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Abstract

We present DurLAR, a high-fidelity 128-channel 3D Li-
DAR dataset with panoramic ambient (near infrared) and
reflectivity imagery, as well as a sample benchmark task us-
ing depth estimation for autonomous driving applications.
Our driving platform is equipped with a high resolution 128
channel LiDAR, a 2MPix stereo camera, a lux meter and
a GNSS/INS system. Ambient and reflectivity images are
made available along with the LiDAR point clouds to facil-
itate multi-modal use of concurrent ambient and reflectivity
scene information. Leveraging DurLAR, with a resolution
exceeding that of prior benchmarks, we consider the task of
monocular depth estimation and use this increased avail-
ability of higher resolution, yet sparse ground truth scene
depth information to propose a novel joint supervised/self-
supervised loss formulation. We compare performance over
both our new DurLAR dataset, the established KITTI bench-
mark and the Cityscapes dataset. Our evaluation shows our
joint use supervised and self-supervised loss terms, enabled
via the superior ground truth resolution and availability
within DurLAR improves the quantitative and qualitative
performance of leading contemporary monocular depth es-
timation approaches (RMSE = 3.639, SqRel = 0.936).

1. Introduction
LiDAR (Light Detection and Ranging) is one of the core
perception technologies enabling future self-driving vehi-
cles and advanced driver assistance systems (ADAS). Mul-
tiple datasets featuring LiDAR have been proposed to eval-
uate semantic in geometric scene understanding tasks such
as depth estimation, object detection, visual odometry, op-
tical flow and tracking [30, 49, 24, 11, 35, 34, 10, 44,
53, 52]. Based on this existing dataset provision, var-
ious architectures have been proposed for LiDAR based
scene understanding in this domain [7, 9, 27, 59, 22, 20,
1, 8]. Moreover, benchmarks and evaluation metrics have
emerged to facilitate the comparison of varies techniques
and datasets [25, 55, 29, 5, 43].
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Figure 1: LiDAR point clouds from two exemplar scenes
with differing vertical LiDAR resolution (top to bottom:
colour RGB images, [32 −→ 64 −→ 128] LiDAR channels).

In these datasets, LiDAR range data corresponding to the
colour image of the environment is provided as the ground-
truth depth information. Such ground truth can be rela-
tively sparse compared to the sampling of the corresponding
colour camera imagery — typically as low as 16 to 64 chan-
nels of depth (see Figure 1, e.g, 16-64 horizontal scanlines
of depth information, spanning 360 degrees from the vehi-
cle over a 50-200 m range). Here, the terminology chan-
nel refers to the vertical resolution of the LiDAR scanner,
and has a one-to-one correspondence to the laser beam as
it is referred to in some studies. With this in mind, current
datasets and their associated metric-driven benchmarks are
significantly limited when compared to the contemporary
availability of high-resolution LiDAR data as we pursue in
this paper.



By contrast, we propose a large-scale high-fidelity Li-
DAR dataset1 based on the use of a 128 channel LiDAR
unit mounted on our Renault Twizy test vehicle (Figure 2).
Compared to existing LiDAR datasets in this field (Ta-
ble 1), including the seminal KITTI dataset [24, 26, 46],
our dataset has the following novel features:

• High vertical resolution LiDAR, which offers both
superior spatial depth resolution (Figure 1) and addi-
tionally co-registered 360◦ambient and reflectivity im-
agery that is concurrently captured via the LiDAR laser
return itself.

• Additional synchronised sensors including a high
resolution forward-facing stereo imagery (2MPix), a
high fidelity GNSS/INS and a lux meter.

• Route repetition such that the dataset uses the same
set of driving routes under varying environmental con-
ditions, such as overcast, rainy weather, seasonal varia-
tions and varying times of day - hence facilitating eval-
uation under different weather and illumination condi-
tions.

Subsequently, our dataset is presented as a KITTI-
compatible offering such that the data formats used can be
parsed using both our DurLAR development kit and the of-
ficial KITTI tools (in addition to third party KITTI tools).
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Figure 2: Test vehicle (Renault Twizy): equipped with a
long range stereo camera, a LiDAR, a lux meter and a com-
bined GNSS/INS inertial navigation system.

In order to illustrate the advantages and potential ap-
plications of this proposed benchmark dataset, we adopt
monocular depth estimation as a sample task for compar-
ison. We thus evaluate the relative performance of con-
temporary monocular depth estimation architectures [27,
60, 61], by leveraging the higher resolution LiDAR ca-
pability within DurLAR to facilitate more effective use
of depth supervision, for which we propose a novel joint

1Online access for the dataset, https://github.com/l1997i/DurLAR.

supervised/self-supervised loss formulation (Section 4).
More broadly, the illumination-independent sensing ca-

pabilities of high-resolution 3D LiDAR additionally enable
the evaluation of a range of driving tasks [54, 11] under
varying environmental conditions spanning both extreme
weather and illumination changes using our dataset.

Our main contributions are summarised as follows:
• a novel large-scale dataset comprising contem-

porary high-fidelity 3D LiDAR (128 channels),
stereo/ambient/reflectivity imagery, GNSS/INS and
environmental illumination information under re-
peated route, variable environment conditions (in the
de facto KITTI dataset format). The first autonomous
driving task dataset to additionally comprise usable
ambience and reflectivity LiDAR obtained imagery
(360◦, 2048× 128 resolution).

• an exemplar monocular depth estimation bench-
mark to compare the performance of supervised/self-
supervised variants of three leading approaches [70,
27, 61] when trained and evaluated on low resolu-
tion (KITTI [24]), high resolution (DurLAR) ground
truth LiDAR depth data, or our novel KITTI/DurLAR
dataset partition, with the observation that increased
resolution and availability enables superior monocular
depth estimation performance via the use of our joint
supervised/self-supervised loss formulation (Table 3,
Table 4, Figure 9).

2. Related Work
We consider prior work in two related topic areas: au-
tonomous driving datasets (Section 2.1) and monocular
depth estimation (Section 2.2).

2.1. Autonomous Driving Datasets
There are multiple autonomous driving task datasets that
provide 3D LiDAR data for outdoor environments (Table 1).

High vertical resolution LiDAR is not present in exist-
ing datasets (see Table 1). The vertical resolution of LiVi-
Set [11] and nuScenes [10] is 32 channels. Similarly the
Stanford Track Collection [53], KITTI [24], Sydney Urban
Objects [52], DENSE [30], H3D [49], SemanticKITTI [5],
Lyft Level 5 [35, 34] and KITTI-360 [41] is 64 channels.
In contrast, our proposed dataset has a higher vertical res-
olution of 128 channels, which can capture a significantly
higher level of detail of environment objects (Figure 1).

Rolling shutter effect is common among analogue spin-
ning LiDAR, e.g., Velodyne scanners, which are widely
used in most of the existing datasets [24, 52, 11, 10, 30,
49, 5, 35, 41]. Instead, the Ouster LiDAR we use is a multi-
beam flash LiDAR [47], meaning all 128 channels are shot
simultaneously, avoiding this distortion effect.

In adverse weather, LiDAR fails [51] (e.g. fog), since
opaque particles will distort light and reduce visibility sig-
nificantly, whilst it can produce fine-grained point clouds

https://github.com/l1997i/DurLAR


Dataset Resolution Range/m Diversity Image # Frames Other sensors

DENSE [30] 64 120 E/W/T I 1M D/M/F/T/B
H3D [49] 64 120 E I 28k G/M

KITTI | SemanticKITTI | KITTI-360 [24, 5, 41] 64 120 E I 93k|93k|320k N/S/G/M/B
LiVi-Set [11] 32 100 E I 10k

Lyft Level 5 [35, 34] 64 200 E/W/T I 170k D/B
nuScenes [10] 32 100 E/W/T I 1M M/D/B

Oxford RobotCar [44] 4a 50 E/W/T I 3Mb N/S/G/M/B
Stanford Track Collection [53] 64 120 E I 14k M

Sydney Urban Objects [52] 64 120 E I 0.6kc

DurLAR (ours) 128 120 E/W/T/L I/A/R 100k U/N/S/G/M/B

Table 1: Existing public LiDAR datasets for autonomous driving tasks detailing vertical resolution (# channels), diversity in
terms of environments (E), times of day (T), weather conditions (W), same route of repeated locations (L) and also the type of
LiDAR images made available in addition to range information as: intensity (I), ambient (A), reflectivity (R). Other sensors
refer to radar (D), lux meter (U), GNSS supporting more than 2 constellations (N), INS (S), GPS (G), IMU (M), FIR camera
(F), Near infrared camera (T) and stereo camera (B). a the number of planes. SICK LD-MRS LiDAR has 4 planes, and SICK
LMS-151 LiDAR has 1 plane. b the number of LD-MRS LiDAR frames. c the number of individual scans of objects.

with rich information and a considerable measurement
range in clear weather conditions. To handle this, some
datasets have radar [9, 35, 10] installed, despite the much
lower resolution than LiDAR. The proposed dataset pub-
lishes the ambient (near infrared) and reflectivity images
besides the LiDAR point clouds (see Table 1), which has
extreme low-light sensitivity and are robust within poor il-
lumination conditions and adverse weather.

Data diversity within any dataset helps the generation of
more universal trained models that can operate successfully
under a variety of scenarios. Some related work considers
the diversity in their dataset curation [44, 30, 35, 10], but
fail to collect data under diverse conditions over the same
driving route (see Table 1), e.g., traffic level, times of day,
weathers, etc. The proposed dataset has a wide range of data
diversity via collection over the same repeated route under
varying conditions.

Ground truth depth is not present in some seminal
autonomous driving datasets, e.g., Stanford Track Collec-
tion [53], Sydney Urban Objects [52], Cityscapes [12],
Oxford RobotCar [44], LiVi-Set [11], nuScenes [10] and
H3D [49]. Due to this limitation, they can only be ap-
plied for unsupervised and semi-supervised depth estima-
tion methods [28, 67]. In view of this, our proposed dataset
contains ground truth depth at a higher resolution than all
previous datasets (Table 1), which is applicable for both su-
pervised and semi-supervised depth estimation tasks.

2.2. Monocular Depth Estimation
Monocular depth estimation aims at recovering a dense
depth map for each pixel using a single RGB image as input.

Self-supervised methods harness the monocular RGB
image sequences [70, 27, 3, 4, 61], stereo pairs [23, 65, 28,
60, 64] or synthetic data [2, 36] for training. Subsequently,
multi-frame architectures were introduced [57, 66, 50, 58,

13, 68, 61], which leverages the temporal information at
test time, to improve the quality of the predicted depth.
The same losses used during training can be applied to test
frames to update the weights. However, additional calcu-
lations for multiple forward and backward process on a set
of test frames are required which incur additional computa-
tion.

Other work concentrates on multi-view stereo (MVS),
which operates on unordered image sets [45, 40, 42, 33, 37,
14, 63, 62, 61]. Not requiring the ground truth depth and
camera poses during training, self-supervised MVS meth-
ods [42, 33, 37, 14, 63, 62, 61] leverage cost volumes to pro-
cess sequences of frames at test time. Compared with the
base method of MVS, these methods can predict the depth
using images captured by moving cameras and do not need
camera poses during training time.

Supervised methods utilise ground truth depth from
depth sensors, e.g., LiDAR [38, 32, 21, 4, 18] and RGB-
D cameras [17, 16], to improve the supervision feedback
during learning. As with many areas of contemporary com-
puter vision, CNN based architectures [17, 16, 56] gener-
ally offer state-of-the-art performance. Thereafter, residual-
learning-based methods [31, 39, 69] are proposed to learn
the transform relation between colour images and their cor-
responding maps, therefore leveraging deeper architectures
than previous works with higher resultant accuracy. How-
ever, such methods are limited both by ground truth dataset
availability and the fidelity (resolution) of the ground truth
depth information provided.

Overall, one of key challenges within contemporary au-
tonomous driving task evaluation is the lack of high fi-
delity (vertical resolution) depth datasets in order to facil-
itate effective evaluation of geometric scene understanding
tasks, such as monocular depth estimation. Here, based on



the provision of our DurLAR dataset (Section 3), we con-
sider the impact of abundant high-resolution ground truth
depth data on three state-of-the-art contemporary monoc-
ular depth estimation architectures (MonoDepth2 [27],
Depth-hints [60], ManyDepth [61]) through the use of
our novel joint supervised/semi-supervised loss formulation
(Section 4).

3. The DurLAR Dataset
Compared to existing autonomous driving task datasets (Ta-
ble 1), DurLAR has the following novel features:

• High vertical resolution LiDAR with 128 channels,
which is twice that of any existing datasets (Table 1),
full 360◦depth, range accuracy to ±2 cm at 20-50m.

• Ambient illumination (near infrared) and reflec-
tivity panoramic imagery are made available in the
Mono16 format (2048× 128 resolution), with this be-
ing only dataset to make this provision (Table 1).

• No rolling shutter effect, as our flash LiDAR captures
all 128 channels simultaneously.

• Ambient illumination data is recorded via an on-
board lux meter, which is again not available in pre-
vious datasets (Table 1).

• High-fidelity GNSS/INS available via an onboard
OxTS navigation unit operating at 100 Hz and receiv-
ing position and timing data from multiple GNSS con-
stellations in addition to GPS.

• KITTI data format adopted as the de facto dataset
format such that it can be parsed using both
the DurLAR development kit and existing KITTI-
compatible tools.

• Diversity over repeated locations such that the
dataset has been collected under diverse environmen-
tal and weather conditions over the same driving route
with additional variations in the time of day relative
to environmental conditions (e.g. traffic, pedestrian oc-
currence, ambient illumination, see Table 1).

3.1. Sensor Setup
The dataset is collected using a Renault Twizy vehicle (Fig-
ure 2) equipped with the following sensor configuration (as
illustrated in Figure 3):

• LiDAR: Ouster OS1-128 LiDAR sensor with 128
channels vertical resolution, 865 nm laser wavelength,
100 m @ >90% detection probability and 120 m
@ >50% detection probability (100 klx sunlight,
80% Lambertian reflectivity, 2048 @ 10 Hz rotation
rate mode), 0.3 cm range resolution, 360◦horizontal
FOV and 45◦(+22.5◦to -22.5◦) vertical FOV, mounted
height ∼ 1.62 m.

• Stereo Camera: Carnegie Robotics MultiSense S21
stereo camera with grayscale, colour, and IR enhanced
imagers, 0.4 m minimum range, 2048 × 1088 @
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Figure 3: Sensor placements, top view. All coordinate axes
follow the right-hand rule (sizes in mm).

2MP resolution, up to 30 FPS frame rate and 115◦×
68◦FOV, 21 cm baseline, factory calibrated, mounted
height ∼ 1.42 m.

• GNSS/INS: OxTS RT3000v3 global navigation satel-
lite and inertial navigation system, with 0.03◦pitch/roll
accuracy, 0.1-1.5 m position accuracy, 0.15◦slip an-
gle accuracy, 250 Hz maximum data output rate, sup-
porting positioning from GPS, GLONASS, BeiDou,
Galileo, PPP and SBAS constellations.

• Lux Meter: Yocto Light V3, a USB ambient light sen-
sor (lux meter), measuring ambient light up to 100,000
lux, hence indirectly representing the conditions of the
external environment via ambient illumination condi-
tions.

3.2. Data Collection and Description
To ensure the dataset has diverse weather and varying den-
sity of pedestrian and traffic occurrences, we collect the data
over a variety of conditions. These includes different types
of environments, times of day, weather and repeated loca-
tions along the test route with data collected for the key
time periods and environments shown in Table 2. As shown
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Figure 4: The route (blue curves) used for dataset collec-
tion showing a variety of driving environments.



Building Campus (rainy) Campus (cloudy) City centre

Figure 5: Examples from DurLAR which demonstrate the diversity in our dataset. From top to bottom, RGB left camera
images (top), grayscale right camera images (centre) and LiDAR point cloud (bottom). The point cloud is projected onto the
2D image plane using the LiDAR-to-left-camera external calibration, and the colour varies with the distance from the LiDAR
(near:=red → far:=green).

Avg. Speed Day. Peak times Night

City 20.4 km/h [3] | [3] [3] | [3] [2] | [3]
Campus 26.4 km/h [1] | [1] [1] | [2] [1] | [1]

Residential 31.2 km/h [1] | [2] [2] | [2] [1] | [1]
Suburb 43.6 km/h [1] | [1] [1] | [1] [1] | [1]

Table 2: Key time periods and environmental conditions.
The value is expressed in the form of [traffic density] | [pop-
ulation density], using a qualitative scale of [3 - high, 2 -
normal, 1 - low].

in Figure 4 and Figure 5, our dataset mainly contains subur-
ban, highway, city centre and campus areas.

All the data is provided in the de facto KITTI data for-
mats, with the exception of the ambient light data (lux)
which is not provided by KITTI and is hence published in a
simple plain text format with aligned timestamp.

3.3. Ambient and Reflectivity Panoramic Imagery
The proposed DurLAR dataset is the first autonomous driv-
ing task dataset to additionally provide high-resolution am-
bient and reflectivity panoramic 360-degree imagery. The
ambient imagery can be captured even in low light con-
ditions (near infrared, 800-2500 nm), while the reflectiv-
ity imagery pertains to the material property of the scene
object and its reflectivity of the 850 nm LiDAR signal in
use (Ouster OS1-128). These characteristics, combined
with a superior vertical resolution when compared to other
datasets, enable these images to offer great benefit when
dealing with unfavourable illumination conditions and co-
herent scene object identification.

Ambient images offer day/night scene visibility in the
near-infrared spectrum. The photon counting ASIC (Ap-
plication Specific Integrated Circuit) of our sensor has par-
ticularly strong illumination sensitivity, so that the ambient

images can be captured even in low light conditions. This is
extremely practical in designing techniques that are specif-
ically appropriate for adverse illumination conditions, such
as nocturnal and adverse weather conditions.

Reflectivity images contain information indicative of
the material properties of the object itself and offer good
consistency across illumination conditions and range. How-
ever, the Ouster OS1-128 LiDAR does not collect the true
reflectivity data directly due to sensor limitations. Instead,
an estimation of the reflectivity data is used to calculate
the reflectivity images from the LiDAR intensity and range
data. LiDAR intensity is the return signal strength of the
laser pulse that recorded the range reading. According to
the inverse square law (Equation (1)) for Lambertian objects
in the far field, the intensity per unit area varies inversely
proportional to the square of the distance [48],

I =
S

4πr2
, (1)

where I is the intensity, r is the range (namely the distance
of the object to the sensor) and S is the source strength.

The calculation of reflectivity assumes that it is propor-
tional to the source strength, which is also proportional to
the product of intensity and the square of the range,

Reflectivity ∝ S ∝ Ir2. (2)

Exemplar ambient (near infrared) and reflectivity
panoramic imagery is shown in Figure 6. In Figure 6 (a)
and (c), clouds and shadows of objects can be distinguished
(expressed as shades of grayscale). These pictures are very
close to the images of grayscale or RGB camera. In Figure 6
(b) and (d), the reflectivity of the same object or material
will remain constant regardless of the distance to the sen-
sor, weather, light illumination and other conditions, since
reflectivity is the intrinsic property of the object itself. The



(b) Reflectivity

(a) Ambient
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Figure 6: Example of ambient (near infrared) and reflectivity panoramic images.

pillars of the building (Figure 6 (d)) have almost the same
reflectivity (i.e. the same white colour in the figure) regard-
less of their distance to the LiDAR sensor.

3.4. Calibration and Synchronisation

LiDAR-to-camera calibration is performed using [15, 6].
With the custom calibration pattern shown in Figure 7, the
calibration procedure is composed of two stages. Firstly, a
pair of two ArUco markers are detected from the left frame
of the stereo camera such that the transformation matrix
[R|t], containing rotation R and translation t parameters,
between the camera and the centre of the ArUco marker
can be calculated (as shown in the overlays of Figure 8).
Secondly, the edges of the orientated calibration boards are
identified in the corresponding LiDAR data frame projec-
tion by orientated edge detection. Finally, the optimal rigid
transformation between the LiDAR and the camera is found
using RANSAC based optimisation [15].

Stereo camera calibration is based on the manufacturer
factory instructions for intrinsic and extrinsic settings. Cal-
ibration of the GNSS/INS is performed using the manufac-
turers recommended approach. The GNSS/INS with respect
to the LiDAR is registered following [19].

All sensor synchronisation is performed at a rate of
10 Hz, using Robot Operating System (ROS, version
Noetic) timestamps operating over a Gigabit Ethernet back-
bone to a common host (Intel Core i5-6300U, 16 GB RAM).

Figure 7: Camera to LiDAR custom calibration pattern with
extrinsic parameter estimation overlay shown.

Figure 8: Illustrative LiDAR 3D point cloud overlay onto
the right stereo image (colour) using the calibration ob-
tained.

4. Monocular Depth Estimation
Leveraging the higher vertical LiDAR resolution of our
DurLAR dataset, we adopt monocular depth estimation as
an illustrative benchmark task.

We select ManyDepth [61] as a leading approach for
monocular depth estimation as it offers state-of-the-art per-
formance on the leading KITTI [24] and Cityscapes [12]
benchmarks. Whilst ManyDepth [61] is a self-supervised
approach, here we seek to leverage the availability of
high-fidelity depth within DurLAR via the introduction
of a secondary supervised loss term to formulate a novel
supervised/self-supervised loss formulation. As a result, we
can assess the impact of the availability of abundant ground
truth depth at training time on the performance of this lead-
ing contemporary approach.

To these ends, we introduce the reverse Huber (Berhu)
loss LBerhu [71] as our supervised depth loss term, due to
its effectiveness in smoothing and blurring depth prediction
edges on object boundaries:

LBerhu (d, d∗) =

{
|d− d∗| if |d− d∗| ≤ δ,
(d−d∗)2+δ2

2δ if |d− d∗| > δ,
(3)

where d is the predicted depth, d∗ is the ground truth depth,
and δ stands for the threshold. If |d− d∗| ≤ δ, the Berhu
loss is equal to L1; else, it acts approximately as L2.

We hence construct a joint supervised/semi-supervised



Dataset Method +S W × H Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

ManyDepth (MR) [61] × 640 × 192 0.098 0.770 4.459 0.176 0.900 0.965 0.983KITTI [24] ManyDepth (HR) [61] × 1024 × 320 0.093 0.715 4.245 0.172 0.909 0.966 0.983

Cityscapes [12] ManyDepth [61] × 416 × 128 0.114 1.193 6.223 0.170 0.875 0.967 0.989

Depth-hints [60] × 640 × 192 0.122 1.070 4.148 0.211 0.870 0.946 0.972
Depth-hints [60] X 640 × 192 0.121 1.109 4.121 0.210 0.874 0.946 0.972

MonoDepth2 [27] × 640 × 192 0.111 1.114 4.002 0.187 0.895 0.960 0.981
MonoDepth2 [27] X 640 × 192 0.108 1.010 3.804 0.185 0.898 0.963 0.982

ManyDepth (MR) [61] × 640 × 192 0.115 1.227 4.116 0.186 0.892 0.962 0.982
ManyDepth (MR) [61] X 640 × 192 0.109 0.936 3.711 0.176 0.895 0.964 0.984
ManyDepth (HR) [61] × 1024 × 320 0.109 1.111 3.875 0.177 0.901 0.966 0.984

DurLAR

ManyDepth (HR) [61] X 1024 × 320 0.104 0.936 3.639 0.171 0.906 0.969 0.986

Table 3: Performance comparison over the KITTI Eigen split [26], Cityscapes [12] (self-supervised only) and DurLAR
datasets (+S, joint supervised/self-supervised (X) v.s. self-supervised (×)). MR and HR stand for medium and high resolution
of training models (as originally defined in [61]). Depth evaluation metrics are shown in the top row. Red refers to superior
performances indicated by low values, and green refers to superior performance indicated by a higher value. The best results
in KITTI and DurLAR are in bold; the second best in DurLAR are underlined.

version of ManyDepth [61], adding LBerhu into the original
ManyDepth loss function, as shown in Equation (4):

L = (1−M)Lp + Lconsistency + Lsmooth + LBerhu , (4)

where Lp is the photometric reprojection error and Lsmooth
is the smoothness loss, from [27, 61]. Lconsistency is the con-
sistency loss, as implemented from [61].

For an extended comparison, we similarly introduce this
additional supervised depth loss via this additional Berhu
loss term to the contemporary MonoDepth2 [27] and Depth-
hints [60] approaches leaving the remainder of the architec-
tures unchanged.

We specify a randomly generated data split for the
DurLAR dataset as well, comprising 90k training frames,
5k validation frames and 5k test frames for our evaluation.

5. Evaluation Results
Training was performed with all learning parameters set as
per the original works [27, 61, 60], with Berhu threshold
δ = 0.2, on a Nvidia Tesla V100 GPU over 20 epochs.

5.1. Quantitative Evaluation
The varying performance of self-supervised depth estima-
tion between the KITTI [24], Cityscapes [12] and proposed
DurLAR dataset illustrates the varying levels of challenge
and complexity afforded by variations within the datasets
(Table 3, records with × in the +S column)

However, within our evaluation on the DurLAR dataset,
we consistently observe superior performance (lower
RMSE, higher accuracy, etc, Table 3) with the use of
additional depth supervision (i.e. joint supervised/semi-
supervised loss, see Table 3 - records with Xin the
+S column) across all three monocular depth estima-
tion approaches considered and show overall state-of-
the-art performance on monocular depth estimation us-

ing our joint supervised/self-supervised ManyDepth variant
(DurLAR, Table 3 - as highlighted in bold).

5.2. Qualitative Evaluation

To qualitatively illustrate the difference between self-
supervised and joint supervised/self-supervised ManyDepth
with the addition of depth loss, we show exemplars high-
lighting areas of superior depth estimation (Figure 9).

Within these examples, we can see a clearer contour
edge of the bus and resolution of the upper LED display
board on the vehicle (Figure 9, top - self-supervised v.s.
supervised/self-supervised). Furthermore, we see improved
depth resolution of the building (Figure 9, middle - self-
supervised v.s. supervised/self-supervised) whereby addi-
tional depth supervision enables the technique to correctly
estimate the depth of the supporting building pillars and is
even able to resolve the depth of the short stainless steel stub
in the foreground. Finally, we can see improved estima-
tion and clarity of both vehicle and pedestrian depth within
a crowded urban scene (Figure 9, bottom - self-supervised
v.s. supervised/self-supervised).

Furthermore, we conduct additional comparative cross-
training experiments to explore training on DurLAR, KITTI
or KITTI/DurLAR combined whilst evaluating on a novel
KITTI/DurLAR union split (Table 4). Our KITTI/DurLAR
union training/testing data split presents a challenging eval-
uation task that is more diverse, with 694 test frames each
from KITTI and DurLAR, to measure the overall perfor-
mance across both datasets.
5.3. Ablation Study
Our ablation study shows the side-by-side impact of our
joint supervised/unsupervised loss formulation in addition
to the performance impact of high-fidelity depth (higher
vertical LiDAR resolution).

Supervised depth: We train the ManyDepth [61] with



Camera image ManyDepth (self-supervised) ManyDepth (supervised/self-supervised)

Figure 9: Comparison of monocular depth estimation results with areas of improvement highlighted with the use of depth
supervision (green).

and without the Berhu loss (Equation 3), such that we
can compare the original self-supervised performance with
that of additional depth supervision (Table 5, 128/-S v.s.
128/+S).

Ground truth depth resolution: We simulate a reduc-
tion in vertical ground truth depth resolution by subsam-
pling the depth values present by 50% (64 channels) and
75% (32 channels) along the vertical axis of the LiDAR
ground truth projection. From Table 5, we can see superior
performance from our joint supervised/unsupervised loss
formulation (128/-S v.s. 128/+S) and from higher vertical
resolution LiDAR (32/64 v.s. 128/-S).

Train
Abs
Rel

Sq
Rel RMSE

RMSE
log δ1 δ2 δ3

K 0.159 1.536 5.101 0.244 0.798 0.923 0.963
D 0.189 1.764 5.580 0.264 0.758 0.908 0.959

K+D 0.188 1.941 5.182 0.262 0.769 0.912 0.958
D+K 0.151 1.123 4.744 0.233 0.805 0.927 0.967

Table 4: Cross-dataset tests of ManyDepth [51] with
the training configuration (K) KITTI only, (D) DurLAR
only, (K+D) KITTI then fine-tuning with DurLAR, (D+K)
DurLAR then fine-tuning with KITTI. δ1, δ2 and δ3 refers
to δ < 1.25, δ < 1.22 and δ < 1.253 respectively.

vRes
Abs
Rel

Sq
Rel RMSE

RMSE
log δ1 δ2 δ3

32/+S 0.115 0.908 3.677 0.179 0.888 0.966 0.985
64/+S 0.107 0.918 3.735 0.175 0.895 0.967 0.986
128/-S 0.109 1.111 3.875 0.177 0.901 0.966 0.984
128/+S 0.104 0.936 3.639 0.171 0.906 0.969 0.986

Table 5: Ablation results on ManyDepth [61]. vRes :=
the vertical resolution of LiDAR ground truth depth. ±S :=
supervised/self-supervised (+S) and self-supervised Many-
Depth (-S) for consistency with Table 3.

6. Conclusion
In this paper, we present a high-fidelity 128-channel 3D Li-
DAR dataset with panoramic ambient (near infrared) and
reflectivity imagery for autonomous driving applications
(DurLAR). In addition, we present the exemplar benchmark
task of depth estimation task whereby we show the impact
of higher resolution LiDAR as a means to the supervised
extension of leading contemporary monocular depth esti-
mation approaches [27, 60, 61].

DurLAR, is a novel large-scale dataset comprising con-
temporary high-fidelity LiDAR, stereo/ambient/reflectivity
imagery, GNSS/INS and environmental illumination infor-
mation under repeated route, variable environment condi-
tions (in the de facto KITTI dataset format). It is the first
autonomous driving task dataset to additionally comprise
usable ambience and reflectivity LiDAR obtained imagery
(2048× 128 resolution).

In our sample monocular depth estimation task, we show
superior performance can be achieved by leveraging the
high resolution LiDAR resolution afforded by DurLAR via
the secondary introduction of an additional supervised loss
term for depth. This is demonstrated across three state-of-
the-art monocular depth estimation approaches [27, 60, 61].
We show that the recent availability of abundant high-
resolution ground truth depth from sensors such as those
used in DurLAR enable new research possibilities for su-
pervised learning within this domain.

Further work will consider the provision of additional
dataset annotation spanning object, semantic and geometric
scene information. Future application utilising the ambient
and reflectivity imagery will be explored.

Acknowledgements: This work made use of the facilities of the
N8 Centre of Excellence in Computationally Intensive Research
(N8 CIR) provided and funded by the N8 research partnership and
EPSRC (Grant No. EP/T022167/1). The Centre is co-ordinated
by the Universities of Durham, Manchester and York.



References
[1] I. Alhashim and P. Wonka. High quality monocular

depth estimation via transfer learning. arXiv preprint
arXiv:1812.11941, 2018. 1

[2] A. Atapour-Abarghouei and T. Breckon. Real-time monocu-
lar depth estimation using synthetic data with domain adap-
tation via image style transfer. In IEEE Conf. Computer Vi-
sion and Pattern Recognition, pages 2800–2810. IEEE, June
2018. 3

[3] A. Atapour-Abarghouei and T. Breckon. Monocular
segment-wise depth: Monocular depth estimation based on a
semantic segmentation prior. In IEEE Int. Conf. Image Pro-
cessing, pages 4295–4299. IEEE, September 2019. 3

[4] A. Atapour-Abarghouei and T. Breckon. To complete or to
estimate, that is the question: A multi-task depth completion
and monocular depth estimation. In Int. Conf. 3D Vision,
pages 183–193. IEEE, September 2019. 3

[5] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,
C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences. In IEEE
Int. Conf. Computer Vision, pages 9296–9306, 2019. 1, 2, 3

[6] J. Beltrán, C. Guindel, and F. Garcı́a. Automatic Extrinsic
Calibration Method for LiDAR and Camera Sensor Setups.
arXiv preprint arXiv:2101.04431, 2021. 6

[7] S. F. Bhat, I. Alhashim, and P. Wonka. Adabins: Depth esti-
mation using adaptive bins. pages 4009–4018, 2021. 1

[8] J. W. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. M. Cheng,
and I. Reid. Unsupervised Scale-Consistent Depth and Ego-
Motion Learning From Monocular Video, 2019. 1

[9] M. Bijelic, T. Gruber, F. Mannan, F. Kraus, W. Ritter, K. Di-
etmayer, and F. Heide. Seeing Through Fog Without Seeing
Fog: Deep Multimodal Sensor Fusion in Unseen Adverse
Weather. In IEEE Conf. Computer Vision and Pattern Recog-
nition, pages 11679–11689, 2020. 1, 3

[10] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong,
Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom.
Nuscenes: A Multimodal Dataset for Autonomous Driving.
IEEE Conf. Computer Vision and Pattern Recognition, pages
11618–11628, 2020. 1, 2, 3

[11] Y. Chen, J. Wang, J. Li, C. Lu, Z. Luo, H. Xue, and C. Wang.
LiDAR-Video Driving Dataset: Learning Driving Policies
Effectively. In IEEE Conf. Computer Vision and Pattern
Recognition, pages 5870–5878, 2018. 1, 2, 3

[12] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In IEEE Conf. Computer Vision and Pattern Recogni-
tion, pages 3213–3223, 2016. 3, 6, 7

[13] A. CS Kumar, S. M. Bhandarkar, and M. Prasad. Depth-
net: A recurrent neural network architecture for monocular
depth prediction. In IEEE Conf. Computer Vision and Pat-
tern Recognition Workshops, pages 283–291, 2018. 3

[14] Y. Dai, Z. Zhu, Z. Rao, and B. Li. Mvs2: Deep unsupervised
multi-view stereo with multi-view symmetry. In Int. Conf.
3D Vision, pages 1–8, 2019. 3

[15] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna.
LiDAR-Camera Calibration Using 3D-3D Point Correspon-
dences. ArXiv e-prints, 2017. 6

[16] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In IEEE Int. Conf. Computer Vision,
pages 2650–2658, 2015. 3

[17] D. Eigen, C. Puhrsch, and R. Fergus. Depth map predic-
tion from a single image using a multi-scale deep network.
In Conf. Neural Information Processing Systems (NeurIPS),
pages 2366–2374, 2014. 3

[18] A. Eldesokey, M. Felsberg, K. Holmquist, and M. Persson.
Uncertainty-aware cnns for depth completion: Uncertainty
from beginning to end. In IEEE Conf. Computer Vision and
Pattern Recognition, 2020. 3

[19] A. W. Fitzgibbon. Robust registration of 2d and 3d point sets.
Image and Vision Computing, 21(13):1145–1153, 2003. 6

[20] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep Ordinal Regression Network for Monocular Depth Es-
timation. In IEEE Conf. Computer Vision and Pattern Recog-
nition, pages 2002–2011, 2018. 1

[21] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep ordinal regression network for monocular depth esti-
mation. In IEEE Conf. Computer Vision and Pattern Recog-
nition, pages 2002–2011, 2018. 3

[22] D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Q. Wein-
berger, and W.-L. Chao. Wasserstein Distances for Stereo
Disparity Estimation. In Conf. Neural Information Process-
ing Systems (NeurIPS), 2020. 1

[23] R. Garg, V. K. Bg, G. Carneiro, and I. Reid. Unsuper-
vised cnn for single view depth estimation: Geometry to
the rescue. In Euro. Conf. Computer Vision, pages 740–756.
Springer, 2016. 3

[24] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision Meets
Robotics: The KITTI Dataset. Int. J. Robotics Research,
32(11):1231–1237, 2013. 1, 2, 3, 6, 7

[25] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In IEEE
Conf. Computer Vision and Pattern Recognition, 2012. 1

[26] A. Geiger, P. Lenz, and R. Urtasun. Are We Ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In
IEEE Conf. Computer Vision and Pattern Recognition, pages
3354–3361, 2012. 2, 7

[27] C. Godard, O. M. Aodha, M. Firman, and G. Brostow.
Digging Into Self-Supervised Monocular Depth Estimation.
IEEE Int. Conf. Computer Vision, 2019-October:3827–3837,
2019. 1, 2, 3, 4, 7, 8

[28] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised
Monocular Depth Estimation With Left-Right Consistency.
In IEEE Conf. Computer Vision and Pattern Recognition,
pages 6602–6611, 2017. 3

[29] T. Gruber, M. Bijelic, F. Heide, W. Ritter, and K. Dietmayer.
Pixel-Accurate Depth Evaluation in Realistic Driving Sce-
narios. In Int. Conf. 3D Vision, pages 95–105, 2019. 1

[30] T. Gruber, F. Julca-Aguilar, M. Bijelic, and F. Heide.
Gated2Depth: Real-Time Dense LiDAR from Gated Images.
In IEEE Int. Conf. Computer Vision, pages 1506–1516, 2019.
1, 2, 3



[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conf. Computer Vision and
Pattern Recognition, pages 770–778, 2016. 3

[32] L. He, C. Chen, T. Zhang, H. Zhu, and S. Wan. Wearable
depth camera: Monocular depth estimation via sparse opti-
mization under weak supervision. IEEE Access, 6:41337–
41345, 2018. 3

[33] Y. Hou, J. Kannala, and A. Solin. Multi-view stereo by tem-
poral nonparametric fusion. In IEEE Conf. Computer Vision
and Pattern Recognition, pages 2651–2660, 2019. 3

[34] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain,
S. Omari, V. Iglovikov, and P. Ondruska. One thousand and
one hours: Self-driving motion prediction dataset. https:
//level-5.global/level5/data/, 2020. 1, 2, 3

[35] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nad-
hamuni, A. Ferreira, M. Yuan, B. Low, A. Jain, P. On-
druska, S. Omari, S. Shah, A. Kulkarni, A. Kazakova, C. Tao,
L. Platinsky, W. Jiang, and V. Shet. Lyft Level 5 Per-
ception Dataset 2020. https://level5.lyft.com/
dataset/, 2019. 1, 2, 3

[36] F. Khan, S. Hussain, S. Basak, J. Lemley, and P. Corcoran.
An efficient encoder–decoder model for portrait depth es-
timation from single images trained on pixel-accurate syn-
thetic data. Neural Networks, 142:479–491, 2021. 3

[37] T. Khot, S. Agrawal, S. Tulsiani, C. Mertz, S. Lucey, and
M. Hebert. Learning unsupervised multi-view stereopsis via
robust photometric consistency. In IEEE Conf. Computer
Vision and Pattern Recognition Workshops, 2019. 3

[38] Y. Kuznietsov, J. Stuckler, and B. Leibe. Semi-supervised
deep learning for monocular depth map prediction. In
IEEE Conf. Computer Vision and Pattern Recognition, pages
6647–6655, 2017. 3

[39] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. In Int. Conf. 3D Vision, pages 239–248,
2016. 3

[40] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao,
L. Zhou, and J. Zhang. Learning for disparity estimation
through feature constancy. In IEEE Conf. Computer Vision
and Pattern Recognition, pages 2811–2820, 2018. 3

[41] Y. Liao, J. Xie, and A. Geiger. KITTI-360: A novel dataset
and benchmarks for urban scene understanding in 2d and 3d.
arXiv preprint arXiv:2109.13410, 2021. 2, 3

[42] C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz. Neu-
ral rgb→d sensing: Depth and uncertainty from a video cam-
era. In IEEE Conf. Computer Vision and Pattern Recogni-
tion, pages 10986–10995, 2019. 3

[43] W. Maddern, G. Pascoe, M. Gadd, D. Barnes, B. Yeo-
mans, and P. Newman. Real-Time Kinematic Ground Truth
for the Oxford RobotCar Dataset. arXiv preprint arXiv:
2002.10152, 2020. 1

[44] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year,
1000 km: The Oxford RobotCar dataset. Int. Journal of
Robotics Research, 36(1):3–15, 2017. 1, 3

[45] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A Large Dataset to Train Con-
volutional Networks for Disparity, Optical Flow, and Scene

Flow Estimation. In IEEE Conf. Computer Vision and Pat-
tern Recognition, pages 4040–4048, 2016. 3

[46] M. Menze and A. Geiger. Object Scene Flow for Au-
tonomous Vehicles. In IEEE Conf. Computer Vision and Pat-
tern Recognition, pages 3061–3070, 2015. 2

[47] Ouster. Webinar: Digital vs Analog Lidar. https:
//ouster.com/resources/webinars/digital-
vs-analog-lidar/. 2

[48] Ouster. Webinar: How to understand lidar performance:
range, precision, and accuracy. https://go.ouster
.io/webinar/how-to-understand-lidar-
performance-range-precision-accuracy/. 5

[49] A. Patil, S. Malla, H. Gang, and Y. T. Chen. The H3D Dataset
for Full-Surround 3D Multi-Object Detection and Tracking
in Crowded Urban Scenes. In IEEE Int. Conf. Robotics and
Automation, volume 2019-May, pages 9552–9557, 2019. 1,
2, 3

[50] V. Patil, W. Van Gansbeke, D. Dai, and L. Van Gool. Don’t
forget the past: Recurrent depth estimation from monocular
video. Robotics and Automation Letters, 5(4):6813–6820,
2020. 3

[51] K. Qian, S. Zhu, X. Zhang, and L. E. Li. Robust Multimodal
Vehicle Detection in Foggy Weather Using Complementary
LiDAR and Radar Signals. In IEEE Conf. Computer Vision
and Pattern Recognition, pages 444–453, 2021. 2

[52] A. Quadros, J. Underwood, and B. Douillard. Sydney Urban
Objects Dataset. 2013. 1, 2, 3

[53] A. Teichman, J. Levinson, and S. Thrun. Towards 3D Object
Recognition via Classification of Arbitrary Object Tracks. In
IEEE Int. Conf. Robotics and Automation, pages 4034–4041,
2011. 1, 2, 3

[54] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,
A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L. E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Stanley: The Robot
That Won the DARPA Grand Challenge. J. Field Robotics,
23(9):661–692, 2006. 2

[55] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger. Sparsity Invariant CNNs. In Int. Conf. 3D Vision,
pages 11–20, 2017. 1

[56] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg,
A. Dosovitskiy, and T. Brox. Demon: Depth and motion
network for learning monocular stereo. In IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 5038–5047,
2017. 3

[57] J. Wang, G. Zhang, Z. Wu, X. Li, and L. Liu. Self-supervised
joint learning framework of depth estimation via implicit
cues. arXiv preprint arXiv:2006.09876, 2020. 3

[58] R. Wang, S. M. Pizer, and J.-M. Frahm. Recurrent neural
network for (un-)supervised learning of monocular video vi-
sual odometry and depth. In IEEE Conf. Computer Vision
and Pattern Recognition, pages 5555–5564, 2019. 3

[59] Y. Wang, Z. Lai, G. Huang, B. H. Wang, L. Van Der Maaten,
M. Campbell, and K. Q. Weinberger. Anytime Stereo Im-

https://level-5.global/level5/data/
https://level-5.global/level5/data/
https://level5.lyft.com/dataset/
https://level5.lyft.com/dataset/
https://ouster.com/resources/webinars/digital-vs-analog-lidar/
https://ouster.com/resources/webinars/digital-vs-analog-lidar/
https://ouster.com/resources/webinars/digital-vs-analog-lidar/
https://go.ouster.io/webinar/how-to-understand-lidar-performance-range-precision-accuracy/
https://go.ouster.io/webinar/how-to-understand-lidar-performance-range-precision-accuracy/
https://go.ouster.io/webinar/how-to-understand-lidar-performance-range-precision-accuracy/


age Depth Estimation on Mobile Devices. IEEE Int. Conf.
Robotics and Automation, pages 5893–5900, 2019. 1

[60] J. Watson, M. Firman, G. J. Brostow, and D. Turmukham-
betov. Self-supervised monocular depth hints. In IEEE Int.
Conf. Computer Vision, October 2019. 2, 3, 4, 7, 8

[61] J. Watson, O. Mac Aodha, V. Prisacariu, G. Brostow, and
M. Firman. The Temporal Opportunist: Self-Supervised
Multi-Frame Monocular Depth. In IEEE Conf. Computer
Vision and Pattern Recognition, 2021. 2, 3, 4, 6, 7, 8

[62] F. Wimbauer, N. Yang, L. von Stumberg, N. Zeller, and
D. Cremers. Monorec: Semi-supervised dense reconstruc-
tion in dynamic environments from a single moving cam-
era. In IEEE Conf. Computer Vision and Pattern Recogni-
tion, pages 6112–6122, 2021. 3

[63] Z. Wu, X. Wu, X. Zhang, S. Wang, and L. Ju. Spatial cor-
respondence with generative adversarial network: Learning
depth from monocular videos. In IEEE Int. Conf. Computer
Vision, pages 7494–7504, 2019. 3

[64] K. Xian, J. Zhang, O. Wang, L. Mai, Z. Lin, and Z. Cao.
Structure-guided ranking loss for single image depth predic-
tion. In IEEE Conf. Computer Vision and Pattern Recogni-
tion, 2020. 3

[65] J. Xie, R. Girshick, and A. Farhadi. Deep3d: Fully automatic
2d-to-3d video conversion with deep convolutional neural
networks. In Euro. Conf. Computer Vision, pages 842–857.
Springer, 2016. 3

[66] J. Xie, C. Lei, Z. Li, L. E. Li, and Q. Chen. Video depth esti-
mation by fusing flow-to-depth proposals. In IEEE/RSJ Int.
Conf. Intelligent Robots and Systems, pages 10100–10107.
IEEE, 2020. 3

[67] Z. Yin and J. Shi. GeoNet: Unsupervised Learning of Dense
Depth, Optical Flow and Camera Pose. In IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 1983–1992,
2018. 3

[68] H. Zhang, C. Shen, Y. Li, Y. Cao, Y. Liu, and Y. Yan. Ex-
ploiting temporal consistency for real-time video depth esti-
mation. In IEEE Int. Conf. Computer Vision, pages 1725–
1734, 2019. 3

[69] Z. Zhang, Z. Cui, C. Xu, Z. Jie, X. Li, and J. Yang. Joint
task-recursive learning for semantic segmentation and depth
estimation. In Euro. Conf. Computer Vision, pages 235–251,
2018. 3

[70] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsu-
pervised learning of depth and ego-motion from video. In
IEEE Conf. Computer Vision and Pattern Recognition, pages
1851–1858, 2017. 2, 3

[71] L. Zwald and S. Lambert-Lacroix. The BerHu Penalty and
the Grouped Effect. arXiv preprint arXiv:1207.6868, 2012.
6


