
Feedback Vertex Set and Even Cycle Transversal
for H-Free Graphs: Finding Large Block Graphs
Giacomo Paesani !

Department of Computer Science, Durham University, UK

Daniël Paulusma !

Department of Computer Science, Durham University, UK

Paweł Rzążewski !

Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Poland

Abstract
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on
H-free graphs, that is, graphs that do not contain some fixed graph H as an induced subgraph.
In particular, we prove that both problems are polynomial-time solvable for sP3-free graphs for
every integer s ≥ 1; here, the graph sP3 denotes the disjoint union of s paths on three vertices. Our
results show that both problems exhibit the same behaviour on H-free graphs (subject to some open
cases). This is in part explained by a new general algorithm we design for finding in a graph G a
largest induced subgraph whose blocks belong to some finite class C of graphs. We also compare our
results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known
to behave differently on H-free graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Feedback vertex set, even cycle transversal, odd cactus, forest, block

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.20

Funding Daniël Paulusma: Supported by the Leverhulme Trust (RPG-2016-258).
Paweł Rzążewski: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

Acknowledgements The first author thanks Carl Feghali for an inspiring initial discussion.

1 Introduction

For a set of graphs F , an F-transversal of a graph G is a set of vertices that intersects
the vertex set of every (not necessarily induced) subgraph of G that is isomorphic to some
graph of F . The problem Min F-Transversal (also called F-Deletion) is to find an
F -transversal of minimum size (or size at most k, in the decision variant). Graph transversals
form a central topic in Discrete Mathematics and Theoretical Computer Science, both from
a structural and an algorithmic point of view.

If F is the set of all cycles, the set of all even cycles or odd cycles, then we obtain
the problems Feedback Vertex Set, Even Cycle Transversal and Odd Cycle
Transversal, respectively. All three problems are NP-complete; hence, they have been
studied for special graph classes, in particular hereditary graph classes, that is, classes closed
under vertex deletion. Such classes can be characterized by a (unique) set H of minimal
forbidden induced subgraphs. Then, in order to initiate a systematic study, it is standard to
first consider the case where H has size 1, say H = {H} for some graph H.

We aim to extend known complexity results for Feedback Vertex Set for H-free
graphs and to perform a new, similar study for Even Cycle Transversal (for which, so
far, mainly parameterized complexity results exist [2, 3, 11, 12]). To describe the known and
new results we need some terminology. The cycle and path on r vertices are denoted Cr and

© Giacomo Paesani, Daniël Paulusma and Paweł Rzążewski;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giacomo.paesani@durham.ac.uk
https://orcid.org/0000-0002-2383-1339
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:p.rzazewski@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
https://doi.org/10.4230/LIPIcs.MFCS.2021.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

Pr, respectively. The disjoint union of two vertex-disjoint graphs G1 and G2 is the graph
G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We write sG for the disjoint union of s copies
of G. For a set S ⊆ V , let G[S] be the subgraph of G induced by S. We write H ⊆i G (or
G ⊇i H) if H is an induced subgraph of G.

1.1 Known Results

By Poljak’s construction [14], for every integer g ≥ 3, Feedback Vertex Set is NP-
complete for graphs of girth at least g (the girth of a graph is the length of its shortest cycle).
The same holds for Odd Cycle Transversal [7]. It is also known that Feedback Vertex
Set [13] and Odd Cycle Transversal [7] are NP-complete for line graphs and thus for
claw-free graphs (the claw is the 4-vertex star). Hence, both problems are NP-complete for
the class of H-free graphs whenever H has a cycle or claw. A graph with no cycles and no
claws is a forest of maximum degree at most 2. Thus, it remains to consider the case where
H is a linear forest, that is, a collection of disjoint paths. Both problems are polynomial-time
solvable on permutation graphs [5] and thus on P4-free graphs [5], on sP2-free graphs for every
s ≥ 1 [7] and on (sP1 + P3)-free graphs for every s ≥ 0 [9]. Additionally, Feedback Vertex
Set is polynomial-time solvable on P5-free graphs [1], and Odd Cycle Transversal is
NP-complete for (P2 + P5, P6)-free graphs [9]. A similar NP-hardness result for Feedback
Vertex Set or Even Cycle Transversal is unlikely: for every linear forest H, both
problems are quasipolynomial-time solvable on H-free graphs [9] (see Section 4 for details).

1.2 Our Results

We first note that Min F-Transversal is polynomially equivalent to Max Induced F-
Subgraph, the problem of finding a maximum-size induced subgraph of the input graph G

that does not belong to F (where we assume that G has at least one such subgraph). We say
that Max Induced F-Subgraph is the complementary problem of Min F-Transversal,
and vice versa. For example, setting F = {P2} yields the well-known complementary
problems Min Vertex Cover and Max Independent Set.

Using the complementary perspective, we now argue that Feedback Vertex Set and
Even Cycle Transversal are closely related, in contrast to Odd Cycle Transversal.
A graph G is biconnected if it has at least two vertices, is connected, and G − u is connected
for every u ∈ V (G). A block of a graph G is an inclusion-wise maximal biconnected subgraph
of G. We now let C be a set of biconnected graphs. A graph G is a C-block graph if every
block of G is isomorphic to some graph in C. If C = {P2}, then C-block graphs are precisely
forests, and if C = {P2, C3, C5, C7, . . .}, then C-block graphs are called odd cacti. It is well
known that a graph is an odd cactus if and only if it does not contain any even cycle
as a subgraph. Hence, the complementary problems of Even Cycle Transversal and
Feedback Vertex Set are somewhat similar: in particular, both forests and odd cacti
have bounded treewidth and their blocks have a very simple structure. This is in stark
contrast to Odd Cycle Transversal, whose complementary problem is to find a large
induced bipartite subgraph, which might be arbitrarily complicated.

The commonality of complementary problems of Even Cycle Transversal and
Feedback Vertex Set leads to the following optimization problem, where C is some fixed
class of biconnected graphs, that is, C is not part of the input but specified in advance. Note
that we consider the more general setting in which every vertex v of G is equipped with a
weight w(v) > 0, and we must find a solution with maximum total weight, respectively.

G. Paesani, D. Paulusma and P. Rzążewski 20:3

Max C-Block Graph
Instance: a graph G = (V, E) with a vertex weight function w : V → Q+.

Objective: find a maximum-weight set X ⊆ V such that G[X] is a C-block graph.

We observe that Max C-Block Graph is well-defined for every set C, including C = ∅,
as every independent set in a graph forms a solution. A restriction of the Max C-Block
Graph problem was introduced and studied from a parameterized complexity perspective
by Bonnet et al. [4] as Bounded C-Block Vertex Deletion (so from the complementary
perspective) where each block must in addition have bounded size.

In Section 2 we slightly extend a previously known result, concerning the so-called blob
graphs [10]. This extended version of the result forms a key ingredient for the proof of our
main result, shown in Section 3, which is the following theorem for sP3-free graphs (these
are the graphs that become a disjoint union of cliques after removing the vertices of any
induced (s − 1)P3 and their neighbours).

▶ Theorem 1. For every integer s ≥ 1 and every finite class C of biconnected graphs, Max
C-Block Graph can be solved in polynomial time for sP3-free graphs.

Theorem 1 implies the corresponding result for Feedback Vertex Set, as it is equivalent
to Max {P2}-Block Graph. The condition for C to be finite is critical for our proof tech-
nique. Nevertheless, we still have the corresponding result for Even Cycle Transversal as
well: for sP3-free graphs, the cases C = {P2, C3, C5, C7, . . .} and C = {P2, C3, C5, . . . , C4s−3}
are equivalent. Note that we cannot make such an argument for Odd Cycle Transversal,
as arbitrarily large bicliques are 2P3-free.

▶ Corollary 2. For every integer s ≥ 1, Feedback Vertex Set and Even Cycle
Transversal can be solved in polynomial time for sP3-free graphs.

Corollary 2 extends the aforementioned results for Feedback Vertex Set on sP2-free
graphs and (sP1 + P3)-free graphs. In Section 4 we observe that as a direct consequence of a
more general result [1], Even Cycle Transversal is polynomial-time solvable for P5-free
graphs. There we also prove that Even Cycle Transversal is NP-complete for graphs
of large girth and for line graphs, and consequently, for H-free graphs where H contains a
cycle or a claw. Hence, Feedback Vertex Set and Even Cycle Transversal behave
similarly on H-free graphs, subject to a number of open cases, which we listed in Table 1.

2 Blob Graph of Graphs With No Large Linear Forest

Let G = (V, E) be a graph. A (connected) component is a maximal connected subgraph of G.
The neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For U ⊆ V , we let
NG(U) =

⋃
u∈U N(u) \ U . Two sets X1, X2 ⊆ V (G) are adjacent if X1 ∩ X2 ̸= ∅ or there

exists an edge with one endpoint in X1 and the other in X2. The blob graph G◦ of G is
defined as follows.

V (G◦) := {X ⊆ V (G) | G[X] is connected} and E(G◦) := {X1X2 | X1 and X2 are adjacent}.

Gartland et al. [10] showed that for every graph G, the length of a longest induced path
in G◦ is equal to the length of a longest induced path in G. We slightly generalize this result.

▶ Theorem 3. For every linear forest H, a graph G contains H as an induced subgraph if
and only if G◦ contains H as an induced subgraph.

MFCS 2021

20:4 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

polynomial-time unresolved NP-complete
FVS H ⊆i P5 or sP3 for s ≥ 1 H ⊇i P1 + P4 none
ECT H ⊆i P5 or sP3 for s ≥ 1 H ⊇i P1 + P4 none
OCT H = P4 or

H ⊆i sP1 + P3 or
sP2 for s ≥ 1

H = sP1 + P5 for s ≥ 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u ≥ 0, v ≥ 1
with min{s, t, u} ≥ 1 if v = 1, or
H = sP1 + tP2 + uP3 for s, t ≥ 0,
u ≥ 1 with u ≥ 2 if t = 0

H ⊇i P6 or P2+P5

Table 1 The complexity of Feedback Vertex Set (FVS), Even Cycle Transversal (ECT)
and Odd Cycle Transversal (OCT) on H-free graphs for a linear forest H. All three problems
are NP-complete for H-free graphs when H is not a linear forest (see also Section 4). The two blue
cases (one for FVS, one for ECT) are the algorithmic contributions of this paper. We write H ⊆i H ′

if H is an induced subgraph of H ′. See Section 1.1 for references to the known results in the table.

Proof. As G is an induced subgraph of G◦, the (⇒) implication is immediate. We prove the
(⇐) implication by induction on the number k of connected components of H. If k = 1, then
the claim follows directly from the aforementioned result of Gartland et al. [10]. So assume
that k ≥ 2 and the statement holds for all linear forests H with fewer than k connected
components. Let P ′ be one of the connected components of H, and define H ′ := H − P ′.

Suppose that G◦ contains an induced subgraph isomorphic to H. Let X be the set of
vertices of G◦, such that G◦[X] is isomorphic to H. Furthermore, let Y ⊆ X be the set of
vertices that induce in G◦[X] the component P ′ of H, that is, G◦[Y] is isomorphic to P ′.

Let Y ⊆ V (G) be the union of sets in Y. Note that G◦[Y] is an induced subgraph of
(G[Y])◦. Thus, by the inductive assumption, G[Y] contains an induced copy of P ′.

Let X ⊆ V (G) be the union of sets in X \ Y. Since the copy of H in G◦ is induced,
we know that in G◦ there are no edges between X \ Y and Y. This is equivalent to saying
that X ∩ N [Y] = ∅. So we conclude that G◦[X \ Y] is an induced subgraph of (G − N [Y])◦.
Since G◦[X \ Y], and thus (G − N [Y])◦, contains an induced copy of H ′, by the inductive
assumption we know that G−N [Y] contains an induced copy of H ′. Combining this subgraph
with the induced copy of P ′ in G[Y], we obtain an induced copy of H in G. ◀

3 The Proof of Theorem 1

We start with analyzing the structure of sP3-free C-block graphs in Section 3.1, where C is
any finite class of biconnected graphs. Then, in Section 3.2, we present our algorithm for
Max C-Block Graph on sP3-free graphs.

3.1 Blocks and Terminals in sP3-free Graphs
From now on, let C be a finite class of biconnected graphs. For some fixed positive integer s,
let G = (V, E) be an sP3-free graph with n vertices and vertex weights w : V → Q+. Let
X ⊆ V such that F = G[X] is a C-block graph. A component of F is trivial if it is a single
vertex or a single block, otherwise it is non-trivial. Let F ′ be the graph obtained from F by
removing all trivial components. Note that F ′ and F are sP3-free, as G is sP3-free.

We denote the set of cutvertices of F ′ and the set of blocks of F ′ by Cutvertices(F ′) and
Blocks(F ′), respectively. The block-cut forest BCF(F ′) of F ′ has vertex set Cutvertices(F ′) ∪
Blocks(F ′) and an edge set that consists of all edges xb such that x ∈ Cutvertices(F ′) and

G. Paesani, D. Paulusma and P. Rzążewski 20:5

v

v

u

x

w

y

u

w

x

y

Figure 1 Left: a graph F ′. Blue shapes are blocks, squares are terminals, and dots are non-
terminal cutvertices. Right: BCF(F ′), rooted in the cutvertex v. Blue diamonds are blocks; w is a
terminal of type 1, u and x are terminals of type 2, and y is a terminal of both types. The remaining
cutvertices are not terminals. We also use this example with this particular BCF(F ′) in later figures.

b ∈ Blocks(F ′), and x belongs to b. By definition, each component of F ′ has a cutvertex; we
pick an arbitrary one as root for the corresponding tree in BCF(F ′) to get a parent-child
relation. Each leaf of BCF(F ′) belongs to Blocks(F ′), and we call such blocks leaf blocks.

A cutvertex x of F ′ is a terminal of type 1 if x has at least two children in BCF(F ′) that are
leaves, whereas x is a terminal of type 2 if there exists a leaf block, whose great-grandparent
in BCF(F ′) is x. In the latter case, there is a three-edge downward path from x to a leaf in
BCF(F ′); see also Fig. 1. Let d be the maximum number of vertices of a graph in C.

▶ Lemma 4. At most d · (s − 1) vertices of F ′ are terminals of type 1.

Proof. For contradiction, suppose that there are at least d · (s − 1) + 1 terminals of type 1.
We observe that F ′ is d-colourable. Indeed, each block has at most d vertices, so d colours
are sufficient to colour each block. Furthermore, we can permute the colours in each block,
so that the colourings agree on cutvertices.

This implies that there is an independent set X of size at least s, whose every element is
a terminal of type 1. For each such terminal v, let its private P3 be a 3-vertex path with v as
the central vertex and each endpoint belonging to a different leaf block that is a child of v in
BCF(F ′). Note that each private P3 is induced. Furthermore, the private P3’s of vertices in
X are pairwise non-adjacent: this follows from the definition of terminals of type 1 and the
fact that X is independent. Thus we have found an induced sP3 in F , a contradiction. ◀

▶ Lemma 5. At most (d + 1) · (s − 1) vertices of F ′ are terminals of type 2.

Proof. For contradiction, suppose that there are at least (d + 1) · (s − 1) + 1 terminals
of type 2. Observe that F ′ has a proper (d + 1)-colouring f , satisfying the following two
properties:
1. the vertices in each block receive pairwise distinct colours and
2. if b is a block, then any vertex of b receives a colour which is different than the colour of

the cutvertex which is the great-grandparent of b in BCF(F ′) (if such a cutvertex exists).

MFCS 2021

20:6 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

It is easy to find such a colouring of each tree in BCF(F ′) by choosing an arbitrary colour for
the root and proceeding in a top-down fashion. Suppose we want to colour the block b and
its parent in BCF(F ′) is the cutvertex v. Recall that b has at most d vertices and exactly one
of them is already coloured. Furthermore, we want to avoid the colour of the grandparent of
v (if such a vertex exists), so we have sufficiently many free colours to colour each vertex of
b \ {v} with a different one.

Now, by our assumption, there is a set X of at least s terminals of type 2 that received
the same colour in f . For each v ∈ X, we define its private P3 as follows. Recall that by the
definition of a terminal of type 2, there is a leaf block b, whose great-grandparent in BCF(F ′)
is v. The private P3 of v is given by the first three vertices on a shortest path P from v to b.
Note that in the extreme case it might happen that both b and its grandparent in BCF(F ′)
are edges, but P always has at least three vertices.

Clearly, each private P3 is an induced path. We claim that the private P3’s associated
with the vertices of X are non-adjacent. For contradiction, suppose otherwise. Let v1, v2 be
distinct vertices of X, and let vi, xi, yi be the consecutive vertices of the private P3 associated
with vi. Let bi be the block containing vi and xi.

First, observe that the sets {v1, x1, y1} and {v2, x2, y2} are disjoint. Indeed, we know
that v1 ̸= v2 and because BCF(F ′) is a rooted tree, we have that {x1, y1} ∩ {x2, y2} = ∅.
Furthermore, recall that f(v1) = f(v2) and by the definition of f , we have that the colours
of xi and of yi are different from the colour of vi.

So now suppose that there is an edge with one endpoint in {v1, x1, y1} and the other in
{v2, x2, y2}. Clearly this edge cannot join v1 and v2, as the colouring f is proper. Furthermore,
there is no edge between {x1, y1} and {x2, y2}, as v1 and v2 are cutvertices of a rooted tree.
Suppose that v2 is adjacent to x1 (the case that v1 is adjacent to x2 is symmetric). As each
vertex of b1 gets a different colour in f , we observe that v2 cannot belong to b1. Thus x1 is a
cutvertex. However, by the second property of f , we obtain that the colour of v2 must be
different than the colour of v1, a contradiction.

So finally suppose that v2 is adjacent to y1. Note that then y1 cannot belong to a leaf
block, meaning that y1 belongs to b1. Similarly to the previous paragraph, the definition of
f implies that the colour of v2 must be different than the colour of v1, a contradiction.

Thus we have found an induced sP3 in F ′, a contradiction. ◀

Lemmas 4 and 5 imply the following.

▶ Lemma 6. The number of terminals of F ′ is at most (2d + 1) · (s − 1).

If v is a terminal of type 2, then by definition there is a cutvertex w that belongs to both
a block containing v as well as to some leaf block. We call such w a witness of v. We now
partition the set of blocks of F ′ into the following subsets; see also Fig. 2:

Bl1 is the set of leaf blocks containing a terminal of type 1,
Bl2 is the set of leaf blocks containing a witness w that is not a terminal of type 1,
Bl3 is the set of remaining leaf blocks, that is, the ones with a cutvertex that is neither a
terminal nor a witness,
Bw is the set of blocks with precisely two cutvertices, one of which is a terminal of type 2
and the other one the non-terminal witness of that type-2 terminal, and
Bin is the set of all remaining blocks.

Note that blocks in Bl2 and Bw come in pairs, that is, for each block B in one of these
sets, there is exactly one block B′ in the other set, such that B and B′ share a vertex (it is

G. Paesani, D. Paulusma and P. Rzążewski 20:7

Bl1

Bl2

Bl3

Bw

Bin

double-blocks

Figure 2 The classification of blocks of the example of Figure 1.

the witness w, using the notation introduced above). We will consider these two blocks as
one object. Formally, a double-block is a graph consisting of two blocks sharing a cutvertex.
Let Bd be the family of double-blocks of F ′ obtained from blocks in Bl2 and Bw in the way
described above, i.e., Bd consists of graphs G[V (B) ∪ V (B′)], where B ∈ Bl2 , B′ ∈ Bw and
V (B)∩V (B′) ̸= ∅. Note that each double-block in Bd has fewer than 2d vertices and contains
exactly one terminal of type 2.

A backbone of a component Z of F ′ is a minimum tree TZ contained in Z that connects
all terminals of F ′ that belong to Z; observe that all leaves of TZ are terminals. The skeleton
S of F ′ is the graph obtained from F ′ by removing all vertices from the blocks in Bl1 except
terminals of type 1 and all vertices from the double-blocks in Bd except terminals of type 2.
Note that every backbone is a subgraph of S.

3.2 The Algorithm
Outline. Our polynomial-time algorithm consists of the following two phases:

1. Branching Phase, which consists of the following three steps:
1. guessing the terminals of F ′;
2. guessing the backbones of the components of F ′; and
3. guessing the skeleton of F ′, and

2. Completion Phase, where we extend the partial solutions obtained in the Branching Phase
to complete ones by finding non-skeleton vertices of F ′ and trivial components of F ; we
do this by:

1. reducing the problem to Max Weight Independent Set for sP3-free graphs using
the blob graph construction in Section 2, and

2. solving this problem using the polynomial-time algorithm of Brandstädt and Mosca [6].

We now describe our algorithm, prove its correctness and perform a running time analysis.

Branching Phase. This phase of our algorithm consists of a series of guesses, where we find
certain vertices and substructures in G. The total number of vertices to be guessed will be
O(s2d2). Since we guess them exhaustively, this results in a recursion tree with O(nO(s2d2))
leaves. As both s and d are constants, this bound is polynomial in n. We will ensure that

MFCS 2021

20:8 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

Figure 3 Step 1 of the Branching Phase. Left: the graph F ′. Right: the terminals of F ′.

the optimum solution F = G[X] will be found in the call corresponding to at least one of
the leaves of the recursion tree. Based on the properties of F , we will expect the guessed
vertices to satisfy certain conditions. If, at some point, the guessed vertices do not satisfy
these conditions, we just terminate the current call, as it will not lead us to find F . This will
be applied implicitly throughout the execution of the algorithm.

The branching phase is illustrated in Figures 3–5. We use the convention that gray/black
elements are still unknown and blue elements are the ones that we have already guessed.

Step 1. Guessing the terminals of F′. We guess the set C ⊆ V of terminals of F ′. By
Lemma 6, the total number of terminals is bounded by (2d + 1) · (s − 1) ≤ 3ds. Furthermore,
for each terminal, we guess its type (1, 2, or both). This results in 3|C| ≤ 33ds possibilities. We
also guess the partition of C, corresponding to the connected components of F . This results
in at most |C||C| ≤ (3ds)3ds additional branches. In total, we have O(nO(ds)) branches.

Step 2. Guessing the backbone of each component of F′. Let Z be a component of F ′.
Let CZ ⊆ C be the subset of terminals that are in Z. Let TZ be the backbone of Z. Let
T ′

Z be the tree obtained from TZ by contracting every path in TZ whose internal vertices
are all non-terminals and of degree 2 to an edge. Note that every non-terminal vertex of
T ′

Z has degree at least 3. Since T ′
Z has at most |CZ | vertices of degree at most 2, by the

handshaking lemma we observe that the total number of vertices of T ′
Z is at most 2|CZ |.

Recall that every edge of T ′
Z corresponds to an induced path in TZ . Since F ′ is sP3-free and

thus P4s−1-free, we conclude that TZ has at most 2|CZ | · (4s − 2) ≤ 8s · |CZ | vertices.

Let T be the forest whose components are the guessed backbones of the components of
F ′. Note that the total number of vertices of T is at most

∑
Z 8s · |CZ | = 8s · |C| ≤ 24ds2.

Thus we may guess the whole forest T , which results in O(nO(ds2)) branches.

Step 3. Guessing the skeleton of F′. Let T be the forest guessed in the previous step;
recall that T has at most 24ds2 vertices. We guess the partition of E(T) corresponding
to blocks of F ′; note that a vertex v may be in several blocks: this happens precisely if v

is a cutvertex in F ′. This results in at most |E(T)|O(|E(T)|) ≤ |V (T)|O(|V (T)|) ≤ (ds)O(ds2)

branches.
We now discuss some properties of the (double-)blocks. We use the names of vertices as

in the definitions introduced in Section 3.1, recall also Fig. 2. The crucial observation is that
now there is a branch, where:

G. Paesani, D. Paulusma and P. Rzążewski 20:9

Figure 4 Step 2 of the Branching Phase. Left: the tree T ′
Z . Right: the tree TZ .

Figure 5 Step 3 of the Branching Phase. Left: our knowledge about F ′ after guessing the blocks
in Bl3 . Right: our knowledge about F ′ after guessing the blocks in Bin.

For each block in Bl1 , we have guessed its cutvertex and no other vertices.
For each block in Bl2 , we have not guessed any vertices.
For each block in Bl3 , we have guessed its cutvertex v connecting it to the rest of F ′ and
no other vertices; note that v is not a terminal. Moreover, for each such v there is at
most one block in Bl3 .
For each block in Bw, we have guessed its cutvertex v that does not belong to a block in
Bl2 and we guessed no other vertices. Thus, for each double-block in Bd, we have guessed
its cutvertex connecting it to the rest of F ′ and no other vertices.
For each block in Bin, we have guessed at least two vertices.

Now we proceed to the final guessing step, see Fig. 5. First, we guess all blocks in Bl3 .
Note that we can do it, as (i) we know their cutvertices, (ii) the number of these cutvertices
is at most |V (T)| ≤ 24ds2, (iii) each cutvertex is contained in at most one block from Bl3 ,
and (iv) each block has at most d vertices. This results in at most nO(|V (T)|·d) = nO(d2s2)

branches.
Next, we guess all blocks in Bin. Again, we can do it as (i) we know at least two vertices

of such a block, (ii) the number of these blocks is at most |E(T)| ≤ 24ds2, and (iii) each
block has at most d vertices. This results in at most nO(|V (T)|·d) = nO(d2s2) further branches.

The following claim summarizes the outcome of the guessing phase of the algorithm.

▶ Claim A. In time O(nO(s2d2)) we can enumerate a collection S of O(nO(s2d2)) triples
(S, C1, C2), where S ⊆ V and C1, C2 ⊆ S such that S has the following property. Let X ⊆ V ,

MFCS 2021

20:10 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

such that F = G[X] is a C-block graph. Let X ′ ⊆ X be the vertex set of the graph F ′ obtained
from F by removing all trivial components. Then there is at least one triple (S, C1, C2) ∈ S,
where
a) C1 is the set of terminals of type 1 in F ′,
b) C2 is the set of terminals of type 2 in F ′,
c) G[S] is the skeleton of F ′.

Completion Phase. Let S be the the collection from Claim A and let (S, C1, C2) ∈ S be a
triple that satisfies the properties listed in the statement of Claim A for an optimum solution
F = G[X]. Let X := X0 ∪ X1 ∪ X2 be the family of subsets of V with:

X0 :={{v} | v ∈ V },

X1 :={B ⊆ V | G[B] ∈ C}, and
X2 :={B ⊆ V | B is a double-block whose blocks are in C},

Let GC be the graph whose vertex set is X , and edges join sets that are adjacent in G.
Furthermore, we define a weight function wC : X → Q+ as

wC(A) =
∑
v∈A

w(v).

Note that in order to complete S to the optimum solution F = G[X], we need to
determine:

all blocks in Bl1 ,
all double-blocks in Bd,
all trivial components of F .

Note that the vertex sets of all these subgraphs are in the family X and they form an
independent set in GC. Furthermore, since X is of maximum weight, the total weight of
selected subsets must be maximized. Thus the idea behind the last step is to reduce the
problem to solving Max Weight Independent Set in an appropriately defined subgraph
of GC and weights wC .

To ensure that the selected subsets are consistent with our guess (S, C1, C2) ∈ S, we will
remove certain vertices from GC . In particular, let X ′ consist of the sets A ∈ X , such that:

1. A ∈ X0 ∪ X1 and A is non-adjacent to S; these are the candidates for trivial components
of F ,

2. A ∈ X1 and A intersects S in exactly one vertex, which is in C1; these are the candidates
for blocks in Bl1 ,

3. A ∈ X2 and A intersects S in exactly one vertex, which is in C2 and is not the cutvertex
of G[A]; these are the candidates for double-blocks in Bd.

Now let I ⊆ X ′ be an independent set of GC , and let S′ =
⋃

A∈I A. It is straightforward
to verify that if (S, C1, C2) ∈ S satisfies the properties listed in Claim A, then G[S ∪ S′] is a
C-block graph. Thus, in one of the branches, we will find the optimum solution F = G[X].

Now let us argue that the last step can be performed in polynomial time. First, observe
that |X | ≤ n + nd + n2d = nO(d) and the family X can be exhaustively enumerated in time
nO(d). Next, X ′ can be computed in time polynomial in |X |, and thus in n. This implies
that the graph GC [X ′] can be computed in time polynomial in n. We observe that GC , and

G. Paesani, D. Paulusma and P. Rzążewski 20:11

thus GC [X ′], is an induced subgraph of the blob graph G◦, introduced in Section 2. Hence,
by Theorem 3, we conclude that GC [X ′] is sP3-free.

The final ingredient is the polynomial-time algorithm for Max Weight Independent
Set in sP3-free graphs by Brandstädt and Mosca [6]. Its running time on an n′-vertex graph
is n′O(s). Since the number of vertices of GC [X ′] is nO(d), we conclude that a maximum-weight
independent set in GC [X ′] can be found in time nO(sd).

Summing up, in the guessing phase, in time nO(s2d2) we enumerate the family S of size
nO(s2d2). Then, for each member (S, C1, C2) of S, we try to extend the partial solution to a
complete one. This takes time nO(sd) per element of S. Among all found solutions, we return
the one with maximum weight. The total running time of the algorithm is nO(s2d2), which is
polynomial in n, since s and d are constants. This completes the proof of Theorem 1.

4 More Results for Even Cycle Transversal on H-Free Graphs

In this section we prove that subject to a number of unsolved cases, the complexity of Even
Cycle Transversal for H-free graphs coincides with the one for Feedback Vertex Set.

CMSO2 and Even Cycle Transversal. Monadic Second-Order Logic (MSO2) over graphs
consists of formulas with vertex variables, edge variables, vertex set variables, and edge
set variables, quantifiers, and standard logic operators. We also have a predicate inc(v, e),
indicating that the vertex v belongs to the edge e. Counting Monadic Second-Order Logic
(CMSO2) is an extension of MSO2 which allows atomic formulas of the form |X| ≡ p mod q,
where X is a set variable and 0 ≤ p < q are integers.

Abrishami et al. [1, Theorems 5.3 and 7.3] proved that for any fixed CMSO2 formula Φ
and any constant t, the following problem is polynomial-time solvable: given a P5-free graph
G with weight function w : V (G) → Q+, find a maximum-weight set X ⊆ V (G), such that
G[X] is of treewidth at most t and satisfies Φ. This immediately yields a polynomial-time
algorithm for Feedback Vertex Set in P5-free graphs: just take t = 1 and a trivial
formula Φ that is satisfied for all graphs (see also [1]).

A similar argument can also be applied for Even Cycle Transversal. First, note
that every odd cactus has treewidth at most 2. Hence, it remains to show an appropriate
CMSO2 formula Φ that enforces G[X] to be an odd cactus. We will again look from the
complementary perspective: we need to say that G[X] has no even cycle. For this, it is
enough to say that there is no set E′ of edges in G[X], such that: (i) each vertex of X is
incident to 0 or 2 edges from E′, (ii) the edges from E′ induce a connected subgraph of G[X],
and (iii) the number of edges in E′ is even. Properties (i) and (ii) are easily expressible in
MSO2, see [8, Section 7.4], and property (iii) is expressed by the formula |E′| ≡ 0 (mod 2),
which is allowed in CMSO2. This immediately yields the following corollary.

▶ Corollary 7. Even Cycle Transversal is polynomial-time solvable for P5-free graphs.

Finally, the problem of finding a maximum-weight subset that induces a constant-treewidth
graph satisfying some fixed CMSO2 formula can be solved in quasipolynomial time for Pr-free
graphs for any fixed r [10]. This implies a quasipolynomial-time algorithm for Feedback
Vertex Set and Even Cycle Transversal for H-free graphs if H is a linear forest.

Hardness Results. An odd cycle factor of a graph G is a set of odd cycles such that every
vertex of G belongs to exactly one of them. The Odd Cycle Factor problem, which asks
if a graph has an odd cycle factor, is known to be NP-complete [15]. The line graph L(G) of

MFCS 2021

20:12 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

a graph G = (V, E) has vertex set E and an edge between two distinct vertices e and f if
and only if e and f share an end-vertex in G.

The proof of our next result for line graphs is somewhat similar to a proof for Odd
Cycle Transversal of [7] but uses some different arguments as well.

▶ Theorem 8. Even Cycle Transversal is NP-complete for line graphs.

Proof. Let G = (V, E) be an instance of Odd Cycle Factor with n vertices and m edges.
We claim that G has an odd cycle factor if and only if its line graph L := L(G) has an even
cycle transversal of size at most m − n, see Fig. 6.

First suppose G has an odd cycle factor. Then there is E′ ⊆ E, such that |E′| = n and
L[E′] is a disjoint union of odd cycles. Hence, S := E \ E′ is an even cycle transversal of L

of size |E| − n = m − n. Now suppose L has an even cycle transversal S with |S| ≤ m − n.
Let E′ := E \ S, As |E| = m, we have |E′| ≥ n.

We prove the following claim.

▶ Claim B. Every component of L[E′] is either an odd cycle or the line graph of a tree.

Proof. Let D be a component of L[E′]. If D has no cycle, then D is a path, as L is a line
graph and thus is claw-free. Hence, D is the line graph of a path, and thus a tree.

So suppose D has a cycle C. Then C is odd and induced, as L[E′] is an odd cactus. If D

has no vertices except for the ones of C, then D is an odd cycle and we are done. Suppose
otherwise.

First, assume that C has at least five vertices. Since D has vertices outside C, there
is a vertex of C with a neighbour outside C. Hence, D contains either an even cycle or
an induced claw, both of which are not possible. So now suppose that C has at most four
vertices. Then C is a triangle, as D has no even cycles. Since D is an induced subgraph of
L, there exists a subgraph T of G such that D = L(T). As D is a connected graph with at
least four vertices, containing a triangle, T is a connected graph with at least four vertices.

We aim to show that T is a tree. For contradiction, suppose that T contains a cycle CT .
Then CT must be a triangle, as otherwise D would contain an even cycle or an odd cycle
with at least five vertices. Let a, b, c be the vertices of CT . As T is connected and has at
least four vertices, at least one of {a, b, c}, say a, must have a neighbour d /∈ {b, c}. However,
the edges ad − ab − bc − ac form a C4 in D, a contradiction with D being an odd cactus. So
we conclude that T contains no cycles and thus T is a tree. ◁

Each component of L[E′] that is an odd cycle corresponds to an odd cycle in G. By
Claim B, each component D of L[E′] that is not an odd cycle is the line graph of some
subtree T of G. So, if D has r vertices, then T has r + 1 vertices. Furthermore, the vertex
sets of G corresponding to distinct components of L[E′] are pairwise disjoint. Suppose that
L[E′] has p ≥ 0 components that are not odd cycles. Let Q be the set of vertices incident
to at least one edge of E′. Then n = |V (G)| ≥ |Q| = |E′| + p ≥ n + p. Hence, p = 0 and
|Q| = n. So, the components of L[E′] correspond to an odd cycle factor of G. This completes
the proof. ◀

We make a straightforward observation similar to an observation for Feedback Vertex
Set [7, 14], except that we must subdivide edges of a graph an even number of times.

▶ Theorem 9. For every p ≥ 3, Even Cycle Transversal is NP-complete for graphs of
girth at least p.

G. Paesani, D. Paulusma and P. Rzążewski 20:13

a
b

c
d

e

f
g

h

ab

bc

ae
ad

de

cd

eg cf
fg

gh fh

dg
df

ab

bc

ae

de

cd

fg

gh fh

Figure 6 Left: a graph G with an odd cycle factor. Middle: the graph L = L(G) and the set E′

(red). Black vertices form an even cycle factor. Right: the odd cactus L[E′].

Proof. We reduce from Even Cycle Transversal for general graphs by noting the
following. Namely, the size of a minimum even cycle transversal in G is equal to the size of a
minimum even cycle transversal in the graph G′ obtained from G by subdividing every edge
2p times, and the girth of G′ is at least p. ◀

The next theorem is analogous to the one for Feedback Vertex Set; see also Table 1.

▶ Theorem 10. Let H be a graph. Then Even Cycle Transversal for H-free graphs is
polynomial-time solvable if H ⊆i sP3 for some s ≥ 1 or H ⊆i P5, and it is NP-complete if
H is not a linear forest.

Proof. If H ⊆i sP3, use Corollary 2, and if H ⊆i P5, use Corollary 7. If H is not a
linear forest, then it has a cycle or a claw. If H has a cycle, then we apply Theorem 9 for
p = |V (H)| + 1. Otherwise, H has an induced claw and we apply Theorem 8. ◀

5 Conclusions

We prove that for a large family of graphs F , the Min F-Transversal problem is polynomial-
time solvable on sP3-free graphs (for every s ≥ 1). The two best-known problems in this
framework are Feedback Vertex Set and Even Cycle Transversal. Our result for
Feedback Vertex Set generalizes two known results from the literature [7, 9]. We also
prove that in contrast to the situation for Odd Cycle Transversal, all other known
complexity results for Feedback Vertex Set on H-free graphs hold for Even Cycle
Transversal as well. Hence, so far both problems behave the same on special graph
classes, and it would be interesting to prove polynomial equivalency of the two problems
more generally. Table 1 still shows some missing cases for each of the three problems.

In particular, we highlight a borderline case:

Is each of the three problems is polynomial-time solvable for (P1 + P4)-free graphs?

The main obstacle is that we know no polynomial-time algorithm for finding a maximum
induced disjoint union of stars in a (P1 + P4)-free graph; note that such a subgraph could be
a potential optimal solution for each of the three problems.

MFCS 2021

20:14 Feedback Vertex Set and Even Cycle Transversal for H-Free Graphs

We also recall that Feedback Vertex Set and Even Cycle Transversal can be
solved in quasipolynomial time for Pr-free graphs [10] for every r ≥ 1, whereas Odd Cycle
Transversal is NP-complete even for P6-free graphs [9]. An affirmative answer to the
above question for Feedback Vertex Set and Even Cycle Transversal would be a
first step in proving that these two problems are polynomial-time solvable on P6-free graphs.
If that turns out to be the case, then we will have further evidence that these two problems,
restricted to H-free graphs, differ in their complexity from Odd Cycle Transversal.

References
1 Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, Paweł Rzążewski, and Paul Seymour.

Induced subgraphs of bounded treewidth and the container method. Proc. SODA 2021, pages
1948–1964, 2021.

2 Yuuki Aoike, Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, Yusuke
Kobayashi, Kazuhiro Kurita, and Yota Otachi. An improved deterministic parameterized
algorithm for cactus vertex deletion. CoRR, abs/2012.04910, 2020.

3 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O-Joung Kwon. Close relatives
of feedback vertex set without single-exponential algorithms parameterized by treewidth. Proc.
IPEC 2020, LIPIcs, 180(3):1–17, 2020.

4 Édouard Bonnet, Nick Brettell, O-Joung Kwon, and Dániel Marx. Parameterized vertex
deletion problems for hereditary graph classes with a block property. Proc. WG2016, LNCS,
9941:233–244, 2016.

5 Andreas Brandstädt and Dieter Kratsch. On the restriction of some NP-complete graph
problems to permutation graphs. Proc. FCT 1985, LNCS, 199:53–62, 1985.

6 Andreas Brandstädt and Raffaele Mosca. Maximum weight independent set for l-claw-free
graphs in polynomial time. Discrete Applied Mathematics, 237:57–64, 2018.

7 Nina Chiarelli, Tatiana R. Hartinger, Matthew Johnson, Martin Milanič, and Daniël Paulusma.
Minimum connected transversals in graphs: New hardness results and tractable cases using
the price of connectivity. Theoretical Computer Science, 705:75–83, 2018.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, Giacomo Paesani, Daniël Paulusma,
and Paweł Rzążewski. On cycle transversals and their connected variants in the absence of a
small linear forest. Algorithmica, 82(10):2841–2866, 2020.

10 Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski.
Finding large induced sparse subgraphs in C>t -free graphs in quasipolynomial time. Proc.
STOC 2021, ACM, pages 330–341, 2021.

11 Sudeshna Kolay, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Quick but odd
growth of cacti. Algorithmica, 79:271–290, 2017.

12 Pranabendu Misra, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Parameterized
algorithms for even cycle transversal. Proc. WG 2012, 7551:172–183, 2012.

13 Andrea Munaro. On line graphs of subcubic triangle-free graphs. Discrete Mathematics,
340(6):1210–1226, 2017.

14 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae
Universitatis Carolinae, 15:307–309, 1974.

15 O. Vornberger. Komplexeität von Wegeproblemen in Graphen. Reihe Theoretische Informatik,
5, 1979.

	1 Introduction
	1.1 Known Results
	1.2 Our Results

	2 Blob Graph of Graphs With No Large Linear Forest
	3 The Proof of Theorem 1
	3.1 Blocks and Terminals in sP3-free Graphs
	3.2 The Algorithm

	4 More Results for Even Cycle Transversal on H-Free Graphs
	5 Conclusions

