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Abstract— One of the pillars in developing smart power systems 

is the use of load forecasting methods. In particular load 

forecasting accommodates decision making pertained to the 

operation of power market. In this paper, a new method for 

real-time updating very short-term load forecasting is proposed. 

The goal of the method is to accurately predict the load demand 

value in the next 5 minutes and accordingly update the daily 

forecast. To that end, the proposed method implements an 

ensemble of homogeneous learning Gaussian processes which 

are trained on slightly different training datasets. The predicted 

values are then fused using a fuzzy inference system in order to 

obtain a single value which is used to correct the precomputed 

forecast. The proposed method is tested on a set of real-world 

data taken from a major US area and is benchmarked against 

the naïve forecasting method. Results highlight the superiority 

of our method against the benchmarked method exhibiting an 

increase in forecasted accuracy by 50% in most cases. 

Index Terms—Load forecasting, forecast update, Gaussian 

process, fuzzy inference, smart power. 

I. INTRODUCTION 

Advances in machine learning and computing technologies 
over the last two decades have made possible the 
modernization of power infrastructure. In a more visionary 
approach, the power grid is a fully intelligent and autonomous 
mega system that makes decisions over its operational needs 
[1]. This vision is known as the vision of smart power 
systems, in which information flows both ways: from 
generation centers to consumers and vice versa [2]. 

One of the pillars in building smart power systems is load 
forecasting [3]. The utilization and storage of information 
available in the power system allows intelligent tools to 
perform data driven load forecasting. In particular, machine 
learning tools may learn observed load demand values and 
then make predictions over the future demand. In a pure data 
driven forecasting the tools utilize only data patterns and do 
not take into consideration any predetermined model. The 
advantage of the data driven forecasting is its flexibility, 
scalability and ease of implementation, while it can be updated 
at low computational cost [4]. 

There are several types of load forecasting with respect to 
forecasting horizon. In particular, very short-term load 
forecasting (VSTLF) refers to forecasts from a few minutes up 
to a few hours, short term (STLF) from a few hours up to a 
week, medium term (MTLF) covers a week up to a year while 
long term (LTLF) refers to horizons longer than a year [5]. 
Smart power systems may utilize all the above types of 
forecasting but fundamental to its implementation are the 
STLF and VSTLF, both used for operational and market-
based decisions [4]. 

Electricity load forecasting has been a topic of interest in 
the research community for long time. Several methods have 
been proposed using a variety tools and approaches, with the 
vast majority of them based upon data-driven tools taken from 
the statistics and the machine learning domains [5] either for 
VSTL [6-11] or STLF [12-16]. However, there is a limited 
number of works on combining those two types of load 
forecasting and none of them take into consideration the 
updates of forecasts in the context of smart power systems and 
price directed markets. 

In this work a new method for updating load forecasts is 
proposed. The method utilizes a set of learning Gaussian 
processes (GPs) [17] that are trained on different datasets. The 
training sets consist of the most recent observed load demand 
values and are utilized for forecasting of the next ones. The 
individual GP forecasts are subsequently fused to obtain a 
single value that is subsequently used to correct the daily 
forecast for that hour. Notably, the forecasts fusion is 
conducted by a simple fuzzy logic inference system [18]. The 
underlying idea of the proposed method is the the use of 
several data driven GPs as the mean to capturing of the most 
recent load dynamics via data assimilation. Therefore, the 
contribution of the paper lies in the following: 

- A novel data driven Fuzzy-GP load update method, 

- The application of the method for first time in the 
updating of 5 min ahead load forecasts. 

The rest of the paper is organized as follows. Section II 
briefly describes the basics of learning GP, while section III 



 

presents the load update method. Further, section IV provides 
and discusses the results obtained on a set of real-world 
datasets. Lastly, section V concludes the paper and highlights 
its findings. 

II. LEARNING GAUSSIAN PROCESSES 

One of the preeminent classes of tools in the area of 
machine learning is the class of kernel machines. As kernel 
machines are identified those models that may be expressed as 
a function of a kernel. A kernel is any valid analytical function 
that is comprised of a basis function f(x) and takes the 
following form: 

1 2 1 2( , ) ( ) ( )T T
k x x f x f x=                       (1) 

which is also known as the kernel trick [17].  

A Gaussian process is any set of random variables that 
share a joint probability distribution that takes a Gaussian 
form. More particularly a GP is expressed as: 

~ ( ( ), ( ', ))G P N m x C x x                       (2) 

where m(x) is the mean function and C(x’,x) is the covariance 
function of the process. 

In order to derive the learning GP framework the 
following two choices are made: i) the mean function is taken 
to be equal to 0 (convenient choice), and ii) the covariance 
function is set equal to a kernel function [17], i.e., C(x’,x) = 
k(x’,x). Notably, the selection of the form of the kernel 
function determines the output of the GP, a property that is 
useful to several applications.  

GP are considered as a learning method given that they 
require to under training process. By representing the 
population of training datapoints as N, which is comprised of 
N pairs of (x,t) (known outputs t for known inputs x), then a 
new input is taken as xN+1 and its (unknown) target as tN+1. In 
this GP framework, the joint distribution between the N 
training datasets and the input xN+1 takes a Gaussian form. 
Based on the above assumptions, the GP framework provides 
a predictive distribution of Gaussian form [20]: 

1

1( ) T

N N Nm −

+
=x k C t                              (3) 

2 1

1( ) T

N Nkσ −

+
= −x k C k                        (4) 

where the mean and variance are a function of the kernel k. In 
Eq. (3) and (4),  CN is covariance of the training dataset, k is a 
vector of covariance values of the the input xN+1 and training 
data, and k is the kernel output of k(xN+1, xN+1). 

III. LOAD UPDATE METHOD 

In this section the proposed load forecast updating method 
is presented. The goal of the method is to create an intelligent 
ensemble of GPs that have been trained on different training 
sets. The underlying idea is that through training of multiple 
GPs the system will be able to capture the most recent load 
dynamics, and subsequently provide more accurate very short-
term forecasts by updating the current ones. The block 
diagram of the proposed method is depicted in Fig. 1 where all 
steps are provided. 
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Figure 1.  Update Load forecasts method. 

 

Initially, a group of 5 datasets is defined where each 
dataset encompasses a different number of recent 
measurements. Getting into details, the first dataset is 
comprised of the most recent measurement (t-1 in Fig. 1), the 
second datasets of the 2 most recent, the third dataset from the 
3 most recent, the fourth from the 4 most recent and the fifth 
from the 5 most recent measurements respectively. Therefore, 
we created a diverse group of datasets of different length 
expecting that we possibly capture the latest load dynamics. 
The different lengths are selected because we are not aware 
the exact point when the dynamics may initiate. 

In the next step, five GP models are adopted where all of 
them are equipped with a Gaussian kernel function whose 
analytical form is given below: 
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where there are two hyperparameters θ1, θ2 with θ1 taken equal 
to 3/and the other one is determined in the training process. 
Each of the GP models is exposed to a single dataset in order 
to train its hyperparameter and then use it for obtaining the 
predictive distribution from Eq. (3) and (4).  

Once the models are exposed to datasets and trained, then 
they are utilized for making next term prediction and more 
particularly of the next 5 min forecast. Hence, a set of 5 
forecasts are obtained and forwarded to a fuzzy inference 
system (FIS). In addition to the GP forecasts, the FIS also 
utilizes the daily forecasts that are usually obtained the 
previous day. The aim of the FIS is to merge the individual 
forecasts with the previous forecasts and update the load 
forecasts. The underlying idea is that by capturing the recent 
dynamics we may be able to correct the error introduced by 
the day ahead forecasting. For this reason, the FIS weights the 
GP accordingly and fuses them with the daily forecast to 
provide a new updated forecast. The block diagram showing 
the steps of the of FIS forecast fusion operation is depicted in 
Fig. 2. 
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Figure 2.  Block diagram of fuzzy inference system process. 

 

As we observe in Fig. 2, initially we compute the mean 
value of the five GP forecasts denoted as M. Then, the 
differences between the mean and each of the GP models are 
found as given below: 

Di = | GPi – M |,     i=1,..,5                         (6) 

where GPi denotes the forecast of ith GP model. In the next 
step, the computed differences are fuzzified using the input 
sets that are depicted in Fig. 3. The input fuzzy sets span the 
range of [0 20] MW where we implicitly take into 
consideration the forecasts that are +/- 20 MW from the mean 
value. This range is adopted empirically [21-22] and is a way 
to detect and reject the outliers: forecasts outside of this range 
are not taken into consideration for the load update. The fuzzy 
sets (i.e., input sets) used for fuzzifying the differences in Eq. 
(6) are presented in Fig. 4. 

Once the difference values are fuzzified, then they are 
forwarded to the rule inference module that is implemented as 
a set of fuzzy rules with the aid of a group of fuzzy output 
sets. The output sets, which are given in Fig. 5, span the range 
[0 1] that is used to evaluate a group of weight parameters. 
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Figure 3.  Input fuzzy sets for fuzzifying the variable Di in Eq. (6). 
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Figure 4.  Output fuzzy sets for wieght values. 

 

Both input and output fuzzy sets are put together to form a 
group of IF/THEN rules that consist the core of the FIS. The 
rules defined in this work are given below: 

- If DIFFERENCE is LOW, Then WEIGHT is 
LARGE, 

- If DIFFERENCE is MEDIUM, Then WEIGHT is 
FAIR, 

- If DIFFERENCE is HIGH, Then WIEGHT is 
SMALL, 

where we observe that there are three rules that connect the 
difference with the weight variable. The above rules are used 
to evaluate the weight values. In our work, we assign a single 
weight to each GP forecast and as a result the number of 
weight parameters is equal to 5 – matches the number of GP 
models-. The underlying idea is that the smaller the difference 
is, the higher the weight we assign to the respective GP model. 
Following that evaluation strategy we subsidize those 
forecasts that are closer to their mean in the hope that the 
mean is very close to the actual demand. At this point, it 
should be stated that the output of the fuzzy rules is a fuzzy set 
that undergoes defuzzification in order to obtain a single value 
as the final output of FIS. The defuzzification method adopted 
in this work is the centroid as defined below [18]: 



 

                              (7) 

where being the elements of the fuzzy set, and  denotes 
the element population in the fuzzy set. 

Once the weights are evaluated then they are put together 
to get a new weighted average: 

Wa =  [w1GP1 + w2GP2 + w3GP3+ w4GP4+ w5GP5] / 5    (8) 

where the weights wi are taken as the output of Eq. (7). In the 
last step the weighted average is further fused with the initial 
load forecast by utilizing the following formula: 

U(t) = ( Wa(t) + Load(t) ) / 2                               (9) 

where U(t), Wa and Load are the updated load, weighted 
average and the initial load forecast at time t. To make it 
clearer, Eq. (9) is the average value of the weighted average 
and the initial load.  

Overall, it is the value U(t) that is taken as the updated 
load forecast, and replaces the initial Load(t) value. 

IV. RESULTS 

A. Test Setup 

The proposed method is tested on a set of real-world data 
taken from the hub of Connecticut New England ISO [23]. 
The data are in the form of 5 min load demand and measured 
in MW units. In this work, we have selected data taken from 
the year 2019 and contains the 5 min demand of a whole week 
in February, i.e., specifically the week of Feb 2-8, and the 
special days (holidays in US) of New Year Day and Martin 
Luther King day. 

The daily forecast method that is obtained is the naïve 
approach, where the real values of the previous day are used 
as the forecasts of the next. The results are recorded in terms 
of the mean average percentage error (MAPE) per day [22] for 
both the naïve forecasting approach and our method. 

B. Test Results  

In this section, we record and presents the results obtained 
by applying our method and the naïve forecaster to the test 
datasets. 

The results obtained for the week February 2-8, 2019 are 
presented in Fig. 5. There, we provide the MAPE taken with 
the naïve forecaster and the respective MAPE taken by 
applying the proposed forecast updating method. In addition, 
the Fig. shows the improvement in terms of percentage in 
forecasting attained by applying the GP-fuzzy load update. 
We observe that the presented method succeeds in improving 
the load forecasts as shown for all the seven tested days.  

In particular, the improvement for all days except for 
February 6 is about 50%, while for February 5 is about 10%. 
The average improvement in load forecasting for the tested 
days is equal to 2.7%. The obtained results confirm our 
hypothesis that the data driven part of the method that uses GP 
is able to capture the load dynamics and significantly improve 
the load forecasts in very short term horizons.  

For visualization purposes, we provide the updated 
forecasted load against the actual load demand in Fig. 6-8 for 
the days of February 2, 4 and 8. The plotted curves exhibit the 
ability of the method to capture the trend of the real demand 
curve. 
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Figure 5.  Output MAPE results for the week of February 2-8, 2019. 

 

Figure 6.  Updated forecasts against actual demand for February 2, 2019. 

 

Figure 7.  Updated forecasts against actual demand for February 4, 2019. 
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Figure 8.  Updated forecasts against actual demand for February 8, 2019. 

 

Additionally, we test our method on a set of special days. 
The recorded results for the tw special days are given in Fig. 
9, while we visualize the forecasts taken from the presented 
method against the actual demand in Fig. 10-11.  
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Figure 9.  Output MAPE results for the tested special days. 

 

Figure 10.  Updated forecasts against actual demand for New Year Day. 
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Figure 11.  Updated forecasts against actual demand for Martin Luther King 
Day. 

 

Similar to the tested week of February, the results for the 
two special days also exhibit an improvement in the accuracy 
of forecasting by using the data-driven update method 
presented in this paper. More specifically, we observe that for 
the New Year Day, our method provided an improvement of 
about 5% - it reduced the initial forecast MAPE from 9% to 
4% (approximate numbers). Likewise, for the Martin Luther 
King Day there is also improvement which is about 7% as can 
be inferred from Fig. 9. Furthermore, we can safely conclude 
that the presented method managed to capture the special days 
load dynamics and improve the forecasts in very short terms. 
This improvement is also apparent from the load curved in 
Fig. 10 and 11 for the two special days respectively. 

V. CONCLUSION 

In this paper, a new method for updating load forecasting 
was presented. The method is suited for smart power systems 
where demand forecasting is essential for the overall 
operational decision making of the system. In particular, we 
presented a data driven method that utilizes two tools taken 
from the AI library: kernel based Gaussian processes and 
fuzzy inference systems. 

The aforementioned tools are integrated in such way so 
that we implement a new method for updating the daily ahead 
forecast of demand. The proposed method utilizes the most 
recent measurement in order to provide an update forecast 
over the next load demand value. Its testing on a set of real 
world 5 min load data obtained from New England ISO, 
exhibit significant improvement on the initial forecast. Results 
showed an improved accuracy in terms of MAPE for all tested 
cases – a whole in February and two special days-. 

In the future, we intend to extensively test the method in a 
larger variety of data (from other seasons as well), and check 
different type of kernel function for the GP models. In 
addition, the effect of fuzzy resolution (i.e., the number of 
fuzzy sets) will be also examined in order to infer whether a 



 

higher number of input and output fuzzy sets will further 
improve the forecasting accuracy. 
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