
Temporal flows in Temporal networks ⋆, ⋆⋆

Eleni C. Akrida1, Jurek Czyzowicz2, Leszek Gąsieniec1,

Łukasz Kuszner3, and Paul G. Spirakis1,4

1 Department of Computer Science, University of Liverpool, UK
{Eleni.Akrida,L.A.Gasieniec,P.Spirakis}@liverpool.ac.uk

2 Université du Québec en Outaouais, Dep. d’Informatique, Gatineau, QC, Canada
jurek@uqo.ca

3 Gdańsk University of Technology, Faculty of Electronics, Telecommunications and
Informatics, Poland

kuszner@eti.pg.gda.pl
4 Computer Technology Institute & Press “Diophantus” (CTI), Patras, Greece

Abstract. We introduce temporal flows on temporal networks [17, 19],
i.e., networks the links of which exist only at certain moments of time.
Such networks are ephemeral in the sense that no link exists after some
time. Our flow model is new and differs from the “flows over time” model,
also called “dynamic flows” in the literature. We show that the problem
of finding the maximum amount of flow that can pass from a source
vertex s to a sink vertex t up to a given time is solvable in Polynomial
time, even when node buffers are bounded. We then examine mainly the
case of unbounded node buffers. We provide a simplified static Time-
Extended network (STEG), which is of polynomial size to the input and
whose static flow rates are equivalent to the respective temporal flow of
the temporal network; using STEG, we prove that the maximum tem-
poral flow is equal to the minimum temporal s-t cut. We further show
that temporal flows can always be decomposed into flows, each of which
moves only through a journey, i.e., a directed path whose successive
edges have strictly increasing moments of existence. We partially char-
acterise networks with random edge availabilities that tend to eliminate
the s → t temporal flow. We then consider mixed temporal networks,
which have some edges with specified availabilities and some edges with
random availabilities; we show that it is #P#P#P-hard to compute the tails
and expectations of the maximum temporal flow (which is now a random
variable) in a mixed temporal network.

⋆ This work was partially supported by (i) the School of EEE and CS and the NeST
initiative of the University of Liverpool, (ii) the NSERC Discovery grant, (iii) the
Polish National Science Center grant DEC-2011/02/A/ST6/00201, and (iv) the FET
EU IP Project MULTIPLEX under contract No. 317532.

⋆⋆ Due to lack of space, an extended literature review and all missing proofs can be
found in the full version of this paper at http://arxiv.org/abs/1606.01091 [2]

2 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

1 Introduction and motivation

1.1 Our model, the problem, and our results

It is generally accepted to describe a network topology using a graph, whose
vertices represent the communicating entities and edges correspond to the com-
munication opportunities between them. Consider a directed graph (network)
G(V,E) with a set V of n vertices (nodes) and a set E of m edges (links). Let
s, t ∈ V be two special vertices called the source and the sink, respectively; for
simplicity, assume that no edge enters the source s and no edge leaves the sink t.
We also assume that an infinite amount of a quantity, say, a liquid, is available
in s at time zero. However, our network is ephemeral ; each edge is available for
use only at certain days in time, described by positive integers, and after some
(finite) day in time, no edge becomes available again ; the reader may think of
these days as instances of availability of that edge. Our liquid, located initially
at node s, can flow in this ephemeral network through edges only at days at
which the edges are available.

Each edge e ∈ E in the network is also equipped with a capacity ce > 0 which
is a positive integer, unless otherwise specified. We also consider each node v ∈ V

to have an internal buffer (storage) B(v) of maximum size Bv; here, Bv is also
a positive integer; initially, we shall consider both the case where Bv = +∞, for
all v ∈ V , and the case where all nodes have finite buffers. From Section 3 on,
we only consider unbounded (infinite) buffers.

The semantics of the flow of our liquid within G are the following:

– Let an amount xv of liquid be at node v, i.e., in B(v), at the beginning of
day l, for some l ∈ N. Let e = (v, w) be an edge that exists at day l. Then, v
may push some of the amount xv through e at day l, as long as that amount
is at most ce. This quantity will arrive to w at the end of the same day, l,
and will be stored in B(w).

– At the end of day l, for any node w, some flows may arrive from edges (v, w)
that were available at day l. Since each such quantity of liquid has to be
stored in w, the sum of all flows incoming to w plus the amount of liquid
that is already in w at the end of day l, after w has sent any flow out of it
at the beginning of day l, must not exceed Bw.

– Flow arriving at w at (the end of) day l can leave w only via edges existing
at days l′ > l.

Thus, our flows are not flow rates, but flow amounts (similar to considerations
in transshipment problems [14, 16]). Notice that we assume above that we have
absolute knowledge of the days of existence of each edge. Admittedly, the encod-
ing of the input in our temporal network problems is quite detailed but specific
description of the edge availabilities (or lack thereof) may be required in a range
of network infrastructure settings where there is a planned schedule of link exis-
tence, e.g., one may need to have detailed information on planned maintenance
on pipe-sections in a water network to assure restoration of the network services.
On the positive side, some problems that are weakly NP-hard in similar dynamic
flow models become polynomially solvable in our model.

Temporal flows in Temporal networks, 3

Our results. We provide polynomial-time solutions to the Maximum temporal
flow problem (MTF): Given a directed graph G with edge availabilities, distin-
guished nodes s, t, edge capacities and node buffers as previously described, and
also given a specific day l′ > 0, find the maximum value of the quantity of liquid
that can arrive to t by (the end of) day l′.

For the case of infinite buffers, we give a simplified static Time-Extended net-
work (STEG) which, in contrast to all previous dynamic flows literature and due
to the encoding of our input, is of linear size to the input, and not exponential.
The static flow rates of STEG are equivalent to the respective temporal flow of
the temporal network; using it, we prove that the maximum temporal flow is
equal to the minimum temporal s-t cut. We also show that temporal flows can
always be decomposed into flows, each of which moves only through a journey,
i.e., a directed path whose successive edges have strictly increasing moments of
existence.

In many practical scenarios it is reasonable to assume that not all edge avail-
abilities are known in advance, e.g., in a water network where there may be
unplanned disruptions at one or more pipe sections; in these cases, one may
have statistical information on the pattern of link availabilities. We partially
characterise networks with random edge availabilities that tend to eliminate the
s → t temporal flow. We also introduce and study here flows in mixed temporal
networks for the first time; these are networks in which the availabilities of some
edges are random and the availabilities of some other edges are specified. In
such networks, the value of the maximum temporal flow is a random variable.
Consider, for example, the temporal flow network of Figure 1 where there are n

directed disjoint two-edge paths from s to t. Assume that every edge indepen-
dently selects a single label uniformly at random from the set {1, . . . , α}, α ∈ N

∗.
The edge capacities are the numbers drawn in the boxes, with w′

i ≥ wi for all i.
Here, the value of the maximum s → t flow is a random variable that is the sum
of Bernoulli random variables. This already indicates that the exact calculation
of the maximum flow in mixed networks is a hard problem; we show for mixed
networks that it is #P#P#P-hard to compute tails and expectations of the maximum
temporal flow.

s t

w1 w
′

1

wi w
′

i

wn w
′

n

v1

vi

vn

...

...

Fig. 1. A mixed temporal network

4 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

1.2 Previous work

The traditional (static) network flows were extensively studied in the seminal
book of Ford and Fulkerson [13] (see also Ahuja et al [1]) and the relevant liter-
ature is vast. They have recently been re-examined for the purpose of approxi-
mating their maximum value or improving their time complexity [8,18,20,23,24].
Dynamic network flows (also called flows over time) [15] refer to static directed
networks, the edges of which have capacities as well as transit times. Ford and
Fulkerson [13] formulated and solved the dynamic maximum flow problem. For
excellent surveys on dynamic network flows, the reader is also referred to the
work of Aronson [6], the work of Powell [22], and the great survey by Skutella [25].

Temporal networks, defined by Kempe et al. [17], are graphs the edges of
which exist only at certain instants of time, called labels (see also [19]). So,
they are a type of dynamic networks. Various aspects of temporal (and other
dynamic) networks were also considered in the work of Erlebach et al [12] and
in [4,5,7,9]; as far as we know, this is the first work to examine flows on temporal
networks. There is also literature on models of temporal networks with random
edge availabilities [3, 10, 11], but to the best of our knowledge, ours is the first
work on flows in such temporal networks.

Perhaps the closest model in the flows literature to our model is the “Dy-
namic5 dynamic network flows”, studied by Hoppe in his PhD thesis [15, Chapter
8]. Hoppe introduces mortal edges that exist between a start and an end time;
still, Hoppe assumes transmission rates on the edges and the ability to hold any
amount of flow on a node (infinite node buffers). Thus, our model is an extreme
case of the latter, since we assume that edges exist only at specific days (in-
stants) and that our transit rates are virtually unbounded, since at one instant
any amount of flow can be sent through an edge if the capacity allows.

1.3 Formal Definitions

Definition 1 ((Directed) Temporal Graph). Let G = (V,E) be a directed
graph. A (directed) temporal graph on G is an ordered triple G(L) = (V,E,L),
where L = {Le ⊆ N : e ∈ E} assigns a finite set Le of discrete labels to every
edge (arc) e of G. L is called the labelling of G. The labels, Le, of an edge e ∈ E

are the integer time instances (e.g., days) at which e is available.

Definition 2 (Time edge). Let e = (u, v) be an edge of the underlying digraph
of a temporal graph and consider a label l ∈ Le. The ordered triplet (u, v, l),
also denoted as (e, l), is called time edge. We denote the set of time edges of a
temporal graph G(L) by EL.

A basic assumption that we follow is that when a (flow) entity passes through
an available edge e at time t, then it can pass through a subsequent edge only
at some time t′ ≥ t + 1 and only at a time at which that edge is available.
In the tradition of assigning “transit times” in the dynamic flows literature,

5 The first “dynamic” term refers to the dynamic nature of the underlying graph

Temporal flows in Temporal networks, 5

one may think that any edge e of the graph has some transit time, tte, with
0 < tte < 1, but otherwise arbitrary and not specified. Henceforth, we assume
tte = 0.5, ∀e ∈ E, without loss of generality; any value of tte between 0 and 1
will lead to the same results in our paper.

Definition 3 (Journey). A journey from a vertex u to a vertex v (u → v

journey) is a sequence of time edges (u, u1, l1), . . . , (uk−1, v, lk), such that li <
li+1, ∀i = 1, . . . , k−1. The last label, lk, is called the arrival time of the journey.

Definition 4 (Foremost journey). A u → v journey in a temporal graph
is called foremost journey if its arrival time is the minimum arrival time of all
u → v journeys’ arrival times, under the labels assigned to the underlying graph’s
edges. We call this arrival time the temporal distance, δ(u, v), of v from u.

Thus, no flow arrives to t (starting from s) on or before any time l < δ(s, t).

Definition 5 (Temporal Flow Network). A temporal flow network
(

G(L), s, t, c, B
)

is a temporal graph G(L) = (V,E,L) equipped with:

1. a source vertex s and a sink (target) vertex t

2. for each edge e, a capacity ce > 0; usually the capacities are assumed to be
integers.

3. for each node v, a buffer B(v) of storage capacity Bv > 0; we assume Bs =
Bt = +∞.

If all node capacities are infinite, we denote the network by
(

G(L), s, t, c
)

.

Definition 6 (Temporal Flows in Temporal Flow Networks). Let
(

G(L) = (V,E,L), s, t, c, B
)

be a temporal flow network. Denote by δ+u the out-
going edges from u and by δ−u the incoming edges to u. Let LR(u) be the set
of labels on all edges incident to u along with an extra label 0 (artificial label
for initialization), i.e., LR(u) =

⋃

e∈δ+u ∪δ−u
Le ∪ {0}. A temporal flow on G(L)

consists of a non-negative real number f(e, l) for each time-edge (e, l), and real
numbers b−u (l), b

µ
u(l), b

+
u (l) for each node u ∈ V and each “day” l, such that:

1. 0 ≤ f(e, l) ≤ ce, for every time edge (e, l),
2. 0 ≤ b−u (l) ≤ Bu, 0 ≤ bµu(l) ≤ Bu, 0 ≤ b+u (l) ≤ Bu, for every node u and

every l ∈ LR(u)
3. for every e ∈ E, f(e, 0) = 0,
4. for every v ∈ V \ {s}, b−v (0) = bµv (0) = b+v (0) = 0,
5. for every e ∈ E and l 6∈ Le, f(e, l) = 0,
6. at time 0 there is an infinite amount of flow “units” available at the source

s,
7. for every v ∈ V \ {s} and for every l ∈ L, b−v (l) = b+v (lprev), where lprev is

the largest label in LR(v) that is smaller than l,
8. (Flow out on day l) for every v ∈ V \ {s} and for every l, bµv (l) = b−v (l) −

∑

e∈δ+v
f(e, l),

9. (Flow in on day l) for every v ∈ V \ {s} and for every l, b+v (l) = bµv (l) +
∑

e∈δ
−

v

f(e, l).

6 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

Note 1 One may think of b−v (l), b
µ
v (l), b

+
v (l) as the buffer content of liquid in v

at the “morning”,“noon”, i.e., after the departures of flow from v, and “evening”,
i.e., after the arrivals of flow to v, of day l.

Note 2 For a temporal flow f on an acyclic G(L), if one could guess the (real)
numbers f(e, l) for each time-edge (e, l), then the numbers b−v (l), b

µ
v (l), b

+
v (l), for

every v ∈ V , can be computed by a single pass over an order of the vertices of
G(L) from s to t. This can be done by following (1) through (9) from Definition
6 from s to t.

Definition 7 (Value of a Temporal Flow). The value v(f) of a temporal flow
f is b+t (lmax) under f , i.e., the amount of liquid that, via f , reaches t during
the lifetime of the network (lmax is the maximum label in L). If b+t (lmax) > 0
for a particular flow f , we say that f is feasible.

Definition 8 (Mixed temporal networks). Given a directed graph G =
(V,E) with a source s and a sink t in V , let E = E1 ∪E2, so that E1 ∩E2 = ∅,
and:

1. the labels (availabilities) of edges in E1 are specified, and
2. each of the labels of the edges in E2 is drawn uniformly at random from the

set {1, 2, . . . , α}, for some even integer α6, independently of the others.

We call such a network “Mixed Temporal Network [1, α]” and denote it by
G(E1, E2, α).

Note that (traditional) temporal networks as previously defined are a special
case of the mixed temporal networks, in which E2 = ∅. However, with some
edges being available at random times, the value of a temporal flow (until time
α) becomes a random variable and the study of relevant problems requires a
different approach than the one needed for (traditional) temporal networks.

Problem 1 (Maximum Temporal Flow (MTF)) Given a temporal flow
network

(

G(L), s, t, c, B
)

and a day d ∈ N
∗, compute the maximum b+t (d) over

all flows f in the network.

2 LP for the MTF problem with or without bounded

buffers

In the description of the MTF problem, if d is not a label in L, it is enough to
compute the maximum b+t (lm) over all flows, where lm is the maximum label
in L that is smaller than d. Henceforth, we assume d = lmax unless otherwise
specified; the analysis does not change: if d < lmax, one can remove all time-edges
with labels larger than b and solve MTF in the resulting network.

6 We choose an even integer to simplify the calculations in the remainder of the pa-
per. However, with careful adjustments, the results would still hold for an arbitrary
integer.

Temporal flows in Temporal networks, 7

Let Σ be the set of conditions of Definition 6. The optimization problem, Π:

{

max (over all f) b+t (d)
subject to Σ

}

is a linear program with unknown variables {f(e, l), b−v (l), b+v (l)}, ∀l ∈ L, ∀v ∈ V ,
since each condition in Σ is either a linear equation or a linear inequality in the
unknown variables. Therefore, by noticing that the number of equations and
inequalities are polynomial in the size of the input of Π, we get the following:

Lemma 1. Maximum Temporal Flow is in P, i.e., can be solved in polynomial
time in the size of the input, even when the node buffers are finite, i.e., bounded.

Note 3 Recall that EL is the set of time edges of a temporal graph. If n =
|V |,m = |E| and k = |EL| =

∑

e |Le|, then MTF can be solved in sequential time
polynomial in n+m+ k when the capacities and buffer sizes can be represented
with polynomial in n number of bits. In the remainder of the paper, we shall
investigate more efficient approaches for MTF.

3 Temporal Networks with unbounded buffers at nodes

3.1 Basic remarks

We consider here the MTF problem for temporal networks on underlying graphs
with Bv = +∞, ∀v ∈ V .

Definition 9 (Temporal Cut). Let
(

G(L), s, t, c
)

be a temporal flow network
on a digraph G. A set of time-edges, S, is called a temporal cut (separating s

and t) if the removal from the network of S results in a temporal flow network
with no s → t journey.

Definition 10 (Minimal Temporal Cut). A set of time-edges, S, is called a
minimal temporal cut (separating s and t) if S is a temporal cut, and no proper
subset of S is a temporal cut.

Definition 11. Let S be a temporal cut of
(

G(L) = (V,E,L), s, t, c
)

. The ca-
pacity of the cut is c(S) :=

∑

(e,l)∈S c(e, l), where c(e, l) = ce, ∀l.

Lemma 2. Let S be a (minimal) temporal cut in
(

G(L) = (V,E,L), s, t, c
)

. If
we remove S from G(L), no flow can ever arrive to t during the lifetime of G(L).

3.2 The time-extended flow network and its simplification

Let
(

G(L) = (V,E,L), s, t, c
)

be a temporal flow network on a directed graph G.
Let EL be the set of time edges of G(L). Following the tradition in literature [13],
we construct the time-extended static flow network that corresponds to G(L),
denoted by TEG(L) = (V ∗, E∗). By construction, TEG(L) admits the same

8 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

maximum flow as G(L). TEG(L) is constructed as follows: for every vertex v ∈ V

and for every time step i = 0, 1, . . . , lmax, V ∗ contains a copy, vi, of v. Also, for
every time edge (x, v, l), l ∈ N, x ∈ V of G(L), V ∗ contains a copy vl+0.5 of v.
E∗ has a directed edge (called vertical) from a copy of vertex v to the next copy
of v, for any v ∈ V , where the order of the copies is defined by their indices;
every vertical edge has infinite capacity (as the node whose copies it connects).
Furthermore, for every time edge (u, v, l) of G(L), E∗ has a directed edge (called
crossing) (ul, vl+0.5) with capacity equal to the capacity of the edge (u, v). The
source and target vertices in TEG(L) are the first copy of s and the last copy of t
in V ∗, respectively. Note that |V ∗| ≤ |V |·lmax+|EL| and |E∗| ≤ |V |·lmax+2|EL|.

We now “simplify” TEG(L) as follows: we convert vertical edges between
consecutive copies of the same vertex into a single vertical edge (with infinite
capacity) from the first to the last copy in the sequence and we remove all
intermediate copies; we only perform this simplification when no intermediate
node is an endpoint of a crossing edge. We call the resulting network simplified
time-extended network and we denote it by STEG(L) = (V ′, E′). Note that
|V ′| ≤ |V |+ 2|EL| and |E′| ≤ |V |+ 3|EL|.

Let the first copy of any vertex v ∈ V in the time-extended network be
vcopy0

, the second copy vcopy1
, etc. An s → t flow f in G(L) defines an s → t

flow in the time-extended network STEG(L) as follows:
– The flow from the first copy of s to the next copy is the sum of all flow units

that “leave” s in G(L) throughout the time the network exists.
– The flow from the first copy of any other vertex to the next copy is zero.
– The flow on any crossing edge that connects some copy ul of vertex u ∈ V

and the copy vl+0.5 of some other vertex v ∈ V is exactly the flow on the
time edge (u, v, l).

– The flow between two consecutive copies vx and vy, for some x, y, of the
same vertex v ∈ V corresponds to the units of flow stored in v from time x

up to time y and is the difference between the flow received at the first copy
through all incoming edges and the flow sent from the first copy through
all outgoing crossing edges.

Using TEG(L) and STEG(L), we can prove the following (for the proof, see [2]):

Theorem 1. The maximum temporal flow in
(

G(L) = (V,E,L), s, t, c
)

is equal
to the minimum capacity (minimal) temporal cut.

Lemma 3. Any static flow rate algorithm A that computes the maximum flow in
a static, directed, s-t network G of n vertices and m edges in time T (n,m), also
computes the maximum temporal flow in a

(

G(L) = (V,E,L), s, t, c
)

temporal
flow network in time T (n′,m′), where n′ ≤ n+ 2|EL| and m′ ≤ n+ 3|EL|.
Corollary 1 (Journeys flow decomposition). Let

(

G(L) = (V,E,L), s, t, c
)

be a temporal flow network on a directed graph G. Let f be a temporal flow in
G(L) (f is given by the values of f(e, l) for the time-edges (e, l) ∈ EL). Then,
there is a collection of s → t journeys j1, j2, . . . , jk such that:

1. k ≤ |EL|
2. v(f) = v(f1) + . . . v(fk)
3. fi sends positive flow only on the time-edges of ji

Temporal flows in Temporal networks, 9

4 Mixed Temporal Networks and their hardness

Mixed temporal networks of the form G(E1, E2, α) (see Definition 8) can model
practical cases, where some edge availabilities are exactly specified, while some
other edge availabilities are randomly chosen (due to security reasons, faults,
etc.); for example, in a water network, one may have planned disruptions for
maintenance in some water pipes, but unplanned (random) disruptions in some
others. With some edges being available at random times, the value of the max-
imum temporal flow (until time α) now becomes a random variable.

4.1 Temporal Networks with random availabilities that are flow
cutters

We study here a special case of the mixed temporal networks G(E1, E2, α),
where E1 = ∅, i.e., all edges become available at random time instances, and
we partially characterise such networks that eliminate the flow that arrives at t

asymptotically almost surely. All missing proofs can be found in the full version
of the paper [2].

Let G = (V,E) be a directed graph of n vertices with a distinguished source,
s, and a distinguished sink, t. Suppose that each edge e ∈ E is available only
at a unique moment in time (i.e., day) selected uniformly at random from the
set {1, 2, . . . , α}, for some even7 integer α ∈ N, α > 1; suppose also that the
selections of the edges’ labels are independent. Let us call such a network a
Temporal Network with unique random availabilities of edges, and denote it by
URTN(α). Then, the following holds:

Lemma 4. Let Pk be a directed s → t path of length k in G. Then, Pk becomes
a journey in URTN(α) with probability at most 1

k! .

Now, consider directed graphs as described above, in which the distance from
s to t is at least c log n, for a constant integer c > 2; so any directed s → t path
has at least c log n edges. Let us call such graphs “ c-long s → t graphs” or simply
c-long. A c-long s → t graph is called thin if the number of simple directed s → t

paths is at most nβ , for some constant β. It can be proven that:

Lemma 5. Consider a URTN(α) with an underlying graph G being any partic-
ular c-long and thin digraph. Then, the probability that the amount of flow from
s arriving at t is positive tends to zero as n tends to +∞.

Randomly labelled c-long and thin graphs is not the only case of temporal
networks that disallows flow to arrive to t asymptotically almost surely.

Definition 12. A cut C in a (traditional) flow network G is a set of edges, the
removal of which from the network leaves no directed s → t paths in G.

7 We choose an even integer to simplify the calculations. However, with careful ad-
justments in the calculations, the results would still hold for an arbitrary integer.

10 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

Definition 13. A cut C1 precedes a cut C2 in a flow network G (denoted by
C1 → C2) if any directed s → t path that goes through an edge in C1 must also
later go through an edge in C2.

Definition 14 (Multiblock graphs). A flow network is called a (c, d)-
multiblock graph if it has at least c log n disjoint cuts C1, . . . , Cc logn such that
Ci → Ci+1, i = 1, . . . , c log n − 1, and for all i = 1, . . . , c log n, |Ci| ≤ d, for
some constants c > 2, d ≥ 2.

Note that (c, d)-multiblocks and (c-long,thin)-graphs are two different graph
classes. Figure 2 shows a (c, 2)-multiblock of n = c

√
k+2, k ∈ N, vertices which

is not thin.

s v1 v2 v3 v
c
√

k
t

. . .

Fig. 2. A (c, 2)-multiblock which is not thin.

Lemma 6. Consider a URTN(α) with an underlying graph G being any par-
ticular (c, d)-multiblock. Then, the probability that the amount of flow from s

arriving at t is positive tends to zero as n tends to +∞.

4.2 The complexity of computing the expected maximum temporal
flow

We consider here the following problem:

Problem 2 (Expected Maximum Temporal Flow) What is the time com-
plexity of computing the expected value of the maximum temporal flow, v, in
G(E1, E2, α)?

Definition 15. [21, p.441] Let Q be a polynomially balanced, polynomial-time
decidable binary relation. The counting problem associated with Q is: Given x,
how many y are there such that (x, y) ∈ Q? #P#P#P is the class of all counting prob-
lems associated with polynomially balanced polynomial-time decidable functions.

Loosely speaking, a problem is said to be #P#P#P-hard if a polynomial-time algorithm
for it implies that #P#P#P = FPFPFP, where FPFPFP is the set of functions from {0, 1}∗ to
{0, 1}∗ computable by a deterministic polynomial-time Turing machine8. For a
more formal definition, see [21]. We show the following:

Lemma 7. Given an integer C > 0, it is #P#P#P-hard to compute the probability
that the maximum flow value v in G(E1, E2, α) is at most C, Pr[v ≤ C].

8 {0, 1}∗ = ∪n≥0{0, 1}
n, where {0, 1}n is the set of all strings (of bits 0, 1) of length n

Temporal flows in Temporal networks, 11

Now, given a mixed temporal network G(E1, E2, α), let v be the random
variable representing the maximum temporal flow in G.

Definition 16. The truncated by B expected maximum temporal flow of
G(E1, E2, α), denoted by E[v,B], is defined as: E[v,B] =

∑B
i=1 iPr[v = i].

Clearly, it is E[v] = E[v,+∞].

The following is the main theorem of this section.

Theorem 2. It is #P#P#P-hard to compute the expected maximum truncated Tem-
poral Flow in a Mixed Temporal Network G(E1, E2, α).

Open Problem 1 Is there an FPTAS for the expected maximum flow value in
mixed temporal networks?

Open Problem 2 What is the complexity of the maximum flow problem in pe-
riodic temporal graphs? These are graphs each edge e of which appears every
xe days (“edge period”). The maximum flow from s to t would then, in general,
increase as we increase the day by which we wish to compute the flow that ar-
rives at t. It seems that this problem requires a different approach than the one
presented here, that also takes into account the different edge periods.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

2. E. C. Akrida, J. Czyzowicz, L. Gasieniec, L. Kuszner, and P. G. Spirakis. Flows
in temporal networks. CoRR, abs/1606.01091, 2016.

3. E. C. Akrida, L. Gasieniec, G. B. Mertzios, and P. G. Spirakis. Ephemeral networks
with random availability of links: The case of fast networks. J. Parallel Distrib.
Comput., 87:109–120, 2016.

4. E. C. Akrida, L. Gąsieniec, G. B. Mertzios, and P. G. Spirakis. On temporally con-
nected graphs of small cost. In Proceedings of the 13th Workshop on Approximation
and Online Algorithms (WAOA), 2015.

5. E. C. Akrida and P. G. Spirakis. On verifying and maintaining connectivity of
interval temporal networks. In Algorithms for Sensor Systems - 11th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGO-
SENSORS 2015, Patras, Greece, September 17-18, 2015, Revised Selected Papers,
pages 142–154, 2015.

6. J. E. Aronson. A survey of dynamic network flows. Ann. Oper. Res., 20(1-4):1–66,
Aug. 1989.

7. C. Avin, M. Koucký, and Z. Lotker. How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In Proceedings of the 35th
International Colloquium on Automata, Languages and Programming (ICALP),
pages 121–132, 2008.

8. J. Batra, N. Garg, A. Kumar, T. Mömke, and A. Wiese. New approximation
schemes for unsplittable flow on a path. In P. Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 47–58. SIAM, 2015.

12 Akrida, Czyzowicz, Gąsieniec, Kuszner, Spirakis

9. A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems (IJPEDS), 27(5):387–408, 2012.

10. A. Chaintreau, A. Mtibaa, L. Massoulié, and C. Diot. The diameter of opportunis-
tic mobile networks. In Proceedings of the 2007 ACM Conference on Emerging
Network Experiment and Technology, CoNEXT 2007, New York, NY, USA, De-
cember 10-13, 2007, page 12, 2007.

11. A. E. F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding
time of edge-markovian evolving graphs. SIAM Journal on Discrete Mathematics
(SIDMA), 24(4):1694–1712, 2010.

12. T. Erlebach, M. Hoffmann, and F. Kammer. On temporal graph exploration. In
Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 444–455, 2015.

13. D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, USA, 2010.

14. B. Hoppe and E. Tardos. The quickest transshipment problem. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95,
pages 512–521, Philadelphia, PA, USA, 1995. Society for Industrial and Applied
Mathematics.

15. B. E. Hoppe. Phd thesis: Efficient dynamic network flow algorithms, 1995.
16. N. Kamiyama and N. Katoh. The universally quickest transshipment problem in

a certain class of dynamic networks with uniform path-lengths. Discrete Applied
Mathematics, 178:89–100, 2014.

17. D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems
for temporal networks. In Proceedings of the 32nd annual ACM symposium on
Theory of computing (STOC), pages 504–513, 2000.

18. A. Madry. Fast approximation algorithms for cut-based problems in undirected
graphs. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 245–254, 2010.

19. G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Temporal
network optimization subject to connectivity constraints. In Proceedings of the 40th
International Colloquium on Automata, Languages and Programming (ICALP),
Part II, pages 657–668, 2013.

20. J. B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
765–774, 2013.

21. C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

22. W. B. Powell, P. Jaillet, and A. Odoni. Stochastic and dynamic networks and
routing. Handbooks in operations research and management science, 8:141–295,
1995.

23. T. Radzik. Faster algorithms for the generalized network flow problem. Mathe-
matics of Operations Research, 23(1):69–100, 1998.

24. M. J. Serna. Randomized parallel approximations to max flow. In Encyclopedia of
Algorithms, pages 1750–1753. 2016.

25. M. Skutella. An introduction to network flows over time. In Research Trends
in Combinatorial Optimization, Bonn Workshop on Combinatorial Optimization,
November 3-7, 2008, Bonn, Germany, pages 451–482, 2008.

