1 + P5 for s ≥ 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u ≥ 0, v ≥ 1
with min{s, t, u} ≥ 1 if v = 1, or
H = sP1+tP2+uP3 for s, t ≥ 0,
u ≥ 1 with u ≥ 2 if t = 0

H ⊇i P6 or P2+P5

SFVS,
SOCT

H = P4 or
H ⊆i sP1+P3 for s ≥ 1

H = sP1 + P4 for s ≥ 1 H ⊇i 2P2

WSFVS,
WSOCT

H ⊆i P4, P1 + P3, or
3P1 + P2

H ∈ {2P1+P3, P1+P4, 2P1+P4} H ⊇i 5P1 or 2P2

Table 1. The complexity of Feedback Vertex Set (FVS), Odd Cycle Transver-
sal (OCT), and their subset (S) and weighted subset (WS) variants, when restricted
to H-free graphs for linear forests H. All problems are NP-complete for H-free graphs
when H is not a linear forest. The four blue cases (two for WSFVS, two for WSOCT)
are the algorithmic contributions of this paper; see also Theorems 2 and 3.

to the problem of �nding a minimum weight vertex cut that separates two given
terminals, our technique relies less on explicit distance-based arguments, and
we devise a method for distinguishing cycles according to parity. Our technique
also enables us to extend the result of [13] on Weighted Subset Feedback
Vertex Set from 4P1-free graphs to (3P1+P2)-free graphs, leading to the same
almost-complete dichotomy for Weighted Subset Feedback Vertex Set.

Theorem 3. Let H be a graph with H /∈ {2P1 + P3, P1 + P4, 2P1 + P4}. Then
Weighted Subset Feedback Vertex Set on H-free graphs is polynomial-
time solvable if H ⊆i 3P1 + P2, P1 + P3, or P4, and is NP-complete otherwise.

We refer to Table 1 for an overview of the current knowledge of the problems,
including the results of this paper.

2 Preliminaries

Let G = (V,E) be a graph. If S ⊆ V , then G[S] denotes the subgraph of G
induced by S, and G−S is the graph G[V \S]. The path on r vertices is denoted
Pr. the union operation + creates the disjoint union G1 +G2 having vertex set
V (G1)∪V (G2) and edge set E(G1)∪E(G2). By sG, we denote the disjoint union
of s copies of G. Thus sP1 denotes the graph whose vertices form an independent
set of size s. A (connected) component of G is a maximal connected subgraph of
G. The neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For
U ⊆ V , we let NG(U) =

⋃
u∈U N(u)\U . Let S and T be two disjoint vertex sets

of a graph G. Then S is complete to T if every vertex of S is adjacent to every
vertex of T , and S is anti-complete to T if there are no edges between S and T .
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3 General Framework of the Polynomial Algorithms

We �rst explain our general approach with respect to odd cycle transversals. Af-
terwards we modify our terminology for feedback vertex sets, but we note that
our approach can be easily extended to other kinds of transversals as well. So,
consider an instance (G,T,w) of Weighted Subset Odd Cycle Transver-
sal. A subgraph of G with no odd T -cycles is T -bipartite. Note that a subset
ST ⊆ V is an odd T -cycle transversal if and only if G[V \ ST ] is T -bipartite. A
solution for (G,T,w) is an odd T -cycle transversal ST . From now on, whenever
ST is de�ned, we let BT = V (G)\ST denote the vertex set of the corresponding
T -bipartite graph. If u ∈ BT belongs to at least one odd cycle of G[BT ], then
u is an odd vertex of BT . Otherwise, when u ∈ BT is not in any odd cycle of
G[BT ], we say that u is an even vertex of BT . Note that by de�nition every
vertex in T ∩BT is even. We let O(BT ) and R(BT ) denote the sets of odd and
even vertices of BT (so BT = O(BT ) ∪ R(BT )). A solution ST is neutral if BT

consists of only even vertices; in this case ST is an odd cycle transversal of G.
We say that ST is T -full if BT contains no vertex of T . If ST is neither neutral
nor T -full, then ST is a mixed solution. We can now outline our approach to
�nding minimum weight odd T -cycle transversals:
1. Compute a neutral solution of minimum weight.
2. Compute a T -full solution of minimum weight.
3. Compute a mixed solution of minimum weight.
4. From the three computed solutions, take one of overall minimum weight.

As mentioned, a neutral solution is a minimum-weight odd cycle transversal.
Hence, in Step 1, we will use existing polynomial-time algorithms from the lit-
erature for computing such an odd cycle transversal (these algorithms must be
for the weighted variant). Step 2 is trivial: we can just set ST := T (as w is
non-negative). Hence, most of our attention will go to Step 3. For Step 3, we
analyse the structure of the graphs G[R(BT )] and G[O(BT )] for a mixed solution
ST and how these graphs relate to each other.

ForWeighted Subset Feedback Vertex Set we follow exactly the same
approach, but we use slightly di�erent terminology. A subgraph of a graph G =
(V,E) is a T -forest if it has no T -cycles. Note that a subset ST ⊆ V is a T -
feedback vertex set if and only if G[V \ST ] is a T -forest. We write FT = V \ST

in this case. If u ∈ FT belongs to at least one cycle of G[FT ], then u is a cycle
vertex of FT . Otherwise, if u ∈ FT is not in any cycle of G[FT ], we say that u is
a forest vertex of FT . By de�nition every vertex in T ∩ FT is a forest vertex.

We obtain our results for Weighted Subset Feedback Vertex Set by
a simpli�cation of our algorithms for Weighted Odd Cycle Transversal.
Hence, to explain our approach fully, we will now give a polynomial-time algo-
rithm for Weighted Odd Cycle Transversal for (3P1 + P2)-free graphs.

4 Applying Our Framework on (3P1 + P2)-free Graphs

We let G = (V,E) be a (3P1 + P2)-free graph with a vertex weighting w, and
let T ⊆ V . For Step 1, we need the polynomial-time algorithm of [4] for Odd
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Cycle Transversal on sP2-free graphs (s ≥ 1), and thus on (3P1 + P2)-free
graphs (take s = 4). The algorithm in [4] was for the unweighted case, but it
can be easily adapted for the weighted case.3

Lemma 1. For every integer s ≥ 1, Weighted Odd Cycle Transversal is
polynomial-time solvable for sP2-free graphs.

As Step 2 is trivial, we focus on Step 3. We will reduce to a classical problem,
well known to be polynomial-time solvable by standard network �ow techniques.

Weighted Vertex Cut
Instance: a graph G = (V,E), two distinct non-adjacent terminals t1

and t2, and a non-negative vertex weighting w.
Task: determine a set S ⊆ V \ {t1, t2} of minimum weight such that

t1 and t2 are in di�erent connected components of G− S.

For a mixed solution ST , we let O = O(BT ) and R = R(BT ); recall that O 6= ∅
and R ∩ T 6= ∅. For our reduction to Weighted Vertex Cut, we need some
structural lemmas. We �rst bound the number of components of G[O].

Lemma 2. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , the graph G[O] has at most two connected components.

We now prove that |R| ≤ 8. If G[O] is disconnected, then even |R| ≤ 2, as shown
in Lemma 3. Otherwise we use Lemma 4 and the fact that G[R] is bipartite.

Lemma 3. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , if G[O] is disconnected, then R is a clique with |R| ≤ 2.

Lemma 4. Let G = (V,E) be a (3P1+P2)-free graph and let T ⊆ V . For every
mixed solution ST , every independent set in G[R] has size at most 4.

We say that a vertex in O is a connector if it has a neighbour in R.

Lemma 5. Let G = (V,E) be a (3P1+P2)-free graph, and let T ⊆ V . For every
mixed solution ST , if G[O] has two connected components D1 and D2, then D1

and D2 each have at most one connector.

Proof. By Lemma 3, R is a clique of size at most 2. For contradiction, suppose
that, say, D1 has two distinct connectors v1 and v2. Then v1 and v2 each have
at most one neighbour in R, else the vertices of R would be in an odd cycle in
G[BT ], as R is a clique. Let u1 be the neighbour of v1 in R, and let u2 be the
neighbour of v2 in R; note that u1 = u2 is possible.

An edge on a path P from v1 to v2 in D1 does not belong to an odd cycle in
G[D1]; else there would be a path P ′ from v1 to v2 in G[O] with a di�erent parity
than P and one of the cycles u1v1Pv2u2u1 or u1v1P

′v2u2u1 is odd, implying that
u1 and u2 would not be even.

3 Proofs of Lemmas 1�4 are omitted for space reasons. A full version of this paper can
be found at https://arxiv.org/abs/2007.14514
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By de�nition, v1 and v2 belong to at least one odd cycle, which we denote by
C1 and C2, respectively. Then V (C1)∩ V (C2) = ∅ and there is no edge between
a vertex of C1 and a vertex of C2 except from possibly the edge v1v2; else there
would be a path from v1 to v2 in G[O] with an edge that belongs to an odd
cycle (C1 or C2), a contradiction with what we found above. Note also that u1

has no neighbours in V (C1) other than v1; otherwise G[BT ] would have an odd
cycle containing u1. Moreover, u1 has no neighbours in V (C2) either, except v2
if u1 = u2; otherwise G[BT ] would contain an odd cycle containing u1 and u2.

We now let w1 and x1 be two adjacent vertices of C1 that are not adja-
cent to u1. Let w2 be a vertex of C2 not adjacent to u1. Then, we found that
{u1, w2, w1, x1} induces a 2P1 + P2 (see Figure 2).

We continue by considering D2, the other connected component of G[O]. By
de�nition, D2 has an odd cycle C ′. As |R| ≤ 2 and each vertex of R can have
at most one neighbour on an odd cycle in G[BT ], we �nd that C ′ contains a
vertex v′ not adjacent to any vertex of R, so v′ is not adjacent to u1. As v

′ and
the vertices of {w2, w1, x1} belong to di�erent connected components of G[O],
we �nd that v′ is not adjacent to any vertex of {w2, w1, x1} either. However, now
{u1, v

′, w2, w1, x1} induces a 3P1 + P2 (see also Figure 2), a contradiction. ut

R

O

D1 D2

u1 u2

C2C1 C′v1 v2

w1
x1 w2 v′

Fig. 2. An illustration for the proof of Lemma 5: the white vertices induce a 3P1 +P2.

We need one more structural lemma about connectors, in the case where G[O]
is connected. Let R consist of two adjacent vertices u1 and u2. Let O (with
O ∩ T = ∅) be the disjoint union of two complete graphs K and L, each on an
odd number of vertices that is at least 3, plus a single additional edge, such that:

1. u1 is adjacent to exactly one vertex v1 in K and to no vertex of L;
2. u2 is adjacent to exactly one vertex v2 in L and to no vertex of K; and
3. v1 and v2 are adjacent.

Note that G[BT ] is indeed T -bipartite. We call the corresponding mixed solution
ST a 2-clique solution (see Figure 3).

Lemma 6. Let G = (V,E) be a (3P1+P2)-free graph and let T ⊆ V . For every
mixed solution ST that is not a 2-clique solution, if G[O] is connected, then O has
no two connectors with a neighbour in the same connected component of G[R].
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R

O

u1 u2

v1 v2

K L

Fig. 3. The structure of BT corresponding to a 2-clique solution ST .

Proof. For some p ≥ 1, let F1, . . . , Fp be the set of components of G[R]. For
contradiction, assume O has two distinct connectors v1 and v2, each with a
neighbour in the same Fi, say, F1. Let u1, u2 ∈ V (F1) be these two neighbours,
where u1 = u2 is possible. Let Q be a path from u1 to u2 in F1 (see Figure 4). We
make an important claim: All paths from v1 to v2 in G[O] have the same parity.
The reason is that if there exist paths P and P ′ from v1 to v2 in G[O] that have
di�erent parity, then either the cycle u1v1Pv2u2Qu1 or the cycle u1v1P

′v2u2Qu1

is odd. This would mean that u1 and u2 are not even.

By de�nition, v1 and v2 each belong to at least one odd cycle, which we denote
by C1 and C2, respectively. We choose C1 and C2 such that they have minimum
length. We note that V (C1) ∩ V (C2) = ∅ and that there is no edge between a
vertex of C1 and a vertex of C2 except possibly the edge v1v2; otherwise there
would be paths from v1 to v2 in G[O] that have di�erent parity, a contradiction
with the claim above.

We also note that v1 is the only neighbour of u1 on C1; otherwise u1 would
belong to an odd cycle of G[BT ]. Similarly, v2 is the only neighbour of u2 on
C2. Moreover, u1 has no neighbour on C2 except v2 if u1 = u2, and u2 has
no neighbour on C1 except v1 if u1 = u2. This can be seen as follows. For a
contradiction, �rst suppose that, say, u1 has a neighbour w on C2 and w 6= v2.
As C2 is an odd cycle, there exist two vertex-disjoint paths P and P ′ on C2 from
w to v2 of di�erent parity. Using the edges u1w and u2v2 and the path Q from
u1 to u2, this means that u1 and u2 are on odd cycle of G[BT ]. However, this is
not possible as u1 and u2 are even. Hence, u1 has no neighbour on V (C2)\{v2}.
By the same reasoning, u2 has no neighbour on V (C1) \ {v1}. Now suppose that
u1 is adjacent to v2 and that u1 6= u2. Then u1 is not adjacent to u2, otherwise
the vertices u1, u2 and v2 would form a triangle, and consequently, u1 and u2

would not be even. Recall that V (C1) ∩ V (C2) = ∅ and that there is no edge
between a vertex of C1 and a vertex of C2. Hence, we can now take u1, u2, a
vertex of V (C1) \ {v1}, and two adjacent vertices of V (C2) \ {v2} (which exist
as C2 is a cycle) to �nd an induced 3P1 + P2, a contradiction.

We now claim that C1 and C2 each have exactly three vertices. For contrac-
tion, assume that at least one of them, C1 has length at least 5 and that in C1,
we have that x and y are the two neighbours of v1. As C1 has minimum length,
x and y are not adjacent. Let t1 and t2 be adjacent vertices of C2 distinct from
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v2. Then {u1, x, y, t1, t2} induces a 3P1 + P2 in G, a contradiction. Hence, C1

and C2 are triangles, say with vertices v1, w1, x1 and v2, w2, x2, respectively.
Now suppose G[O] has a path from v1 to v2 on at least three vertices. Let s

be the vertex adjacent to v1 on this path. Then s /∈ {w1, x1, w2, x2} and s is not
adjacent to any vertex of {w1, x1, w2, x2} either; otherwise G[O] contains two
paths from v1 to v2 that are of di�erent parity. As u1 and s are not adjacent
(else u1 belongs to a triangle), we �nd that {s, u1, w2, w1, x1} induces a 3P1+P2,
a contradiction (see also Figure 4). We conclude that as G[O] is connected, v1
and v2 must be adjacent.

F1

O

u1 u2

v1 v2

Q

w1 x1 w2 x2

s

Fig. 4. The white vertices induce a 3P1 + P2.

So far, we found that O contains two vertex-disjoint triangles on vertex sets
{v1, w1, x1} and {v2, w2, x2}, respectively, with v1v2 as the only edge between
them. As v1 is adjacent to v2, we �nd that u1 6= u2; otherwise {u1, v1, v2} would
induce a triangle, which is not possible as u1 ∈ R. Recall that u1 is not adjacent
to any vertex of V (C1) ∪ V (C2) except v1, and similarly, u2 is not adjacent to
any vertex of V (C1) ∪ V (C2) except v2. Then u1 must be adjacent to u2, as
otherwise {u1, u2, w1, w2, x2} would induce a 3P1 + P2.

Let z ∈ O \ (V (C1) ∪ V (C2)). Suppose u1 is adjacent to z. First assume z is
adjacent to w1 or x1, say w1. Then u1zw1x1v1u1 is an odd cycle. Hence, this is
not possible. Now assume z is adjacent to w2 or x2, say w2. Then u1zw2v2u2u1 is
an odd cycle. This is not possible either. Hence, z is not adjacent to any vertex
of {w1, x1, w2, x2}. Moreover, z is not adjacent to u2, as otherwise {u1, u2, z}
induces a triangle in G[BT ]. However, {u2, w2, z, w1, x1} now induces a 3P1+P2.
Hence, u1 is not adjacent to z. In other words, v1 is the only neighbour of u1 on
O. By the same arguments, v2 is the only neighbour of u2 on O.

Let K be a maximal clique of O that contains C1 and let L be a maximal
clique of O that contains C2. Note that K and L are vertex-disjoint, as for
example, w1 ∈ K and w2 ∈ L are not adjacent. We claim that O = K ∪ L. For
contradiction, assume that r is a vertex of O that does not belong to K or L.
As u1 and u2 are adjacent vertices that have no neighbours in O \ {v1, v2}, the
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(3P1 + P2)-freeness of G implies that G[O \ {v1, v2}] is 3P1-free. As K \ {v1}
and L \ {v2} induce the disjoint union of two complete graphs on at least two
vertices, this means that r is adjacent to every vertex of K \ {v1} or to every
vertex of L \ {v2}, say r is adjacent to every vertex of K \ {v1}. Then r has
no neighbour r′ in L \ {v2}, as otherwise the cycle v1u1u2v2r

′rw1v1 is an odd
cycle in G[BT ] that contains u1 (and u2). Moreover, as K is maximal and r is
adjacent to every vertex of K \ {v1}, we �nd that r and v1 are not adjacent.
Recall also that u2 has v2 as its only neighbour in O, hence u2 is not adjacent to
r. This means that {r, v1, u2, w2, x2} induces a 3P1 + P2, which is not possible.
We conclude that O = K ∪ L; consequently, both K and L have odd size.

We now consider the graph F1 in more detail. Suppose F1 contains another
vertex u3 /∈ {u1, u2}. As F1 is connected and bipartite (as V (F1) ⊆ R), we may
assume without loss of generality that u3 is adjacent to u1 but not to u2. If
u3 has a neighbour K, then G[BT ] contains an odd cycle that uses u1, u3 and
one vertex of K (if the neighbour of u3 in K is v1) or three vertices of K (if
the neighbour of u3 in K is not v1). Hence, u3 has no neighbour in K. This
means that {u2, u3, w2, w1, x1} induces a 3P1 + P2, so u3 cannot exist. Hence,
F1 consists only of the two adjacent vertices u1 and u2.

Now suppose that p ≥ 2, that is, F2 is nonempty. Let u′ ∈ V (F2). As u
′ ∈ R,

we �nd that u′ is adjacent to at most one vertex of C1 and to at most one vertex
of C2. Hence, we may without loss of generality assume that u′ is not adjacent
to w1 and w2. Then {u′, w1, w2, u1, u2} induce a 3P1 + P2. We conclude that
R = {u1, u2}. However, now ST is a 2-clique solution of G, a contradiction. ut

An algorithmic lemma, for �nding a 2-clique solution of minimum weight:

Lemma 7. Let G = (V,E) be a (3P1+P2)-free graph with a vertex weighting w,
and let T ⊆ V . It is possible to �nd in polynomial time a 2-clique solution for
(G,w, T ) that has minimum weight.

Proof. As the cliques K and L in BT have size at least 3 for a 2-clique solu-
tion ST , there are distinct vertices x1, y1 in K \ {v1} and distinct vertices x2, y2
in L \ {v2}. The ordered 8-tuple (u1, u2, v1, v2, x1, y1, x2, y2) is a skeleton of the
2-clique solution. We call the labelled subgraph of BT that these vertices induce
a skeleton graph.

In order to �nd a 2-clique solution of minimum weight in polynomial time,
we consider all O(n8) possible ordered 8-tuples (u1, u2, v1, v2, x1, y1, x2, y2) of
vertices of G and further investigate those that induce a skeleton graph. In this
case, we note that if these vertices form the skeleton of a 2-clique solution ST ,
then R(BT ) = {u1, u2} and O(BT ) is a subset of V

′ = {v1, x1, y1}∪{v2, x2, y2}∪
(N(v1)∩N(x1)∩N(y1))∪(N(v2)∩N(x2)∩N(y2)). We further re�ne the de�nition
of V ′ by deleting any vertex that cannot, by de�nition, belong to O(BT ); that
is, we remove every vertex that belongs to T ∪ (N({u1, u2}) \ {v1, v2}) or is a
neighbour of both a vertex in {v1, x1, y1} and a vertex in {v2, x2, y2}. We write
G′ = G[V ′]. Note that u1 and u2 are not in G′ (as they are not adjacent to any
vertex in {x1, x2, y1, y2}), whereas v1, v2, x1, x2, y1, y2 all are in G′.
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We now show that the sets K ′ = {v1, x1, y1} ∪ (N({v1, x1, y1}) ∩ V ′) and
L′ = {v2, x2, y2} ∪ (N({v2, x2, y2}) ∩ V ′) partition V ′, and moreover, that K ′

and L′ are cliques. By de�nition, every vertex of V ′ either belongs to K ′ or to
L′. By construction, K ′ ∩ L′ = ∅ since every vertex in K ′ \ {v1} is a neighbour
of v1 and every vertex in L′ \ {v2} is a neighbour of v2 and no vertex in V ′ is
adjacent to both v1 and v2 which are themselves distinct. For a contradiction,
suppose K ′ is not a clique. Then K ′ contains two non-adjacent vertices t and t′.
As K ′ \ {v1, x1, y1} is complete to the clique {v1, x1, y1}, we �nd that t and t′

both belong to K ′\{v1, x1, y1}. By construction of G′, we �nd that {t, t′} is anti-
complete to {u1, u2, x2}. By the de�nition of a skeleton, {u1, u2} is anti-complete
to {x2}. Then {u1, u2, t, t

′, x2} induces a 3P1 +P2 in G, a contradiction. By the
same arguments, L′ is a clique.

In G′ we �rst delete the edge v1v2. Second, for i ∈ {1, 2} we replace the
vertices vi, xi, yi by a new vertex v∗i that is adjacent precisely to every vertex
that is a neighbour of at least one vertex of {vi, xi, yi} in G′. This transforms
the graph G′ into the graph G∗ = (V ∗, E∗). Note that in G∗ there is no edge
between v∗1 and v∗2 . We give each vertex z ∈ V ∗ \ {v∗1 , v∗2} weight w∗(z) = w(z),
and for i ∈ {1, 2}, we set w∗(v∗i ) = w(vi) + w(xi) + w(yi). See Figure 5.

The algorithm will now solve Weighted Vertex Cut on (G∗, w∗) with
terminals v∗1 and v∗2 ; recall that this can be done in polynomial time by standard
network �ow techniques. Let S∗ be the output. Then G∗ − S∗ has two distinct
connected components on vertex sets K∗ and L∗, respectively, with v∗1 ∈ K∗ and
v∗2 ∈ L∗. We set K = (K∗ \{v∗1})∪{v1, x1, y1} and L = (L∗ \{v∗2})∪{v2, x2, y2}
and note that G′−S∗ contains G[K] and G[L] as distinct connected components.

G′
v1 v2

x1 y1 x2 y2

K′ L′

G∗

v∗1 v∗2

Fig. 5. The graph G′ and G∗ in the proof of Lemma 7.

As K is a subset of the clique K ′ and L is a subset of the clique L′ and V ′ =
K ′ ∪L′, we �nd that G[K] and G[L] are the only two connected components of
G′−S′, and moreover that K and L are cliques. As no vertex of (K∪L)\{v1, v2}
is adjacent to u1 or u2, this means that S = V \ ({u1, u2} ∪K ∪L) is a 2-clique
solution for G. Moreover, as S∗ is an optimal solution of Weighted Vertex
Cut on instance (G∗, w∗) with terminals v∗1 and v∗2 , we �nd that S has minimum
weight over all 2-clique solutions with skeleton (u1, u2, v1, v2, x1, y1, x2, y2).

From all the O(n8) 2-clique solutions computed in this way, we pick one with
minimum weight; we found this 2-clique solution in polynomial time. ut
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The Algorithm. We are now ready to prove the main result of the section.

Theorem 4. Weighted Subset Odd Cycle Transversal is polynomial-
time solvable for (3P1 + P2)-free graphs.

Proof. Let G be a (3P1 + P2)-free graph with a vertex weighting w, and let
T ⊆ V (G). We describe a polynomial-time algorithm for the optimization version
of the problem on input (G,T,w) using the approach of Section 3. So, in Step 1,
we compute a neutral solution of minimum weight, i.e., a minimum weight odd
cycle transversal, using polynomial time due to Lemma 1 (take s = 4). We then
compute, in Step 2, a T -full solution by setting ST = T . It remains to compute
a mixed solution ST of minimum weight (Step 3) and compare its weight with
the two solutions found above (Step 4). By Lemma 2 we can distinguish between
two cases: G[O] is connected or G[O] consists of two connected components.

Case 1. G[O] is connected.
We �rst compute in polynomial time a 2-clique solution of minimum weight by
using Lemma 7. In the remainder of Case 1, we will compute a mixed solution
ST of minimum weight with connected G[O] that is not a 2-clique solution. By
Lemma 4 and the fact that G[R] is bipartite by de�nition, we �nd that |R| ≤ 8.
We consider all O(n8) possibilities for R. We discard a choice for R if G[R] is not
bipartite. If G[R] is bipartite, we compute a solution ST of minimum weight such
that BT contains R. Let F1, . . . , Fp be the components of G[R]. By de�nition,
p ≥ 1. By Lemma 4 p ≤ 4. By Lemma 6, O has at most p ≤ 4 connectors.

We now consider all O(n4) possible choices for a set D of at most four
connectors. For each set D, we �rst check that G[D ∪ R] is T -bipartite and
that there are no two vertices in D with a neighbour in the same Fi; if one of
these conditions is not satis�ed, we discard our choice of D. If both conditions
are satis�ed we put the vertices of D in O, together with any vertex that is not in
T and that is not adjacent to any vertex of R. Then, as G[D ∪R] is T -bipartite
and no two vertices in D are adjacent to the same component Fi, the graph
G[R∪O] is T -bipartite. We remember the weight of ST = V \ (R∪O). In doing
the above, we may have computed a set O that is disconnected or that contains
even vertices. So we might compute some solutions more than once. However, we
can compute each solution in polynomial time, and the total number of solutions
we compute in Case 1 is O(n8) · O(n4) = O(n12), which is polynomial as well.
Out of all the 2-clique solutions and other mixed solutions we found, we pick a
solution ST = VT \ (R ∪O) with minimum weight as the output for Case 1.

Case 2. G[O] consists of two connected components D1 and D2.
By Lemma 3, R is a clique of size at most 2. We consider all possible O(n2)
options for R. Each time R is a clique, we proceed as follows. By Lemma 5,
both D1 and D2 have at most one connector. We consider all O(n2) ways of
choosing at most one connector from each of them. If we choose two, they must
be non-adjacent. We discard the choice if the subgraph of G induced by R and
the chosen connector(s) is not T -bipartite. Otherwise we continue. If we chose at
most one connector v, we let O consist of v and all vertices that do not belong
to T and that do not have a neighbour in R. Then G[R ∪ O] is T -bipartite
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and we store ST = V \ (R ∪ O). Note that O might not induce two connected
components consisting of odd vertices, so we may duplicate some work. However,
R∪O induces a T -bipartite graph and we found O in polynomial time, and this
is what is relevant (together with the fact that we only use polynomial time).

When the algorithm chooses two (non-adjacent) connectors v and v′ we do
as follows. We remove any vertex from T and any neighbour of R other than v
and v′. Let (G′, w′) be the resulting weighted graph (w′ is the restriction of w to
V (G′)). We solve Weighted Vertex Cut in polynomial time on G′, w′ with
v and v′ as terminals. Let S be the output. We let O = V (G′)− S. Then G[O]
has two connected components (as G[R∪{v, v′}] is T -bipartite, this implies that
G[R ∪ O] is T -bipartite) but G[O] might contain even vertices. However, what
is relevant is that G[R ∪ O] is T -bipartite, and that we found O in polynomial
time. We remember the solution ST = V \ (R ∪ O). In the end we remember
from all the solutions we computed one with minimum weight as the output for
Case 2. The number of solutions is O(n2) · O(n2) = O(n4) and we found each
solution in polynomial time so processing Case 2 takes polynomial time.

Correctness of our algorithm follows from the correctness of Cases 1 and 2, which
describe all possible mixed solutions due to Lemma 2. As processing Cases 1
and 2 takes polynomial time, we compute a mixed solution of minimum weight
in polynomial time. Computing a non-mixed solution of minimum weight takes
polynomial time as deduced already. Hence, the running time is polynomial. ut

The Proof of Theorems 2 and Theorem 3
We omit the proofs that Weighted Subset Odd Cycle Transversal is
polynomial-time solvable for P4-free graphs and (P1+P3)-free graphs. The reduc-
tion in [13] forWeighted Subset Feedback Vertex Set for 5P1-free graphs
yields NP-completeness for 5P1-free graphs. Theorem 2 follows from Theorem 4,
the above results and the result of [4] that even Odd Cycle Transversal is
NP-complete on H-free graphs if H has a cycle or a claw.

We omit the proofs thatWeighted Feedback Vertex Set is polynomial-
time solvable for sP2-free graphs for every s ≥ 1, (3P1+P2)-free graphs and (P1+
P3)-free graphs. The problem is polynomial-time solvable for P4-free graphs [2].
Theorem 3 now follows from the above results and the results that Feedback
Vertex Set is NP-complete onH-free graphs ifH has a cycle [14] or a claw [10].

5 Conclusions

We determined the complexity ofWeighted Subset Odd Cycle Transver-
sal and Weighted Subset Feedback Vertex Set on H-free graphs except
when H ∈ {2P1+P3, P1+P4, 2P1+P4}. We believe that the case H = 2P1+P3

is polynomial-time solvable for both problems using our methodology and our al-
gorithms for H = P1+P3 as a subroutine. The other two cases are open even for
Odd Cycle Transversal and Feedback Vertex Set. For these cases we
�rst need to be able to determine the complexity of �nding a maximum induced
disjoint union of stars in a (P1 + P4)-free graph. We refer to Table 1 for other
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unresolved cases in our framework and note again that our results demonstrate
that the classi�cations of Weighed Subset Odd Cycle Transversal and
Subset Odd Cycle Transversal do not coincide for H-free graphs.
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