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Abstract—One significant challenge in Non-Intrusive Load
Monitoring (NILM) is to identify and classify active appliances
used in a building. This research focuses on the classifying
process, exploring different approaches for the feature extraction
of the appliances’ power load to improve the classification
accuracy. In this paper, we present a new method - Spectral
Entropy and Instantaneous Frequency-based Bidirectional Long
Short Term Memory (SE-IF BiLSTM). It uses feature extraction
from the power load to obtain information, such as instant
frequency, spectral entropy, spectrogram, Mel spectrogram and
signal variation, to feed BiLSTM Neural Network. We also test
different options for the BiLSTM to decide the most optimal
settings. This method improves the classification performance,
achieving up to 98.57% classification accuracy.

Index Terms—BILSTM, Appliance Classification, NILM

I. INTRODUCTION

Carbon emission reduction and energy conservation are
essential topics that usually go together nowadays. In recent
years, the number of appliances used in homes and buildings
has increased, and it is expected to keep increasing along
with the power consumption, bringing with it the need of a
proper way to optimise energy usage. According to [1], active
energy data feedback to users can achieve up to 20% in energy
savings. But to achieve these savings in both carbon emissions
reduction and energy conservation, a way to analyse the energy
consumption of the users is needed.

Non-Intrusive Load Monitoring (NILM) is a disaggregation
process that analyses the power consumption of the appliances.
It monitors which appliance(s) are being used over a period of
time by analysing aggregated power without using any external
hardware. This method allows users to see how much energy
has been consumed by said appliances and creates a series of
opportunities, such as reducing energy consumption, survey
appliance usage behaviour or identifying faulty appliances
[2]. There are various approaches for enabling appliance
classification, such as Neural Network, Deep Learning, and
Long Short-Term Memory [3], [4].

Atrtificial Neural Networks (ANN) such as Recurrent Neural
Networks (RNN) is one of the main methods in the field
of disaggregation because they can learn the pattern and
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Fig. 1. Network Structure of the SE-IF BiLSTM where ¢ stands for Timestep

behaviour of appliances in order to identify them in the
aggregated power data [3]-[5]. Long-term dependency due to
vanishing gradient is one of the problems of RNNs, where
gradient information disappears or explodes as it is propagated
back through time and can limit the RNN’s memory. This
happens because the greater the number of steps the network
takes, the more previous information it will not retain and take
into consideration. When analysing long sequences of data
such as power consumption in a period of time, this issue is
bound to rise [3].

Long short-term memory (LSTM) method aims to tackle
this issue, helping the error gradient to flow back in time
utilising a gated input, output and feedback loop within a
memory cell. This way, the error is retained and carried
through time steps for a much longer time, compared to typical
RNNs. A wide variety of sequence tasks, including automatic
speech recognition and machine translation, have used LSTMs
with success [6].

In [3], a LSTM neural network was used to classify similar
energy consumption appliances by emphasising the signal vari-
ation. A LSTM neural network in [4] used the spectrograms
for appliance classification. In [7], LSTMs were tested against
other methods such as decision trees and deep neural networks,
by classifying general appliances in a household.

Bidirectional layers can improve the RNN’s performance.
Bidirectional RNNs have two parallel RNNs, one that reads
the input sequence forwards and another one that reads it
backwards, as seen in Figure 1. After that, the output from both
forwards and backwards portions are combined by concatena-



tion or a sum [2]. It was reported that the deep learning-based
models outperform conventional Auto Regressive Integrated
Moving Average (ARIMA)-based models in forecasting time
series and in particular for the long-term prediction problems
[8] and it’s also proven that BILSTMs are more effective than
LSTMs [9].

Despite BiLSTMs being proven more effective than LSTMs,
they have not been widely used or tested for energy disag-
gregation purposes. Moreover, some other features of energy
consumption data, such as spectral entropy, have been rarely
examined and explored in the literature. It was believed these
features also carry important information, e.g., [10], [11] used
them for fault detection and diagnosis, and [12] used them for
speech recognition.

Compared with existing research, the main contributions of
this paper are as follows:

o A new method SE-IF BiLSTM is proposed to perform
appliance classification. This method consists of a Bidi-
rectional Long Short-Term Memory (BiLSTM) Neural
Network and extraction of features including spectro-
gram frequency bands, Mel spectrogram, instantaneous
frequency, spectral entropy and signal variation as inputs.

o Spectral entropy and instantaneous frequency are used for
feature extraction of energy consumption data, and their
effects for appliance classification are analysed.

o The new method SE-IF BiLSTM is proved to be very
effective for classifying non-similar appliances and mixed
appliances and can achieve up to 98.57% of accuracy in
appliance classification in a common household environ-
ment.

II. METHODOLOGY

In this section, we propose the following features to be
extracted and used as input to feed a BILSTM. These features
achieve better classification results.

A. BILSTM

The bidirectional LSTMs (BiLSTM) are an extension of the
described LSTM models in which two LSTMs are applied to
the input data. In the first round, an LSTM is applied on the
input sequence (i.e., forward layer). In the second round, the
reverse form of the input sequence is fed into the LSTM model
(i.e., backward layer). Applying the LSTM twice leads to
improved learning long-term dependencies and thus improved
the accuracy of the model [9].

B. Mel Spectrogram

A spectrogram is a two-dimensional representation of the
magnitude of a signal at various frequencies over time that
shows the signal power at each frequency at a particular time
as well as how it varies over time. This makes spectrogram an
extremely useful tool for the frequency analysis of time-series
data [4].

The Mel spectrograms use the Mel-frequency scale, a linear
frequency interval of 1000 Hz or less and a log interval of
1000Hz or higher [13]. On Mel-frequency scale, spectrum
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Fig. 2. Single-sided amplitude spectrums comparison of similar power
consumption appliances and non-similar power consumption appliances from
the UK DALE dataset [2].

is transformed into Mel-spectrum through Mel-filter banks
of triangular overlapping windows. The Mel-filter bank is a
critical band with various bandwidth on normal frequency
scale and emphasizes information in the low frequency range
by placing a large number of filters in low frequency bands
than these of high frequency bands.

It uses the Fourier transform to decompose the signal into its
individual frequencies and the frequency’s amplitude. Figure
2 shows a graph comparing the amplitude spectrums of a
dishwasher and a battery charger. This feature contains useful
information about the appliance and its behaviour to help
classify it, such as the dominant frequencies.

C. Instantaneous Frequency

The instantaneous frequency is a useful characteristic for
describing non-stationary signals. It is defined as:

1d
Finst(t) = %d*f (1)

where ¢ is the phase of the analytic signal of the input. It
estimates the time-dependent frequency of a signal as the first
moment of the power spectrogram [14].

D. Spectral Entropy

The spectral entropy (SE) of a signal is a measure of its
spectral power distribution and it is based on the Shannon
entropy [11]. The SE uses the signal’s normalised power dis-
tribution in the frequency domain as a probability distribution,
and then uses it to calculate its Shannon Entropy. For a signal
x(n), the power spectrum is S(m) = |X(m)| 2, where X(m)
is the discrete Fourier transform of x(n). To compute the
instantaneous Spectral Entropy given a time-frequency power
spectrogram S(t,f), the probability distribution at time 7 is:

S(t,m)

Plbm) = 50, 1)

2)



TABLE I
SE-IF BILSTM OPTIONS

Control parameter Method

Input Spectrogram bands, mel spectrogram,

instantaneous frequency,
spectral entropy, Ap

Samples 500

Num. of epochs 1000

Mini batch size 32

Cost function Cross Entropy

Optimization Adam

Pre-processing Z-Score

Weight initialization He initialisation

Regularization Dropout

Activation function Softmax

Then the Spectral Entropy at time ¢ can be given by:

H(t) =~ P(t,m)log, P(t,m) 3)

m=1

where N is the total frequency points.

E. Signal variation

This feature separates the original signal, which is low
sample rate data (power consumption), using a reflection rate
and subtracts one variant power signal (with a reflection rate of
0.1) from the other variant power signal (with a reflection rate
of 0.01). This difference is denoted as Ap , which represents
variation of the original signal. Its purpose is to emphasise
the variation of multi-state and similar consumption appliances

[3].

FE. Neural Network Structure

Input Signal. The input is a selection of appliances from
House 1 and House 2 from the UK DALE dataset [2]. The
different testing groups consisted of Similar Appliances, Non
Similar Appliances and Mixed Appliances.

Pre-processing Method. The closest the input data is to
Gaussian distribution, the better the performance the model
will have [3]. Z-Score is one of the most common normal-
isation methods. It uses the mean and standard deviation to
normalise the input data, so it is a measure of how many
standard deviations below or above the population mean a raw
score is [15].

Weight Initialisation. It sets up the weights vector for all
neurons of the Neural Network for the first time, just before
the Neural Network training process starts. If the weights
are not properly initialised, the forward pass can lead to the
vanishing gradient. A common method used for weight initial-
isation is the He initialisation. In this method, the weights are
initialised according to the size of the previous layer, helping
to attain a global minimum of the cost function faster and
more efficiently. While still being random, they have different
ranges depending on the size of the previous layer, providing
a controlled initialisation.

Activation Function. The activation function of a node
defines the output of that node given an input or set of

inputs [16]. The output unit activation function is the softmax
equation, which is established as follows:

exp(z;)
> exp(x;)
where x is the net input vector. The formula computes the
exponential of the input parameter and the sum of exponential
parameters of all existing values in the inputs. The output for
the Softmax function is the ratio of the exponential of the
parameter and the sum of exponential parameter.

Optimiser. Optimisers are used to change the attributes of
the neural network such as weights and learning rate in order
to reduce the losses. Adam optimiser is the one used in this
Neural Network. It’s been widely used due to its simple imple-
mentation, efficiency, little memory requirement, consistency
when diagonally re-scaling the gradients and works well for
problems with large data [17].

More details of the SE-IF BiLSTM can be found in Table

Softmax(z;) = 4)

III. PERFORMANCE ANALYSIS METRICS

In this section, we explain the performance metrics used for
evaluation: accuracy, recall, precision and F1 score. We also
present K-Fold as the validation method used.

A. Performance Metrics

Used metrics for evaluation:

A TP+TN
ccuracy =
Recall TP
ecall = ———
TP+ FN’
5)
Precisio TP
recision = ———
TP+ FP’
F1 Score — 2 & Precision * Recall

(Precision + Recall)

where TP is True Positives for correctly predicted events, FP
is False Positives for incorrectly predicted events, TN is True
Negatives for correctly predicted non-events and FN is False
Negatives for incorrectly predicted non-events. Recall is a ratio
of the number of correct classifications to the total number of
actual positive instances. Precision is a ratio of the number of
correct classifications to the total number of predicted positive
instances. Accuracy is a ratio of correct classification to the
total test data. F1-Score is the harmonic average of Recall and
Precision.

In these experiments, the following criteria are used: True
Positives are when the network predicted a specific appliance
(a monitor, for example) and it was that appliance. True
Negatives are when the network didn’t predict a monitor and
it wasn’t a monitor. False Positives are when the network
predicted a monitor but it was another appliance. Finally, False
Negatives are when the network predicted another appliance
but it was a monitor.



TABLE II
TRAINING RESULTS COMPARISON

Category Accuracy Recall Precision  F1 Score
SE-IF BiLSTM 96.25% 96.78%  96.25% 96.29%
Similar Apps Delta Power [3] 97.14% 97.14%  97.40% 97.14%
Spectrogram Only [4] | 84.71% 84.71%  84.17% 84.35%
SE-IF BiLSTM 98.57% 98.57%  98.70% 98.57%
Non-Similar Apps  Delta Power [3] 57.14% 61.17%  57.14% 56.09%
Spectrogram Only [4] | 97.14% 97.40%  97.14% 97.05%
SE-IF BiLSTM 90% 90.46%  90% 89.97%
Mixed Apps Delta Power [3] 48.82% 58.55%  48.82% 48.51%
Spectrogram Only [4] | 85.88% 87.59%  85.88% 83.80%

B. Validation Method

K-Fold Cross-validation is a re-sampling procedure used to
evaluate machine learning trained models on a limited data
sample. This method uses one variable K that refers to the
number of groups that a given data sample is to be split into.

The general procedure is as follows: Shuffle the dataset
randomly and then split the dataset into K groups. For each
unique group: Take the group as a hold out or testing data set,
take the remaining groups as a training data set, fit a model
on the training set and evaluate it on the test set and retain the
evaluation score and discard the model. Finally, get the mean
of K number of evaluation scores.

Each observation in the data sample is assigned to an
individual group and stays in that group for the duration of
the procedure. Each sample being used in the testing set one
time and on the training set X — 1 times [18].

IV. SIMULATIONS
A. Dataset Description

UK DALE is one of the very first UK based dataset
published for energy disaggregation research. It contains both
mains (aggregated power reading) and individual appliance
power reading data for 5 houses. UK DALE dataset has several
releases dated in which data are collected from 2012 to 2017.
The power reading is collected at every 6 seconds (1/6 Hz),
and some houses are also provided with a 16kHz voltage and
current reading [2].

B. Neural Network Performance

Regarding this single-label multi-class classification task,
a comparison among the SE-IF BiLSTM method and the
methods proposed in [3] and [4] is shown in Table II.

Data preparation. Since the majority of the appliances
are used for a very short time in the raw data, periods
of approximately 45 minutes were made by placing several
shorter periods of time in succession.

Benchmark methods. It has been difficult to correctly iden-
tify appliances in the past when their energy consumption
is similar. The methods proposed in [3] and [4] were tested
separately.

Experimental setup. Various appliances from the UK DALE
dataset were used in these experiments. Appliances with
similar consumption and non-similar energy consumption were
chosen, because, by the nature of classification, the more

similar the appliances are, the more difficult they are to
distinguish. Among them, there are appliances with different
behaviours and specific signatures, such as dishwashers and
washing machines. There are, likewise, devices with similar
spectrums and consumption, such as the various lamps inside
a house, routers, modems and alarms.
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Fig. 3. Comparison of the accuracy, precision, recall and F1 Score results
among LSTM and BiLSTM networks, using the features from the SE-IF
BiLSTM method. 1: Non-similar appliances using BiLSTM, 2: Non-similar
appliances using LSTM, 3: Similar appliances using BiLSTM, 4: Similar
appliances using LSTM.
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Fig. 4. Comparison of accuracy when testing different combinations of epochs
and mini batch size using the SE-IF BiLSTM method

Experiment 1. The first experiment compared the use of
the BILSTM neural network against the single LSTM neural
network method to verify its effectiveness. It was tested using
similar energy consumption appliances and non-similar energy
consumption appliances separately. Figure 3 shows the results,



proving that the BiLSTM neural network is better suited for
this problem than the single-layer LSTM neural network.

Experiment 2. This experiment compared different network
options for epoch number and mini-batch size (mbs) to define
the optimal ones for the SE-IF method, using the accuracy
metric. Figure 4 shows the most relevant tests. The first test
uses 100 epochs, the second test uses 1000 epochs and the
third test uses 1500 epochs, all of them with mbs of 8, 16,
32, 64 and 128. It is observed that the largest the mbs is, the
accuracy decreases, and that the largest the number of epochs,
the accuracy increases. After these tests, it was determined
that the best mini-batch size is 32 when the epochs are set
to 1000. While the mini-batch size of 32 is not the best for
every epoch configuration, it is the most accurate combination
of epoch and mbs among all the tests. Therefore the SE-IF
BiLSTM method uses 1000 epochs and a mini-batch size of
32 as training options.

Experiment 3. The third experiment used a selection of
different appliances that have similar energy consumption. The
method from [3] focused on identifying similar appliances so
the most accurate results were achieved during this experiment
by using this method, closely followed by the SE-IF BiLSTM
method proposed in this paper achieving acceptable results.
Results are shown in Table II.

Experiment 4. The fourth experiment used a selection of dif-
ferent appliances that don’t have similar energy consumption.
The SE-IF BiLSTM method achieved the best results out of
the three methods tested, with the method from [3] dropping
considerably in the performance metrics and method from [4]
achieving similar results as the SE-IF BiLSTM method.

Experiment 5. The fifth experiment used all appliances used
in the previous experiments at the same time, similar and
non-similar. The SE-IF BiLSTM method achieved the best
results out of the three methods tested, with method from [3]
performing very low in the performance metrics and method
from [4] achieving similar results as the SE-IF BiLSTM
method.

Results analysis. Figure 3 shows that using BiLSTM
achieves better results when compared to a single-layer LSTM.
Figure 4 shows the best options for the BiLSTM network,
being 1000 epochs and a mini-batch size of 32. Table II shows
the comparison between the SE-IF method and the methods
used in [3] and [4], where accuracy, recall, precision and F1-
score were the main metrics used for comparison. Although
the most accurate results were not achieved by the SE-IF
method in the category of appliances with similar energy
consumption, they were achieved in the other two categories
(non-similar appliances and mixed appliances). The chosen
features to evaluate in this method adjust to different situations,
allowing it to be both a balanced and consistent method.

V. CONCLUSIONS

This paper presents an appliance classification method, i.e.,
SE-IF BiLSTM, for exploring appliances’ features such as
spectrograms, instantaneous frequency, spectral entropy and
signal variation. This method has potential to be used for

building or home energy consumption analysis, helping reduce
the carbon emissions.

The SE-IF BiLSTM method proposed in this paper was
tested against other existing methods shown in the literature,
performing the best when analysing the non-similar appliances
and mixed appliances categories, achieving 98.57% and 90%
accuracy respectively. It was also very accurate when testing
similar appliances, achieving 96.25% accuracy.

In future work, we will implement the use of aggregated
data for the SE-IF BiLSTM to use on houses and/or buildings
for appliance classification purposes.
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