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Abstract—We address the automatic contraband material de-
tection problem within volumetric 3D Computed Tomography
(CT) data for baggage security screening. Distinct from the pro-
hibited item detection using object detection techniques, contra-
band material detection is usually formulated as a segmentation
problem due to the variations of their potential appearances
and shapes. Previous studies have employed either morphological
operation based traditional methods or 3D Convolutional Neural
Networks (CNN) for 3D segmentation towards target material
detection within volumetric 3D CT baggage security screening
imagery. In this work, we investigate the effectiveness of 2D
semantic segmentation techniques in this 3D CT segmentation
problem. Specifically, we extract 2D slices from three planes of
the 3D CT volumes and train a 2D segmentation model which
is subsequently used to predict segmentation results for all the
slices from a given test CT volume. Moreover, we also evaluate
how the performance is affected when using a reduced number
of annotated slices for training. As a result, it is demonstrated
reasonable performance can be achieved with very limited
annotated slices (1-2) per CT volume during training. Finally,
we propose a semi-supervised learning framework for 3D CT
segmentation. Using only 1/128 of the total number of annotated
slices, our framework can achieve comparable performance with
full supervision.

Index Terms—3D volumetric data, X-ray computed tomog-
raphy, baggage security screening, 3D segmentation, material
discrimination.

I. INTRODUCTION

Automatic threat detection in baggage security screening en-
ables more efficient and safer transportation. Recent advances
in deep learning and image processing make it possible for
automatic threat detection in 2D X-ray and 3D Computed
Tomography (CT) baggage security imagery [1]–[6]. State-
of-the-art deep learning models for image classification and
object detection trained on ImageNet [7] and MS-COCO [8]
can be transferred to X-ray imagery by fine-tuning the pre-
trained models on relatively smaller X-ray datasets. However,
existing studies on X-ray and 3D CT imagery focus on the
detection of prohibited items such as firearms, knives and
electronics whilst overlooking contraband materials which do
not have specific shape and appearance characteristics.

To provide enhanced security screening capabilities, dual
energy 3D CT scanners are now our commonplace for both

hold and carry-on baggage screening within aviation security.
3D volumetric CT imagery provides more information for
baggage security as well as the possibility of distinguish-
ing different types of materials based on their density and
effective-Z characteristics [9]. 3D Convolutional Neural Net-
work (CNN) based methods have been used for prohibited
item detection within 3D CT imagery and achieved promising
results [4], [5], [10]–[13]. Similar to the situation in 2D X-
ray imagery [1], these approaches to prohibited item detection
rely on the specific shapes and appearances hence unsuitable
for contraband material detection.

Efforts were made towards material classification within
3D CT imagery in [6] and [14] using a hand-engineered
framework and 3D CNN based deep learning techniques,
respectively. One limitation of these existing works is the
expensive computational cost introduced by the use of 3D
CNN. In addition, annotating the 3D CT volumes is also a
laborious and time-consuming task. Earlier work on the seg-
mentation of 3D CT imagery for baggage security [6], [9], [15]
had similarly suffered from high computational cost. In this
paper, to address these problems, we explore the possibility
of replacing the 3D segmentation with its 2D counterparts for
contraband material segmentation and detection within 3D CT
imagery for baggage security screening.

Specifically, we apply the leading contemporary 2D se-
mantic segmentation methods to 2D slices extracted from
3D CT volumes and compare the performance with other
methods. Moreover, we investigate the effect of reducing the
number of annotated CT slices used for training. To ensure
the performance of segmentation and detection with a small
number of annotated slices, we propose a semi-supervised
learning framework based on pseudo-labeling and evaluate its
effectiveness via extensive experiments.

To summarize, the contributions of this paper are as follows:
• the first attempt to address contraband material detection

within volumetric 3D CT baggage security screening
imagery using deep learning based 2D semantic segmen-
tation methods.

• a semi-supervised learning framework is proposed to
enable comparable segmentation performance with a sig-



nificantly reduced number of annotated slices for training.
• extended experimentation is performed to investigate how

the number of annotated slices affects the performance of
3D CT segmentation. Using only a couple of annotated
slices per CT volume for training harms the performance
whilst the proposed semi-supervised learning framework
can boost the performance. On a 3D CT segmentation
dataset, our methods based on 2D CNN outperform
existing approaches based on 3D CNN [14] or hand-
engineered morphological operations [6].

II. RELATED WORK

In this section, we review existing works related to ours
from the perspective of object detection for baggage security
screening, material discrimination in 2D X-ray imagery, mate-
rial discrimination in 3D CT volumes and Weakly Supervised
3D Segmentation.

A. Object Detection for Baggage Security Screening

Automatic threat detection has been studied within 2D X-
ray imagery [1]–[3] and 3D CT imagery [4], [5], [10]–[13].
State-of-the-art object detection frameworks such as Faster
R-CNN [16] has been used to detect firearms, knives and
other prohibited items in 2D baggage screening imagery. Pre-
trained on large-scale ImageNet and MS-COCO, these object
detection models can be easily fine-tuned for X-ray imagery.
In [4], [5], the object detectors were adapted from 2D to 3D
and used for firearm, bottle detection within volumetric 3D CT
imagery. Promising results have been reported whilst the scale
of dataset in terms of the numbers of category and training CT
samples remains moderate compared with 2D X-ray datasets
due to the difficulties of collating, annotating and storing large
3D CT datasets.

B. Material Discrimination in 2D X-ray Imagery

There exist some limited work on material classification
based on X-ray imagery. For example, Chen et al. [17] pro-
posed a curve-based material recognition method by theoretic
analysis of X-ray imaging processing using high-energy dual
energy X-ray (6/3 MeV). Specifically, they consider the ratio
of two X-ray energies after penetrating materials, resulting in
a standard curve for a specific material which can be used to
discriminate the material from others.

Li et al. [18] proposed a dynamic material discrimination
algorithm to tackle the material overlapping problem. A dual-
energy radiograph database of both pure basis materials and
pair combinations was established. This method can only
handle the overlapping of two known materials.

Instead of using standard classification curves, Chang et al.
[19] investigate the use of machine learning methods for X-ray
imagery based material classification. In this work, different
numbers of energies are compared in terms of the classification
of metal, organic and inorganic materials. It is concluded
the use of as least as four energies could achieve reasonable
classification performance.

The X-ray technology based Explosive Detection System
(EDS) [20] used in aviation security screening is also based on
material discrimination within X-ray imagery [21]. According
to [22], each object in baggage is examined for a match to
a specific effective atomic number Zeff [23], density, and
mass threshold so that the material components of the object
can be identified. Prior knowledge is required on the typical
components of explosive and non-explosive materials (e.g.
metal, organic and inorganic materials). On the other hand,
the X-ray intensity is not only related to the material but also
related to the thickness of the materials [21] hence leading to
more complexity in cluttered baggage.

Although achievements have been made in these works,
there exist an inherent limitation of 2D X-ray imagery in
material discrimination. The overlap of different materials in
2D X-ray images can pose a significant additional challenge
in real-world applications of baggage security screening. Our
work takes the advantage of 3D CT imagery and expects to
better distinguish different types of materials especially the
target contraband ones within volumetric 3D baggage security
screening imagery.

C. Material Discrimination in 3D CT Volumes

Material discrimination within 3D baggage CT imagery
has been studied in literature [6], [14], [24]–[26]. Existing
works usually formulate it as a 3D segmentation problem
followed by classification. Early works take advantage of
the multi-energy CT data and extract discriminative hand-
crafted features from the CT images and Zeff images [24].
CT images contain density information whilst Zeff images
are the measurements of atomic numbers. Mouton et al. [25]
proposed a two-stage approach for object segmentation within
dual-energy CT imagery based on the voxel intensity ranges of
pre-defined materials followed by a classifier. Wang et al. [6]
and others [27], [28] studied the problem of adaptive automatic
threat recognition problem for baggage security screening. The
proposed solutions were also based on the segmentation and
classification of material characteristics by extracting hand-
crafted features from single-energy CT data.

More recently, 3D CNN based U-Net and its variations were
investigated for 3D CT segmentation and contraband material
detection in [14]. In addition, the volumetric 3D CT volumes
were converted into point clouds in order to offer a potentially
computationally efficient alternative processing representation.
The point clouds were subsequently processed by PointNet
[29] and PointNet++ [30]. However, these existing methods
suffer from high computational cost and have to down-sample
the CT volumes to fit within the memory constraints of a
typical GPU for model training. To solve this problem, our
work in this paper employ 2D CNN models to solve the 3D
CT segmentation problem.

D. Weakly Supervised 3D Segmentation

Annotating 3D volumetric data such as CT imagery is ex-
tremely time-consuming hence weakly supervised approaches
have been proposed for 3D segmentation without the need



of exhaustive voxel-wise annotations of training data. Weak
supervision can have varying meanings in different contexts,
such as incomplete annotations and inexact annotations. Ker-
vadec et al. [31] incorporate inequality constraints into the
loss function of CNN training so that the model trained with
a fraction of annotations achieves comparable segmentation
performance in medical image analysis with those trained
with full supervision. The constraints used in [31] are based
on the prior knowledge of target size which is reasonable
for medical image segmentation but not applicable for our
case of baggage security screening where contraband mate-
rials can be of arbitrary sizes. Xu et al. [32] addressed the
incomplete supervision problems in point cloud segmentation.
Several complementary components were combined in their
framework including an incomplete supervision branch, an
inexact supervision branch, Siamese self-supervision, spatial
and color smoothness constraints. Li et al. [33] addressed
the labelled data scarcity issue from the perspective of semi-
supervised learning. In semi-supervised learning setting for 3D
CT segmentation, training data are composed of both labelled
and unlabelled CT volumes. By contrast, our study assumes
the availability of partial annotations (e.g., only a few slices
within a CT volume are annotated) of volumetric CT data.

Pseudo-labeling is a popular technique for semi-supervised
learning and unsupervised domain adaptation problems [34].
We take advantage of this technique in our study to handle the
partially annotated training data in a semi-supervised learning
framework.

III. METHOD

In this section, we describe our proposed framework for 3D
CT volume segmentation using 2D CNN models as well as the
framework of semi-supervised learning for weakly supervised
scenarios when only a small number of annotated slices are
available per CT volume. In addition, we also describe how
to perform the contraband material detection based on the
segmentation results in the real-world application of baggage
security screening.

A. 3D CT Segmentation Using 2D Segmentation Frameworks

In this work, we leverage leading contemporary archi-
tectures for semantic segmentation to solve our problem in
3D CT segmentation. We use Fully Convolutional Networks
(FCN) [35], [36], one of the most popular frameworks for
semantic segmentation in our work with ResNet101 [37] as
the backbone. The classifier layer and the fully-connected
layers in the original ResNet101 architecture are replaced with
convolutional layers to output segmentation maps. The final
segmentation map contains the predicted category index for
each pixel. For more details of FCN and ResNet101 we refer
the readers to [35] and [37] respectively. Here we focus more
on the framework of applying the segmentation model to 3D
CT segmentation.

Figure 1 shows the schematic pipelines of training and
testing the segmentation model. As depicted in the figure, a 3D
CT volume can be represented within a 3D coordinate system
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Fig. 1. The framework of 3D CT segmentation using 2D segmentation
networks FCN.

XY Z where Z axis is the direction of scanner tunnel and the
XY plane is the scanning plane. Given a volumetric 3D CT
volume of size W×H×N , we can extract 2D slices from three
planes. As a result, the numbers of extracted 2D slices from
XY, XZ and YZ planes will be N , W and H , respectively. For
training data, the corresponding label volumes can be sliced
into 2D labels associated with the 2D slices in the same way.
As a result, four different models can be trained by using
different sets of training slices (i.e. XY, XZ, YZ and All).

As indicated by the “red” pipeline in Figure 1, these four
trained models can be subsequently used for prediction. The
slices from one single plane are enough to form the final
segmentation results for the 3D volume. We can have three
options by using slices extracted from three different planes
to do the prediction and form the 3D segmentation results.
In addition, the three different segmentation results can be
combined using majority voting towards more accurate results.

B. Semi-supervised Learning with Pseudo-labeling

In previous section, we assume the existence of annotated
3D volumes. However, the annotation of 3D CT volumes are
laborious and time-consuming. In this section, we employ
semi-supervised learning for segmentation so that the amount
of annotated slices required for training can be significantly
reduced.

The semi-supervised learning framework is illustrated in
Figure 2. Assuming there are only a couple of annotated slices
in a given 3D CT volume (indicated by the yellow color)
in a specific plane, we use these annotated slices to train a
segmentation model, i.e. FCN (XZ) in our case. The model can
be used to predict the segmentation results of other unlabeled
slices in the training data. The prediction (indicated by the red
color) can be noisy but provide additional supervision based
on which we train a second segmentation model. The second
model is trained based on all pseudo-labeled slices from three
planes, hence denoted as FCN (All) in Figure 2.
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Fig. 3. The pipeline of post-processing using morphological operations to
convert segmentation results to detection results.

C. Contraband Material Detection by Segmentation

In the baggage security screening, we expect to detect
contraband materials based on the segmentation results. To
this end, we follow [14] and convert the segmentation results
to detection results in the post-processing stage. Specifically,
we group the connected voxels which are labelled as the same
class as a detected object. To these ends, we use morpholog-
ical operations to correct the mislabeling information in the
segmentation results.

The pipeline of post-processing is shown in Figure 3.
For each foreground class, we apply dilation and erosion
operations sequentially to the binary segmentation map to
correct the missing voxel labels within the detected objects.
A sphere structural element is used for 3D dilation and ero-
sion. Subsequently, the connected component labeling (CCL)
algorithm is employed to group the labelled voxels into a set
of potential detected objects. We prune the detection results
by removing the objects whose volumes are smaller than
a pre-defined threshold. In our experiment, the threshold is
empirically set, as V/10e4 where V = WHN is the number
of voxels in the 3D CT volume. After the post-processing, we
obtain the locations and material types of a list of detected
objects in a given CT volume.

IV. EXPERIMENTS AND RESULTS

In this section, we present details of datasets and evaluation
metrics used in the experiments, followed by experimental set-
tings and results. Three experiments are conducted to evaluate
the effectiveness of the proposed methods. The first experiment
is designed to compare the performance of 2D segmentation
and its 3D counterparts including different variations of 3D U-
Net and PointNet. In the second experiment, we investigate the

effect of number of annotated slices used for training. Finally,
we evaluate the proposed semi-supervised framework for 3D
CT segmentation.

A. Dataset

We follow [6], [14] and use the Northestern University
Automated Threat Recognition (NEU ATR) dataset [38] col-
lected and annotated by NEU ALERT [27] throughout our
experiments in this study. Baggage CT volumes were collected
by a medical CT scanner (Imatron C-300). The slice size is
512×512 corresponding to the field view of 475 mm×475
mm hence the in-plane pixel size is 0.928 mm. The number
of slices varies in different volumes and the slice spacing is 1.5
mm. Pixel values are represented by the Modified Hounsfield
Unit (MHU) ranging from 0 to 32,767 MHU in which air and
water are 0 and 1024 respectively.

The ATR dataset consists of 188 CT volumes in which
there are 446 object signatures of three target materials (i.e.
saline, rubber and clay) and other non-target materials as
cluttered background of typical packed baggage. The ground
truth voxels are labelled by NEU ALERT for all the objects of
three target materials. We follow [6] to split the whole dataset
into two subsets evenly: odd set and even set containing 94 odd
and even indexed volumes respectively. In our experiments, we
use one subset for training and the other for testing.

B. Evaluation Metrics

We follow previous works [6], [14] and use three groups
of evaluation metrics in our experiments. The first one is
the mean Intersection over Union (IoU) which is a typical
evaluation metric for semantic segmentation as the contraband
materials detection has been formulated as a semantic segmen-
tation problem. The IoU is computed for each class and the
mean IoU is the mean of each IoU for all classes. Although the
proposed method works on 2D slices, the IoUs are computed
based on 3D volumes.

In addition, we evaluate the performance of contraband
materials detection. The detection results are obtained after
post-processing the segmentation results (c.f. Section III-C).
To this end, we use the second group of evaluation metrics
precision and recall which are computed based on detection
results.

The third group of evaluation metrics are similar to typical
ones for object detection (i.e. precision and recall in the second
group) but concern the Probability of Detection (PD) and the
Probability of False Alarms (PFA) which have been used in
[6]. PD is similar to recall and the main difference is that
PD is computed over all detections regardless of their classes
whilst recall is computed class-wisely. PD is defined in this
way so that the detection model focuses more on the difference
between contraband materials and benign ones rather than the
difference between different types of contraband materials.
PFA is defined as the ratio of the number of falsely detected
non-threat signatures to the total number of non-threats in the
CT images.



C. Implementation Details

We use the open-source 2D segmentation tool MMSegmen-
tation developed by [39]. Fully Convolutional Networks (FCN)
[36] is selected as the segmentation model and ResNet101
[37] is used as the backbone in our experiments. The SGD
optimizer is used for training with the learning rate of 0.01,
the momentum of 0.9 and the weight decay of 0.0005. A
polynomial learning rate decay [40] is used with the minimum
learning rate of 1e-4. Different numbers of training iterations
1 (e.g., 20k, 40k, 80k and 160k) are investigated in our
preliminary experiments and the number of 80k is chosen
as the trade-off between performance and efficiency in the
following experiments.

TABLE I
THE EFFECT OF TRAINING/PREDICTING WITH SLICES EXTRACTED FROM

DIFFERENT PLANES IN TERMS OF IOU.

Training Predict Background Saline Rubber Clay mIoU

XY

XY 99.5 49.4 60.0 67.8 69.2
XZ 99.5 41.4 50.9 65.9 64.4
YZ 99.3 13.9 28.7 54.7 49.1
All 99.6 42.6 59.9 72.1 68.5

XZ

XY 99.2 37.1 49.0 62.8 62.0
XZ 99.6 57.4 60.4 71.7 72.3
YZ 99.3 22.8 35.5 61.5 54.8
All 99.6 49.5 62.2 73.2 71.1

YZ

XY 99.1 22.4 41.2 46.3 52.2
XZ 99.2 21.5 45.7 58.1 56.1
YZ 99.5 44.0 57.6 68.0 67.3
All 99.4 28.4 57.0 67.1 63.0

All

XY 99.4 52.1 57.6 70.0 69.8
XZ 99.6 57.6 65.2 75.8 74.5
YZ 99.4 45.5 58.5 72.9 69.1
All 99.6 59.0 68.9 78.3 76.5

D. On the Effect of Slice Planes

We conduct experiments to investigate the effect of train-
ing/predicting with slices extracted from different planes (i.e.
XY, XZ or YZ). On one hand, we use annotated slices ex-
tracted different planes for training and report the segmentation
performance in terms of IoU. On the other hand, we predict the
final 3D segmentation results by stacking the segmented slices
extracted from different planes. In addition, we consider using
slices from all planes by combining all slices during training
and via the majority voting method during prediction.

The results are reported in Table I from which the following
conclusions can be drawn. Firstly, when training on one plane,
prediction within the same plane gives better results than
prediction within the other planes. Secondly, among the three
planes, training and prediction within the XZ plane gives the
best performance. Given that XZ plane is not the plane in
which CT slices are internally reconstructed by the scanner,
such a finding is interesting and worth a further investigation
across larger dataset availability. Finally, the combination of
slices from all three plane orientations benefits the training of
segmentation models, but is not always helpful for prediction
except the case of last row in Table I where all the slices are
also used for training.

1One iteration processes one batch of data and updates the parameters.

TABLE II
SEGMENTATION PERFORMANCE (IOU) OF THE PROPOSED

SEMI-SUPERVISED LEARNING METHOD.

Method Predict Background Saline Rubber Clay mIoU

Supervised

XY 99.3 32.2 47.2 48.8 56.9
XZ 99.4 40.5 49.8 58.4 62.0
YZ 99.3 18.8 22.6 50.8 47.9
All 99.5 32.2 52.8 60.8 61.3

Semi-Supervised

XY 99.5 49.8 59.2 68.4 69.2
XZ 99.6 57.6 65.2 74.5 74.2
YZ 99.5 44.7 57.8 72.5 68.6
All 99.6 59.4 69.1 77.6 76.4

TABLE III
IOU RESULTS OF MATERIAL SEGMENTATION WITHIN 3D CT VOLUMES ON
NEU ATR DATASET (* DENOTES THE NUMBER OF ANNOTATED SLICES IS

SIGNIFICANTLY REDUCED TO 1/128 OF THE FULL ANNOTATIONS).

Method Background Saline Rubber Clay mIoU
PointNet [14] 99.0 15.7 15.5 31.0 40.3
PointNet++ [14] 98.9 39.8 28.2 61.9 57.2
3D U-Net [14] 99.6 64.9 63.0 72.5 75.0
Resisual 3D U-Net [14] 99.6 67.4 64.6 67.9 74.9
Ours 2D FCN 99.6 59.0 68.9 78.3 76.5
Ours 2D FCN * 99.5 32.2 52.8 60.8 61.3
Ours 2D FCN *(semi-supervised) 99.6 59.4 69.1 77.6 76.4

E. On the Number of Annotated Slices

In this experiment, we aim to investigate how the segmen-
tation performance will be affected by reducing the number
of the annotated slices. We extract annotated slices from
the XZ plane since it has demonstrated XZ plane gives the
best performance in the previous subsection. To simulate
the situation when we only annotate a fraction of slices for
training, we sample annotated slices evenly by a factor of
f ∈ {2, 4, 6, 8, 16, 32, 64, 128} and use the sampled slices
for training. Once the models are trained, the slice-wise
segmentation results are stacked to form the final 3D volume
segmentation results. Similar to the previous experiments, the
prediction can be done in either of three planes or by the
combination of all planes.

The experimental results are shown in Figure 4. The
segmentation performance for three target materials saline,
rubber, clay and the mean IoU over these three materials
are presented in four plots respectively. In each plot, the seg-
mentation performances based on slices within three different
planes and their combination are compared. From Figure 4
we can see that segmentation performance drops when less
annotated slices (i.e. greater down-sampling factors) are used
for training. The performance drop is not significant when the
down-sampling factor f increases from 1 to 16, which means
the existence of redundancy in the fully annotated training
data. However, when the down-sampling factor f increases
further to 32, 64 and 128, clear performance drops can be
observed for most cases shown in Figure 4. In particular, when
the down-sampling factor f is as high as 128, equivalent to
using an average of ~1-2 annotated slices per CT volume for
training, the segmentation performance in terms of mIoU is
61.3% which is not a drastically reduced level of performance
when compared with the mIoU of 71.1% achieved with a full
set of training annotations (i.e. no down sampling, factor f=1).
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Fig. 4. Segmentation performance with different slice sampling factors f (i.e. 1/f of the annotated CT slices are evenly sampled from the CT volumes for
training).

TABLE IV
PRECISION AND RECALL RESULTS OF MATERIAL SEGMENTATION WITHIN 3D CT VOLUMES ON NEU ATR DATASET (* DENOTES THE NUMBER OF

ANNOTATED SLICES IS SIGNIFICANTLY REDUCED TO 1/128 OF THE FULL ANNOTATIONS).

Method Saline Rubber Clay Overall
P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

PointNet [14] 35.0 62.8 40.4 56.8 58.2 73.6 44.5 64.4
PointNet++ [14] 41.9 84.1 59.7 58.9 60.1 76.9 53.9 73.3
3D U-Net [14] 71.8 91.0 87.4 92.5 94.6 85.8 84.6 89.8
3D Residual U-Net [14] 78.4 82.5 87.8 87.3 90.4 91.3 85.5 87.1
Ours 2D FCN 83.1 77.6 87.2 94.9 98.1 89.7 89.5 87.4
Ours 2D FCN * 82.1 52.0 86.7 87.8 95.3 83.5 88.0 74.4
Ours 2D FCN * (semi-supervised) 84.1 76.3 91.5 94.9 98.1 91.4 91.2 87.5

TABLE V
PD AND PFA RESULTS OF MATERIAL SEGMENTATION WITHIN 3D CT

VOLUMES ON NEU ATR DATASET (* DENOTES THE NUMBER OF
ANNOTATED SLICES IS SIGNIFICANTLY REDUCED TO 1/128 OF THE FULL

ANNOTATIONS).

Method PD (%) PFA (%)
Saline Rubber Clay Overall Overall

SVM [6] 87 95 96 92 24
PointNet [14] 81 84 88 84 29
PointNet++ [14] 97 87 94 92 24
3D U-Net [14] 91 97 83 91 6
3D Residual U-Net [14] 86 92 92 90 4
Ours 2D FCN 72 87 88 82 3
Ours 2D FCN * 46 86 86 72 3
Ours 2D FCN * (semi-supervised) 78 100 92 90 3

F. Semi-supervised Learning with Pseudo-labeling

In the previous experiment, it has been demonstrated using
only ~1-2 annotated slices per CT volume for training can
achieve reasonably good segmentation performance. In this
experiment, we aim to investigate how the proposed semi-
supervised learning with pseudo-labeling can further improve
the performance. We employ the method described in Section
III-B and use down-sampled (f = 128) annotated slices
from plane XZ to train the initial segmentation model. This
model is then used to segment the slices which are not used
for training (i.e. the simulation of unlabeled slices in real-
world applications). As a result, the training CT volumes are
fully pseudo-labelled which are then subsequently used for
training a second segmentation model with extracted pseudo-
labelled slices from all three planes. The performance of the
final segmentation model trained in such a semi-supervised
learning way is shown in Table II. Compared with the results

of supervised learning, the proposed semi-supervised learning
method significantly improves the segmentation performance
in all cases. In particular, the best performance of the semi-
supervised learning method is achieved by using an ensemble
of three planes in prediction. The best mIoU of 76.4% is
comparable with the performance when all annotated slices
are used (mIoU=76.5% in Table I), which is impressive given
the fact only ~1-2 annotated slices are needed per CT volume.

G. Comparison with 3D Segmentation

Prior work has investigated to use 3D CNN for material
segmentation and detection in [14]. In addition, volumetric 3D
CT volumes are converted to point clouds on which PointNet
[29] and PointNet++ [30] are employed for 3D segmentation
to save GPU memory during training. In this experiment,
we compare our proposed method with those based on 3D
segmentation in [14].

Following [14], we evaluate the performance using three
metrics (i.e. IoU, precision/recall and PD/PFA) and report the
comparison results in Tables III-V. We compare against the
best reported results of 3D segmentation based methods (i.e.
PointNet [29], PointNet++ [30], 3D U-Net [41] and Residual
3D U-Net [42]) in [14]. It is clearly shown that our 2D FCN
method achieves superior performance than its 3D counterparts
in terms of mIoU and precision/recall. In addition, when the
number of annotated slices for training is significantly reduced
to 1/128 of the full annotation (equivalent to ~1-2 slices per CT
volume), the proposed semi-supervised learning method can
still achieve state-of-the-art performance with overall mIoU
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Fig. 5. Qualitative evaluation of detection results of different approaches (from left to right: CT volumes, ground truth labels, our proposed 2D FCN using
semi-supervised learning, 3D Residual U-Net [14]), 2D FCN without semi-supervised learning).

of 76.4%, overall precision/recall of 91.2%/87.5% and overall
PD/PFA of 90%/3%.

Figure 5 presents a qualitative comparison between 2D and
3D CNN based approaches. From the leftmost column to the
right, we present the CT volumes, ground truth labels, segmen-
tation results of our proposed 2D FCN with pseudo-labeling
based semi-supervised learning using reduced annotated slices,
results of 3D Residual U-Net with full annotation, results
of 2D FCN without semi-supervised learning using reduced
annotated slices, respectively. Four examples are shown in
Figure 5 from which we can clearly see that our proposed
2D FCN with semi-supervised learning achieves the best
segmentation results than other two approaches. 3D Residual
U-Net suffers from missing labeling whilst 2D FCN without
semi-supervised learning is prone to voxel misclassification.

V. CONCLUSION

In this paper, we investigate the possibility of using 2D CNN
semantic segmentation methods for 3D CT segmentation and
achieved comparable performance with its 3D counterparts
in [14]. The use of 2D segmentation relaxes the require-
ment of high-level computational resources during training.
More importantly, the success of semi-supervised 2D slice

segmentation framework for 3D CT segmentation enables us
to annotate a small number of slices per CT volume hence
to more readily scale future baggage screening datasets for
contraband material detection.

One limitation of the this work is that only three target
materials are considered in our experiments due to the con-
straints of dataset availability. In the future we will investigate
further experimentation using a larger and more varied dataset.
Although we have demonstrated promising results in our
experiments, the effectiveness of the proposed approach in
real-world applications is yet to be validated.
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