
Early performance prediction for CS1 course students using a combination of

machine learning and an evolutionary algorithm

Filipe D. Pereira (filipe.dwan@ufrr.br)

Department of Computer Science

Federal University of Roraima

Boa Vista, Brazil

Elaine Oliveira, David Fernandes

Computer Institute

Federal University of Amazon

Manaus, Brazil

Alexandra Cristea

Department of Computer Science

Durham University

Durham, United Kingdom

Abstract— Many researchers have started extracting student

behaviour by cleaning data collected from web environments and

using it as features in machine learning (ML) models. Using log

data collected from an online judge, we have compiled a set of

successful features correlated with the student grade and applying

them on a database representing 486 CS1 students. We used this

set of features in ML pipelines which were optimised, featuring a

combination of an automated approach with an evolutionary

algorithm and hyperparameter-tuning with random search. As a

result, we achieved an accuracy of 75.55%, using data from only

the first two weeks to predict the student final grades. We show

how our pipeline outperforms state-of-the-art work on similar

scenarios.

Keywords-component; online judge, learner analytics,

genetic algorithms, machine learning, data-driven, code metrics

I. INTRODUCTION

Educational researchers point to the need of identifying
students with difficulties as early as possible [4,6]. A
remarkable study [6] states that, whilst there are many
predictive methods available, these works need to be
replicated since many works focus on simplistic metric
analysis. Additionally, our work focus on Programming
Online Judge (POJ) systems, which are more complex and
rich in interaction types than regular online learning
environments. We have identified features that are being
used in state-of-the-art researches targeting the same
problem and, in this paper, we compile the best ML
attributes found, as well as propose new ones, in order to
find the best combination of ML features. We called this
feature set the programming profile and we apply it to a
database of behaviour collected from 486 CS1 students.

The programming profile is then applied, in order to
produce ML models, which aim at predicting whether the
student would achieve a grade less than 5 or not in a set of
seven exams applied throughout the course and in the final
examination (with ’5’ being the passing grade). Additionally,
in order to perform optimisation in the ML pipelines, we
used a combination of an automated approach with an
evolutionary algorithm and hyperparameter-tuning with
random search.

II. METHODOLOGY

The method proposed in this research uses evidence
drawn from students' attempts to solve programming
problems presented as problem lists, performed in a POJ
called CodeBench, which was implemented by one of the
authors. These activities are followed by an exam. We call
each pair formed of a programming problem list and an

exam a session. In total, 7 sessions (S1 to S7) were held
throughout the course, lasting a little over 2 weeks each. For
the training of machine learning algorithms, we use only the
data from the first session (first two weeks), since the
purpose of this study is to investigate early predictors. We
hypothesised that the programming student behaviour from
the first session (variables and sequential structure) is enough
to achieve a desired accuracy throughout the CS1 course. To
do so, we conducted two experiments. In Experiment 1 (E1),
we used only data from S1 to predict the exams grades in all
subsequent sessions. In addition, we predicted the final grade
of the students using only the data from S1, which we called
Experiment 2 (E2).

A ‘programming profile’ for each student in each session
was constructed by using twenty code metrics (M1 to M20)
which represented metrics proposed by state-of-the-art
studies, and others proposed by ourselves. This 'student
programming profile' was then digitally represented as a
feature matrix. The features are listed below, and sources are
given; the ones without sources are self-devised:
comment_num (M1): average number of comments for
each submitted code [10]; blank_num (M2): average blank
lines for each submitted code [10]; loc (M3): average
number of lines for each submitted code [10]; lloc (M4):
average number of logical lines for each submitted code
[10]; IDE_time (M5): total time spent, in minutes, by the
students solving problems in the embedded IDE (counted
only when the student was typing); code_ratio (M6): ratio
between M3 and M5 [10]; log_lines (M7): average log lines
on attempt to solve problems. To illustrate, each time the
student presses a button in the embedded IDE of the POJ,
this event is stored as a line in a log file (Adapted from [4,
8]); correctness (M8): average of test cases passed for each
problem [4]; correctness_with_effort (M9): represents the
same as M8, but in this case we considered correct only
student solutions with more than 50 log_lines; access_num
(M10): number of student logins between the beginning and
end of a session; attempts_num (M11): average of
submission attempts for each problem [4];
coefficient_of_variation (M12): ratio between the
standard deviation and the mean of the number of
submissions for each problem; engagement (M13): a binary
feature (0 when the M11 decreases between two sessions and
otherwise 1); tests (M14): average number of tests;
prop_paste (M15): proportion between pasted characters
(‘ctrl+V’) and characters typed; keystroke_latency (M16):
keystroke latency of the students when typing in the
embedded IDE (adapted from [8]); delete_average (M17):
average of deleted characters for each problem;
success_prop (M18): ratio between the number of solutions

accepted and the num_attempts [4]; syntax_error (M19):
ratio between the submissions with the syntax error and the
num_attempts (Adapted from [7])); difficulty_reported
(M20): difficulty level reported [1-3] by the students when
they were solving the problems.

III. RESULTS AND DISCUSSION

We used an automated ML approach Tree-based Pipeline
Optimization Tool (TPOT), which is an off-the-shelf tool to
construct and optimise an entire ML pipeline. TPOT uses a
genetic algorithm over existing implementations of the well-
reputed ML library scikit-learn. It provides automatic
preprocessing, feature construction, feature selection, model
selection and hyperparameter tuning. Thus, the main idea of
TPOT is to find, in a large search space, a good ML pipeline,
which best fits the data, by using a guided search based on a
version of the famous multi-objective genetic algorithm
NSGA-II. The output of the TPOT is a configuration of a
ML model that can be used to predict the targets of new data.
In spite of the fact that TPOT could provide the above
described optimisation, we noticed that for our database, the
exported pipelines had some room for improvements. Thus,
we propose and performed a second step in the process of
ML pipeline optimisation: we applied random search, to find
the best models’ hyperparameters, after the predictive model
was obtained by TPOT.

As the database was unbalanced, we used cost-sensitive
classifiers in the random search hyperparameter optimisation
step. Models were evaluated using these statistical measures:
True Positive Rate (TPR), True Negative Rate (TNR), and
accuracy (Acc.) All these aforementioned performer metrics
were calculated using 30% of data separated for validation.
We performed the optimisation process with the remaining
70% of the data with cross-validation (10 folds).

Table 1 shows the evaluation of the best models found
from E1. On the other hand, in E2 we achieved an accuracy
of 75.55%. Comparatively, prior predictive study [8]
obtained their highest accuracy using data from a larger
amount of time (week 1 to 8), being 71.8% and [4] achieved
72.90% of accuracy using data from the first four weeks.
Whilst these were applied to different databases, they were
performed in similar educational settings to our study

TABLE I. RESULTS FROM EXPERIMENT 1.

Session Acuracy TPR TNR Model

S2 77.29% 83.63% 62.39% RF

S3 71.50% 71.15% 71.95% XGB

S4 69.52% 77.31% 54.47% ERT

S5 67.77% 73.26% 60.68% RF

S6 71.51% 78.23% 60.97% ERT

S7 68.40% 69.06% 67.85% RF

TPR e TNR values showed that the estimators segregated
the students well into those who were struggling and who
were not. Since the performance of the models keep
reasonable through the sessions, we can state that the code
metrics presented in our programming profile have a short-
term and long-term relationship with the student

performance and can be employed to design early predictors.
Note that if the instructor monitors the student performance
in the first two weeks, some precautions could be taken, in
order to avoid students failing in the exams and, hence,
potentially failing in the course. Furthermore, the instructor
may create exams more suited to the reality of his class and
possibly tailor problem lists to individual student needs.

In addition, we observed that the importance of the
features of the programming profile varies across the
sessions. Thus, we cannot extract a homogeneous set of the
most important features for the entire course. Instead, for
each session, we can point out the most important ones. To
do this, we used the best classifiers found for each session
and applied feature selection embedded methods during the
execution of the estimators to analyse five most important
features. In overall, M8, M9 and M11 (witch quantifies
success on the programming problem lists) appear with more
frequency in the set of most important features. Indeed, M11
occurred in all the sessions. However, we have found,
additionally, that there were some occurrences of metrics
M17 and M19 in the top five. Such metrics superficially
quantify students’ errors, so they can be useful for
identifying students with difficulty. M7 is shown in the top
five for sessions S1 and S4, which supports the importance
of the number of log lines as a relevant metric to predict the
student performance and, hence, the importance of a
keystroke level data collection.

Concluding, we believe that these top features might be
generalised for other contexts, as they do not depend on
nuances of a given compilation message, or a specific
programming language or web-based system. Furthermore,
these features may not have a high relevance in isolation;
however, together they have a reasonable predictive power.

REFERENCES

[1] K. Castro-Wunsch, A. Ahadi, and A. Petersen. 2017. Evaluating
Neural Networks as a Method for Identifying Students in Need of
Assistance. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. ACM, 111–116.

[2] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler, J. Börstler, S. H
Edwards, E. Isohanni, A. Korhonen, A. Petersen, K. Rivers, et al.
2015. Educational data mining and learning analytics in
programming: Literature review and case studies. In Proceedings of
the 2015 ITiCSE on Working Group Reports. ACM, 41–63.

[3] M. C Jadud. 2006. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second international
workshop on Computing education research. ACM, 73–84.

[4] Leinonen, J., Longi, K., Klami, A., & Vihavainen, A. "Automatic
inference of programming performance and experience from typing
patterns." Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 2016.

[5] R. S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore.
2016. Evaluation of a tree-based pipeline optimization tool for
automating data science. In Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference. ACM, 485–492.

[6] Dwan, Filipe, Elaine Oliveira, and David Fernandes. "Predição de
Zona de Aprendizagem de Alunos de Introdução à Programação em
Ambientes de Correção Automática de Código." Brazilian
Symposium on Computers in Education. Vol. 28. No. 1. 2017.

[7] J. Otero, L. Junco, R. Suarez, A. Palacios, I. Couso, and L. Sanchez.
2016. Finding informative code metrics under uncertainty for
predicting the pass rate of online courses. 373 (2016), 42–56.

