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Abstract— Many researchers have started extracting student 

behaviour by cleaning data collected from web environments and 

using it as features in machine learning (ML) models. Using log 

data collected from an online judge, we have compiled a set of 

successful features correlated with the student grade and applying 

them on a database representing 486 CS1 students. We used this 

set of features in ML pipelines which were optimised, featuring a 

combination of an automated approach with an evolutionary 

algorithm and hyperparameter-tuning with random search. As a 

result, we achieved an accuracy of 75.55%, using data from only 

the first two weeks to predict the student final grades. We show 

how our pipeline outperforms state-of-the-art work on similar 

scenarios. 
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I.  INTRODUCTION 

Educational researchers point to the need of identifying 
students with difficulties as early as possible [4,6]. A 
remarkable study [6] states that, whilst there are many 
predictive methods available, these works need to be 
replicated since many works focus on simplistic metric 
analysis. Additionally, our work focus on Programming 
Online Judge (POJ) systems, which are more complex and 
rich in interaction types than regular online learning 
environments. We have identified features that are being 
used in state-of-the-art researches targeting the same 
problem and, in this paper, we compile the best ML 
attributes found, as well as propose new ones, in order to 
find the best combination of ML features. We called this 
feature set the programming profile and we apply it to a 
database of behaviour collected from 486 CS1 students.  

The programming profile is then applied, in order to 
produce ML models, which aim at predicting whether the 
student would achieve a grade less than 5 or not in a set of 
seven exams applied throughout the course and in the final 
examination (with ’5’ being the passing grade). Additionally, 
in order to perform optimisation in the ML pipelines, we 
used a combination of an automated approach with an 
evolutionary algorithm and hyperparameter-tuning with 
random search. 

II. METHODOLOGY 

The method proposed in this research uses evidence 
drawn from students' attempts to solve programming 
problems presented as problem lists, performed in a POJ 
called CodeBench, which was implemented by one of the 
authors. These activities are followed by an exam. We call 
each pair formed of a programming problem list and an 

exam a session. In total, 7 sessions (S1 to S7) were held 
throughout the course, lasting a little over 2 weeks each. For 
the training of machine learning algorithms, we use only the 
data from the first session (first two weeks), since the 
purpose of this study is to investigate early predictors. We 
hypothesised that the programming student behaviour from 
the first session (variables and sequential structure) is enough 
to achieve a desired accuracy throughout the CS1 course. To 
do so, we conducted two experiments.  In Experiment 1 (E1), 
we used only data from S1 to predict the exams grades in all 
subsequent sessions. In addition, we predicted the final grade 
of the students using only the data from S1, which we called 
Experiment 2 (E2). 

A ‘programming profile’ for each student in each session 
was constructed by using twenty code metrics (M1 to M20) 
which represented metrics proposed by state-of-the-art 
studies, and others proposed by ourselves. This 'student 
programming profile' was then digitally represented as a 
feature matrix. The features are listed below, and sources are 
given; the ones without sources are self-devised: 
comment_num (M1): average number of comments for 
each submitted code [10]; blank_num (M2): average blank 
lines for each submitted code [10]; loc (M3): average 
number of lines for each submitted code [10]; lloc (M4): 
average number of logical lines for each submitted code 
[10]; IDE_time (M5): total time spent, in minutes, by the 
students solving problems in the embedded IDE (counted 
only when the student was typing); code_ratio (M6): ratio 
between M3 and M5 [10]; log_lines (M7): average log lines 
on attempt to solve problems. To illustrate, each time the 
student presses a button in the embedded IDE of the POJ, 
this event is stored as a line in a log file (Adapted from [4, 
8]); correctness (M8): average of test cases passed for each 
problem [4]; correctness_with_effort (M9): represents the 
same as M8, but in this case we considered correct only 
student solutions with more than 50 log_lines; access_num 
(M10): number of student logins between the beginning and 
end of a session; attempts_num (M11): average of 
submission attempts for each problem [4]; 
coefficient_of_variation (M12):  ratio  between  the  
standard deviation and the mean of the number of 
submissions for each problem; engagement (M13): a binary 
feature (0 when the M11 decreases between two sessions and 
otherwise 1); tests (M14): average number of tests; 
prop_paste (M15): proportion between pasted characters 
(‘ctrl+V’) and characters typed; keystroke_latency (M16):  
keystroke  latency  of  the  students when typing in the 
embedded IDE (adapted from [8]); delete_average (M17): 
average of deleted characters for each problem; 
success_prop (M18): ratio between the number of solutions 



accepted and the num_attempts [4]; syntax_error (M19): 
ratio between the submissions with the syntax error and the 
num_attempts (Adapted from [7])); difficulty_reported 
(M20): difficulty level reported [1-3] by the students when 
they were solving the problems. 

III. RESULTS AND DISCUSSION 

We used an automated ML approach Tree-based Pipeline 
Optimization Tool (TPOT), which is an off-the-shelf tool to 
construct and optimise an entire ML pipeline. TPOT uses a 
genetic algorithm over existing implementations of the well-
reputed ML library scikit-learn. It provides automatic 
preprocessing, feature construction, feature selection, model 
selection and hyperparameter tuning. Thus, the main idea of 
TPOT is to find, in a large search space, a good ML pipeline, 
which best fits the data, by using a guided search based on a 
version of the famous multi-objective genetic algorithm 
NSGA-II. The output of the TPOT is a configuration of a 
ML model that can be used to predict the targets of new data. 
In spite of the fact that TPOT could provide the above 
described optimisation, we noticed that for our database, the 
exported pipelines had some room for improvements. Thus, 
we propose and performed a second step in the process of 
ML pipeline optimisation: we applied random search, to find 
the best models’ hyperparameters, after the predictive model 
was obtained by TPOT.  

As the database was unbalanced, we used cost-sensitive 
classifiers in the random search hyperparameter optimisation 
step. Models were evaluated using these statistical measures: 
True Positive Rate (TPR), True Negative Rate (TNR), and 
accuracy (Acc.) All these aforementioned performer metrics 
were calculated using 30% of data separated for validation. 
We performed the optimisation process with the remaining 
70% of the data with cross-validation (10 folds).  

Table 1 shows the evaluation of the best models found 
from E1. On the other hand, in E2 we achieved an accuracy 
of 75.55%. Comparatively, prior predictive study [8] 
obtained their highest accuracy using data from a larger 
amount of time (week 1 to 8), being 71.8% and [4] achieved 
72.90% of accuracy using data from the first four weeks. 
Whilst these were applied to different databases, they were 
performed in similar educational settings to our study 

TABLE I.  RESULTS FROM EXPERIMENT 1. 

Session Acuracy TPR TNR Model 

S2 77.29% 83.63% 62.39% RF 

S3 71.50% 71.15% 71.95% XGB 

S4 69.52% 77.31% 54.47% ERT 

S5 67.77% 73.26% 60.68% RF 

S6 71.51% 78.23% 60.97% ERT 

S7 68.40% 69.06% 67.85% RF 

TPR e TNR values showed that the estimators segregated 
the students well into those who were struggling and who 
were not. Since the performance of the models keep 
reasonable through the sessions, we can state that the code 
metrics presented in our programming profile have a short-
term and long-term relationship with the student 

performance and can be employed to design early predictors. 
Note that if the instructor monitors the student performance 
in the first two weeks, some precautions could be taken, in 
order to avoid students failing in the exams and, hence, 
potentially failing in the course. Furthermore, the instructor 
may create exams more suited to the reality of his class and 
possibly tailor problem lists to individual student needs. 

In addition, we observed that the importance of the 
features of the programming profile varies across the 
sessions. Thus, we cannot extract a homogeneous set of the 
most important features for the entire course. Instead, for 
each session, we can point out the most important ones. To 
do this, we used the best classifiers found for each session 
and applied feature selection embedded methods during the 
execution of the estimators to analyse five most important 
features. In overall, M8, M9 and M11 (witch quantifies 
success on the programming problem lists) appear with more 
frequency in the set of most important features. Indeed, M11 
occurred in all the sessions. However, we have found, 
additionally, that there were some occurrences of metrics 
M17 and M19 in the top five. Such metrics superficially 
quantify students’ errors, so they can be useful for 
identifying students with difficulty. M7 is shown in the top 
five for sessions S1 and S4, which supports the importance 
of the number of log lines as a relevant metric to predict the 
student performance and, hence, the importance of a 
keystroke level data collection.  

Concluding, we believe that these top features might be 
generalised for other contexts, as they do not depend on 
nuances of a given compilation message, or a specific 
programming language or web-based system. Furthermore, 
these features may not have a high relevance in isolation; 
however, together they have a reasonable predictive power. 
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