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Abstract—We analyze the following infinite load balancing

process, modeled as a classical balls-into-bins game: There

are n bins (servers) with a limited capacity (buffer) of size

c=c(n)2N. Given a fixed arrival rate �=�(n)2(0,1), in every

round �n new balls (requests) are generated. Together with

possible leftovers from previous rounds, these balls compete to

be allocated to the bins. To this end, every ball samples a bin

independently and uniformly at random and tries to allocate

itself to that bin. Each bin accepts as many balls as possible

until its buffer is full, preferring balls of higher age. At the end

of the round, every bin deletes the ball it allocated first.

We study how the buffer size c affects the performance of

this process. For this, we analyze both the number of balls

competing each round (including the leftovers from previous

rounds) as well as the worst-case waiting time of individual

balls. We show that (i) the number of competing balls is at any

(even exponentially large) time bounded with high probability by

4 ·c�1 · ln
�
1/(1��)

�
·n+O

�
c ·n

�
and that (ii) the waiting time

of a given ball is with high probability at most
�
4 · ln

�
1/(1�

�)
��
/
�
c · (1� 1/e)

�
+ log logn+O

�
c
�
. These results indicate a

sweet spot for the choice of c around c = ⇥
�p

log(1/(1��))
�
.

Compared to a related process with infinite capacity [Berenbrink

et al., PODC’16], for constant � the waiting time is reduced from

O(logn) to O(loglogn). Even for large �⇡1�1/n we reduce the

waiting time from O(logn) to O(
p
logn).

Index Terms—load balancing, balls-into-bins, job allocation,

capacity, infinite process, thresholds

I. INTRODUCTION

The model of balls and bins is frequently used as primitive
operation when modeling (probabilistic) load balancing, be
it access to RAM or hard drives, processing tasks on CPUs
or servers, or hashing. Generally the objective is to obtain an
even workload distribution among resources, just minimizing
the maximum workload of any resource, or in case of infinite
processes, guaranteeing some notion of “stability”. Maintaining
a table of all (or a significant portion of all) servers’ workloads
may be too costly, and a centralized approach introduces a
single point of failure and possible communication bottlenecks,
which may be undesirable. Because of its simplicity, a
common approach is to use a randomized load balancing
strategy where each client is given a list of servers from which
it chooses one random server to send its request to; often
this list of servers is in fact the entire set. The authors of [19]

show that this approach can balance the load fairly well; for
n servers the maximum load is ⇡m/n+

p
mlog(n)/n for

m=⌦(nlogn) many tasks and O(logn) for m=n tasks.
The authors of [4] analysed a process allowing clients to send

requests to d�2 servers and committing to a server (of those
queried) of lowest load. This leads to an exponentially better
maximum load (m/n+loglogn+O(1)), provided the clients
operate sequentially [4, 9]. This effect is commonly referred to
as “power of two choices” and it works very well in sequential
settings. Not surprisingly, in parallel settings this d-choice
process loses some of its powers [2, 7, 10]. To see this assume
the tasks are allocated in batches of size n, one batch after
another, but the balls within a batch simultaneously. If on the
one hand the servers’ answers to load requests do not include
the requests of the current batch then the maximum load is more
or less that of the one-choice case since the expected maximum
number of tasks allocated to some server is ⌦(logn). If on the
other hand the servers’ answers do include the requests of the
current batch then the load of a server can be far away from the
actual number of tasks after the allocation. See [7] for details.

In this paper we consider a process where, instead of
allowing multiple choices per tasks, the servers are equipped
with buffers allowing the servers to accept multiple tasks
from every batch. We consider the following parallel, infinite
scenario: we have n servers which receive requests from clients.
Every client is given a list of all servers, and it can query single
randomly chosen servers. Every server has a limited-capacity
buffer in which some requests are stored, and the server
processes them one by one. While the clients can be neglected
in our model, the requests are modeled as balls and the servers
as bins. Our model of parallelism assumes synchronous rounds;
in every round a batch of �n new balls arrives, and after the
allocation stage every bin processes (i.e., deletes) the ball that
it allocated first. Unallocated balls will simply be added to
the batch of new balls arriving in the subsequent round.

On the result side of things, our main aim is to show
long-term “stability” in terms of bounds on the size of the
“pool” of balls needing to be allocated and the balls’ waiting
times, mainly as function of the generation coefficient � and
the bins’ buffer size, at an arbitrary point of time. We however
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also strive to keep the balancing protocols as simple and
natural as possible, to use only fundamental mathematical
tools and techniques in our analyses, and to have presentations
of proofs as intuitive and streamlined as we see possible (the
latter self-imposed requirement in particular made us resist the
urge to optimize most constant coefficients in bounds etc.).

A. Related Work

There is a vast amount of literature on balls-into-bins games
in different settings. In the static setting the number of balls
is fixed whereas in infinite settings balls are allocated over an
infinite period of time. In a parallel balls-into-bins game the
balls are allocated concurrently, whereas balls are allocated
one after the other in sequential settings. While there is a large
amount of literature on sequential balls-into-bins games, both
in the finite and the infinite settings, e.g., [4, 6, 9, 21], there
is far less work on parallel balls-into-bins protocols. In this
literature overview we focus on parallel and infinite games.

For m=n it is known that placing the balls independently
and uniformly at random (i.u.r.) leads to a maximum load
of (1�o

�
1
�
)logn/loglogn w.h.p.1 A well-known paradigm

called power of two choices works well in sequential settings.
For example, Azar et al. [4] introduce the protocol GREEDY[d]
and show that the load of the highest-loaded bin is at most
log logn/ logd+O

�
1
�

w.h.p. by allocating each ball to the
least loaded of d�2 randomly chosen bins.

a) Static parallel processes: Adler et al. [2] consider
parallel versions of GREEDY[d] and explore a trade-off between
the maximum load and the number r of communication rounds
between balls and the randomly chosen bins. Roughly speaking,
their result shows that bounds which are close to the classical
(sequential) processes can only be achieved if r is close to
the maximum load [2]. The authors give a lower bound on the
maximum load dependent on r, and Stemann [20] provides
a matching upper bound via a collision-based protocol. In the
same context, Adler et al. [2] also consider a protocol, called
THRESHOLD[T], which bears resemblance to ours. In each
round every ball chooses a random bin and every bin rejects
all balls above this threshold. The authors prove that, w.h.p.,
THRESHOLD[1] terminates after at most ln ln(n) + O

�
1
�

steps which implies that the maximum load is also at most
lnln(n)+O

�
1
�
. Lenzen et al. [15] consider the heavily-loaded

case with m>n balls. They present a simple parallel threshold
algorithm that obtains a maximal load of m/n+O

�
1
�

w.h.p.
using O

�
loglog(m/n)+log

⇤
n
�

communication rounds.
b) Infinite Sequential Processes: Azar et al. [4] consider

an infinite, sequential version of their GREEDY[d] starting
with n balls arbitrarily assigned to n bins. In each round one
random ball is reallocated using the d-choice process. For any
t>cn

2
loglogn, the maximum load at time t is lnln(n)/lnd+

O
�
1
�

w.h.p. Cole et al. [12] show that the maximum load is
loglogn/logd+O(1) for a polynomial number of steps, w.h.p.,
even if an adversary specifies the deletion sequence. They also
show that at an arbitrary point of time the maximum load is

1The expression with high probability refers to a probability of 1�n�⌦(1).

at most 4loglogn if the same n balls are re-inserted again and
again and the random choices of each ball are fixed after its first
insertion. Vöcking [21] extends the analysis of [4] by allowing
arbitrary sequences of insertions and deletions. If the maximum
number of balls never exceeds hn, the maximum load at any
time is w.h.p. logdlnn+O(h) in the case of GREEDY[d] and
lnlnn/(dln'd)+O(h) in the case of ALWAYS-GO-LEFT[d].

c) Infinite Parallel Processes: Becchetti et al. [5] consider
a parallel process where the number of balls is fixed to n. In
each round one ball is chosen from every non-empty bin and
reallocated to a randomly chosen bin (one choice per ball). The
authors show that w.h.p. starting from an arbitrary configuration,
it takes O

�
n
�

rounds to reach a configuration with maximum
load O

�
logn

�
. Adler et al. [1] consider a system where in each

round m<n/(3de) balls are allocated. Bins have a FIFO queue,
and each arriving ball is stored in the queue of d random bins.
After each round, every non-empty bin deletes its first ball and
initiates the deletion of that ball’s copies from the other bins. It
is shown that the expected waiting time is constant and the max-
imum waiting time is loglog(n)/logd+O(1) w.h.p. The restric-
tion m<n/(3de) is the major drawback of this process. Beren-
brink et al. [8] conduct a further study, based on differential
methods and experiments. The balls’ arrival times are binomi-
ally distributed with parameters n and �=m/n. Their results in-
dicate a stable behavior for �0.86. A similar model was con-
sidered by Mitzenmacher [16], who considers ball arrivals as a
Poisson stream of rate �n for �<1. It is shown (again using dif-
ferential equations) that the 2-choice process reduces the wait-
ing time exponentially compared to the 1-choice process. Beren-
brink et al. [7] study the d-choice process in a scenario where
m balls are allocated to n bins in batches of size n each. The au-
thors show that the load of every bin is m/n±O

�
logn

�
w.h.p.

Berenbrink et al. [10] study a round-based parallel version of
the GREEDY[d] distribution scheme. m=�n new balls arrive
per round and at the end of the round each non-empty bin
deletes one of its balls. The measure used for the comparison
is the number of balls in that bin at the beginning of the round;
balls of the current batch are not taken into account. The
authors show a strong self-stabilizing property: for any arrival
rate � < 1, the system load is time-invariant. In particular,
they show that the maximum bin load (or waiting time) at an
arbitrary time is, w.h.p., bounded by O

�
1

1�� ·log
n

1��

�
for the

1-choice process, and O
�
log

n
1��

�
for the 2-choice process.

The load properties of the 1-choice process yield a super-linear
maximum load for �=1�1/n. The maximum load in the 2-
choice process remains logarithmic for any �1�1/poly(n).

B. New Results
The major aim of this paper, in contrast to [10], is to

minimize the waiting time of the balls, rather than (just) the
total number of balls in the system. The new process, which
we call CAPPED(c,�), works in parallel rounds. It limits the
number of balls that a bin can store by a capacity c, and
a pool contains all the balls from the previous round not
accepted by any bin (which in a real scenario could stay with
the clients). In every round �n new balls are added to the
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pool and each ball from the pool randomly chooses one bin.
In turn, every bin accepts as many balls as possible, preferring
the oldest balls among its requests. At the end of a round,
every bin deletes a ball in a FIFO manner.

In this paper we present a simple analysis for this process
which is based on simple combinatorial arguments and Chernoff
bounds (compared to differential equation arguments [8, 16],
potential function arguments [10] or infinite witness trees [1]
which were used before to analyze infinite allocation processes
where the number of balls is not fixed). To illustrate the
main idea of our proof we first consider the case for c= 1.
We show that w.h.p. the total number of balls in the pool
is at most 2 · ln

�
1/(1 � �)

�
· n + 4n and that the waiting

time of any ball generated in an arbitrary step t is at most�
2ln
�
1/(1��)

�
+4
�
/(1� e

�1
)+ loglogn+O

�
1
�
. We then

generalize this to c�1 and show that w.h.p. the total number
of balls in the pool is at most 4·c�1 ·ln

�
1/(1��)

�
·n+O

�
c·n
�
.

The waiting time of any ball generated in any round t is w.h.p. at
most

�
4·ln

�
1/(1��)

��
/
�
c·(1�1/e)

�
+loglogn+O

�
c
�
. Note

that the result of [10] implies that both of the analyzed processes
are self-stabilizing, i.e., positive recurrent, which means that the
expected return time to a typical low-load situation is finite. Pos-
itive recurrence is a standard notion of stability and states that
the system load is time-invariant. For ergodic Markov chains
it implies the existence of a unique stationary distribution.

For large values of � and c not too large, both the number
of balls in the pool and the waiting time decrease by a factor
of essentially c. Even for an injection rate of � = 1� 1/n

the pool size is at most O
�
nlogn

�
and the waiting time is

O
�
logn

�
. Note that, for constant �, both results from [10] give

a bound of ⇥(logn) on the waiting time, whereas our new
results show a bound of loglogn+O

�
1
�
. The “long” waiting

time in [10] is due to the fact that there is no coordination
between the balls generated in the same round. As a result,
up to O

�
logn

�
of these balls can be allocated to one bin.

Compared to our process, an advantage of the GREEDY[d]
process from [10] is that it only needs d random choices to
allocate a ball. However, our results imply that, for constant �,
the average number of random choices per ball is still constant.

II. MODEL AND DEFINITION OF THE ALLOCATION PROCESS

The number of bins is n and we assume that the system is
initially empty. The process works in parallel rounds and is
defined as follows. At the beginning of every round �n new
balls are generated, where � denotes the injection rate.2 We
assume that �n is an integer. A ball that is generated in round t

is labeled with t, and the age of a ball in round t is defined as t
minus the ball’s label. The generated balls are added into a pool,
which contains balls that could not be allocated in the previous
round. We use M(t) to denote the set of balls in the pool at the
end of round t2N and define m(t) := |M(t)|. Every bin has
capacity c, i.e., it can store up to c balls. The load (number of
balls) of bin i at the end of round t is denoted by `i(t). After

2Our results can be adjusted to a probabilistic ball generation process with
n generators and an expected injection rate of �, but this would, for no real
gain, quite unnecessarily complicate the presentation.

the ball generation, in parallel every ball randomly chooses
a bin and sends an allocation request to the bin. A bin i that
receives ⌫i request accepts the min{c�`i(t),⌫i} “oldest” balls
(the ones with the smallest label), ties are broken arbitrarily.
These balls are subsequently removed from the pool. At the end
of round t, every bin deletes a ball following a FIFO-scheme.

The waiting time of a ball that is deleted in round t is
defined as the ball’s age in round t. For a,b2N with ab we
use the notation [a;b] :={a,a+1,...,b} for integral intervals and
the shorthands [a] := [1;a]. Similar notation is used for open
and half-open intervals, for example (a;b]={a+1,a+2,...,b}.
We let our process start in round 1 and set m(0) = 0 and
`i(0)=08i2 [n]. In the following we will use CAPPED(c,�)
for the process with injection rate � and capacity c. Note that
c=1 implies no capacity limit and therefore CAPPED(1,�)

is identical to GREEDY[1]. See Algorithm 1 for a formal
definition of one round of CAPPED(c,�).

Algorithm 1 Round t of CAPPED(c,�)

Generate �n new balls and add them to the pool
Each ball b from the pool picks a bin independently and
uniformly at random
Each bin i that receives ⌫i requests accepts the oldest
min{c�`i(t�1),⌫i} balls (ties broken arbitrarily); these
balls are removed from the pool and inserted into a queue
Each non-empty bin deletes the first ball in its queue

III. WARM-UP: ANALYSIS FOR UNIT CAPACITY

In this section we analyze the pool size and the waiting time
of CAPPED(1,�). This special case allows us to convey the
key ideas of the analysis while still hiding some of the more
technical aspects we have to deal with for general capacities
c2N. The major property that simplifies the analysis for unit
capacity is that each round starts with empty bins.

Theorem 1. Consider CAPPED(1,�) for 0�1�1/n with
�n2N. Let t2N be an arbitrary round.

1) With probability at least 1�2
�2n, the size of the pool

at the end of round t is less than

2·ln
✓

1

1��

◆
·n+4n.

2) With probability at least 1�n
�2, the waiting time of any

ball generated in round t is at most

2·ln
⇣

1
1��

⌘
+4

1�e�1
+loglogn+O

�
1
�
.

Note that the constants in the above result are not optimized
but result from the urge to keep the analysis simple and clean.

The remainder of this section proves Theorem 1. The key
part of the analysis is the proof of Statement 1, which is given
in Section III-A. Afterward, we show in Section III-B how
Statement 2 follows by standard arguments with the help of
Statement 1.
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A. Analysis of the Pool Size

Our goal is to prove Statement 1 of Theorem 1, namely
that for any t2N it is extremely unlikely that the size m(t) of
the pool at the end of round t is larger or equal 2m⇤, where
m

⇤ :=ln
�
1/(1��)

�
·n+2n.

In the following, we say the deletion attempt of a bin i

during round t is successful if bin i receives at least one ball
(and, thus, deletes a ball) during round t. Otherwise, we say
the deletion attempt of bin i during round t failed.

The idea of our proof is as follows. Fix a round t and assume
m(t)�2m

⇤. There must be a round s t such that m(s�1)
m

⇤ and m(t
0
)>m

⇤ for all t02 [s;t]. That is, during the �s,t :=

t�s+1 rounds from s to t the pool size grows from at most
m

⇤ to at least 2m⇤ without falling back to m
⇤ in between. Such

an increase is possible only if enough of the �s,t ·n deletion
attempts during these �s,t rounds failed. More exactly, if Xs,t

denotes the total number of failed deletion attempts during [s;t],
we will show that an increase of at least m⇤ during [s;t] implies
Xs,t�m

⇤
+(1��)·�s,t ·n. Using that m(t

0
)�m

⇤ for all t02
[s;t], we then bound the probability that a given deletion attempt
in round t

0 fails by (1�1/n)
m(t0)e

�m(t0)/ne
�m⇤/n. This

yields E[Xs,t]�s,t ·n · e�m⇤/n. Realizing that Xs,t is the
sum of �s,t ·n indicator variables (indicating whether a given
deletion attempt failed) suggests to bound the probability that
Xs,t�m

⇤
+(1��)·�s,t ·n via a simple Chernoff bound.

Unfortunately, the above argumentation relies crucially on
our choice of s and t giving m(t

0
)>m

⇤ for all t02 [s;t]. Such
a conditioning on future events might skew the probability
distribution. We will use a coupling with a process that
behaves as CAPPED(1,�) but always keeps the pool at size
at least m⇤ to deal with this.

As outlined above, our analysis is based on a related process,
MODCAPPED(1,�), which behaves like CAPPED(1,�) with
only one exception: instead of generating �n balls at the begin-
ning of any round t2N, it generates max{�n,m⇤�m(t�1)}
balls. As a result, this modified process is guaranteed to throw
in each round at least m⇤ balls into the bins. To differentiate
between the pool sizes of both processes, in the following
we use m

C
(t) and m

M
(t) for the pool size of CAPPED(1,�)

and of MODCAPPED(1,�) at the end of round t, respectively.
Using a simple coupling, the following lemma shows that
at any time the pool size of CAPPED(1,�) is stochastically
dominated by the pool size of MODCAPPED(1,�).

Lemma 1. At the end of any round t2N, the pool size m
C
(t)

of CAPPED(1,�) is stochastically dominated by the pool size
m

M
(t) of MODCAPPED(1,�).

Proof. We prove the stochastic dominance via induction.
Initially, we have m

C
(0) = 0 = m

M
(0). Now consider

round t 2 N and assume m
C
(t� 1) m

M
(t� 1). In round

t, CAPPED(1, �) throws ⌫
C
(t) := m

C
(t � 1) + �n balls.

Similarly, MODCAPPED(1,�) throws ⌫
M
(t) :=m

M
(t�1)+

max{�n,m⇤�m
M
(t�1)} balls. Combining both with the in-

duction hypothesis for t�1 immediately yields ⌫
M
(t)�⌫

C
(t).

We now define the coupling for round t: number the

balls thrown by CAPPED(1,�) from 1 to ⌫
C
(t) and those

thrown by MODCAPPED(1, �) from 1 to ⌫
M
(t). W.l.o.g.,

we assume that, when allocating and deleting balls, both
processes prefer balls with a smaller number. The first
⌫
C
(t) balls of MODCAPPED(1,�) use the same random bin

choices as their counterparts in CAPPED(1,�). The remaining
⌫
M
(t)�⌫

C
(t)�0 balls of MODCAPPED(1,�) uniformly and

independently choose bins at random.
To finish the induction, it remains to prove m

C
(t)m

M
(t).

By the above coupling, MODCAPPED(1,�) and CAPPED(1,�)
delete the same balls among their first ⌫C(t) balls. Additionally,
MODCAPPED(1,�) may delete some of its ⌫

M
(t) � ⌫

C
(t)

extra balls. This yields m
C
(t)m

M
(t).

With Lemma 1, it is sufficient to prove Statement 1 of The-
orem 1 for MODCAPPED(1,�) instead of for CAPPED(1,�):

Lemma 2. Consider MODCAPPED(1,�) with 0�1�1/n

and let t2N be an arbitrary round. With probability at least
1� 2

�2n, the size of the pool at the end of round t is less
than 2·ln

�
1/(1��)

�
·n+4n.

Proof. For t 2 N let m
M
(t) denote the pool size of

MODCAPPED(1,�) at the end of round t. Remember that
m

⇤
= ln

�
1/(1��)

�
·n+2n. Consider s,t2N with s t. We

define the events

At :={mM
(t)�2m

⇤} and
Bs,t :={mM

(s�1)m
⇤ ^8t02 [s;t] : m

M
(t

0
)>m

⇤}.

Our goal is to prove Pr[At]2
�2n. For At to occur there

must be exactly one s t for which Bs,t holds, and so we can
partition At via At=

U
s2[t]At\Bs,t. Define �s,t := t�s+1

as the number of rounds in the integral interval [s; t]. Let
Xs,t denote the number of failed deletion attempts during
[s; t]. Our strategy is to first bound each Pr[At\Bs,t] by
showing that the event At\Bs,t occurring implies the event
Xs,t�m

⇤
+(1��)·�s,t ·n also occurring; in terms of event

sets, (At \Bs,t) ✓ (Xs,t �m
⇤
+(1��) ·�s,t ·n). This will

yield Pr[At\Bs,t]Pr[Xs,t�m
⇤
+(1��)·�s,t ·n].

Fix s,t2N with s t and assume event At\Bs,t occurred.
By definition of Bs,t, MODCAPPED(1,�) generates exactly
�s,t · �n balls during [s; t], and there are exactly �s,t · n
deletion attempts (one per bin per round) which, if successful,
each remove one of the generated balls. The pool size
therefore increases by exactly �s,t · �n � (�s,t · n �Xs,t)

from round s to t. Consequently, for the pool size to increase
from at most m

⇤ to at least 2m
⇤ during [s; t], we must

have �s,t · �n � (�s,t · n � Xs,t) � m
⇤ or, equivalently,

Xs,t�m
⇤
+(1��)·�s,t ·n. This gives

Pr[At\Bs,t]Pr[Xs,t�m
⇤
+(1��)·�s,t ·n]. (1)

We now fix arbitrary rounds s,t2N with s t and proceed
to bound the probability Pr[Xs,t�m

⇤
+(1��)·�s,t ·n].

Observe that Xs,t 
P

t02[s,t]

P
i2[n] Xt0(i), where Xt0(i)

are indicator variables with Xt0(i) = 1 if and only if
none of the first m

⇤ balls from round t
0 are thrown

into bin i. Let X̃s,t :=
P

t02[s,t]

P
i2[n] Xt0(i). We have
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Pr[Xt0(i)=1]  (1�1/n)
m⇤

 e
�m⇤/n

= e
�2 · (1 � �),

which, by our choice of m
⇤
= ln

�
1/(1��)

�
·n+2n, yields

E
h
X̃s,t

i
�s,t ·n ·e�m⇤/n  (1��) ·�s,t ·n/(2e). Note that

the variables (Xt0(i))t02[s,t],i2[n] are negatively associated.
Indeed, this follows easily for fixed t

0, as (Xt0(i))i2[n]

correspond to the empty-bins indicator variables [13,
Theorem 46] and can be extended to different rounds by the
independence of the first m⇤ balls thrown in different rounds.
Thus, we can define R :=m

⇤
+(1��) ·�s,t ·n� 2e ·E[Xs,t]

and apply the Chernoff bound from Lemma 8 to get

Pr[Xs,t�m
⇤
+(1��)·�s,t ·n]=Pr[Xs,t�R]

Pr

h
X̃s,t�R

i
2

�R
=2

�m⇤
·2�(1��)·�s,t·n.

(2)

We are now ready to prove Pr[At]  2
�2n. Using the

partitioning At=
Ut

s=1At\Bs,t and combining Equations (1)
and (2) yields

Pr[At]

=

X

s2[t]

Pr[At\Bs,t]
X

s2[t]

Pr[Xs,t�m
⇤
+(1��)·�s,t ·n]


X

s2[t]

2
�m⇤

·2�(1��)·�s,t·n2
�m⇤

·
X

i2[t]

�
2
�1
�i2

�m⇤
,

where the penultimate inequality uses �1�1/n and reverses
the summation, and the last inequality bounds the sum via
a geometric series. From this, the desired result follows by
noting that m⇤

=ln
�
1/(1��)

�
·n+2n�2n.

B. Analysis of the Waiting Time
In this section we prove Statement 2 of Theorem 1.

Remember that M(t) denotes the set of balls in the pool at
the end of round t and m(t) = |M(t)|. For t

0 � t we define
M(t,t

0
) as the balls from M(t) that are still in the pool at the

end of round t
0 and let m(t,t

0
) := |M(t,t

0
)|. Note that m(t,t

0
)

is monotonically decreasing in t
0.

Consider a ball b 2 M(t) that was generated in round t.
Note that when competing for allocation in a given bin during
a round t

0� t, this ball may be delayed by balls from M(t,t
0
)

(which have been generated during some round  t and, thus,
are at least as old as b) but it cannot be delayed by any ball
generated after round t. Thus, to bound the waiting time of
b we analyze how long it takes until all balls from M(t)

become allocated and, thus, deleted.
To this end, we first note that, by Statement 1 of Theorem 1,

the set M(t) has, with exponentially high probability, size
m(t) 2 · ln

�
1/(1��)

�
·n+4n. Now, given a round t with

pool size m(t)  2 · ln
�
1/(1� �)

�
·n+4n, the next lemma

states that, also with an exponentially high probability, the
number of surviving balls from M(t) decreases to 2n within
� :=m(t)/(n�n/e) rounds.

Lemma 3. Consider a round t 2 N with m(t)  n
2. Let

� :=m(t)/(n�n/e). With probability at least 1�e
�⌦(n), we

have m(t,t+�)2n.

Proof. Fix round t2N with m(t)n
2. Consider a round t

0
>t

and assume m(t,t
0�1)> 2n. For a bin i2 [n] let Xi denote

the indicator variable which is 1 if and only if bin i does not
receive a ball in round t

0 and define X :=
P

i2[n]Xi. Since
during round t

0 at least m(t,t
0�1)>2n balls are thrown, we

have Pr[Xi=1]  (1� 1/n)
m(t,t0�1)  e

�m(t,t0�1)/n
< e

�2,
which in turn yields µ :=E[X]<n·e�2. We apply a standard
tail bound to the number of empty bins (Lemma 10, with
�=n/e�n/e

2) to get

Pr[X�n/e]Pr[X�µ+�]e
��2·(n�1/2)

n2�µ2
=e

�⌦(n)
. (3)

In other words, with only exponentially small probability
fewer than n/e bins do not receive a ball in round t

0, which
implies that more than n�n/e bins receive at least one ball
and, thus, delete at least one ball at the end of round t

0.
Note that �=m(t)/(n�n/e) is an upper bound on the

number of rounds it takes to reduce m(t) balls to 2n balls
if in each round at least n�n/e of them are deleted. Define
the stopping times T :=min{t02N | t0� t^m(t,t

0
)2n} and

T
0 := min{T,t+�}. Using m(t)  n

2 and a simple union
bound over Equation (3) for the T

0� t�=O(n) rounds
from t+1 to T

0 yields that, after T 0 rounds, either T 0
<t+�

(which implies T =T
0
<t+� by definition of T 0) or that, with

probability at least 1��·e�⌦(n)
=1�e

�⌦(n), each of the �

rounds from t to T
0
= t+� deleted n�n/e from the m(t)

balls, which (by our choice of �) implies m(T
0
)2n.

Now given that there are m(t,t+�) 2n survivors from
M(t), the next lemma states that, again with an very high
probability, the number of surviving balls from M(t) decreases
further to n/(2e) within 19 additional rounds.

Lemma 4. Consider two rounds t1  t2 with
m(t1, t2)  2n. With probability at least 1 � e

�⌦(n),
we have m(t1,t2+19)n/(2e).

Proof. Fix a round t
0
>t2 and assume m(t1,t

0�1)>n/(2e).
Let the indicator variable Xi be 1 if and only if bin
i 2 [n] does not receive a ball in round t

0 and define
X :=

P
i2[n]Xi. Analogously to the proof of Lemma 3, we get

E[X]<n·e�1/(2e)
=:µ. Although the Xi are not independent

they are negatively associated, and we can apply a standard
Chernoff bound (Lemma 9) with � :=1/20 to get

Pr[X�9n/10]Pr[X�(1+�)·µ]e
�⌦(n)

. (4)

In other words, with only exponentially small probability
fewer than 9n/10 bins do not receive a ball in round t

0, which
implies that more than n/10 bins receive at least one ball and,
thus, delete at least one ball at the end of round t

0.
Note that deleting n/10 balls for � :=19 rounds is enough

to reduce m(t1,t2) from at most 2n to 2n��·n/10<n/(2e).
Thus, using a stopping time argument analogously to the proof
of Lemma 3, we get that with probability at least 1� 19 ·
e
�⌦(n)

=1�e
�⌦(n) we have m(t1,t2+�)n/(2e).

Finally, the next lemma shows that, with high probability,
the remaining n/(2e) survivors from M(t) are deleted in an
additional loglogn+O(1) rounds.
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Lemma 5. Fix two rounds t t
0 with m(t,t

0
) n/(2e). We

have m(t,t
0
+loglogn+O(1)) = 0 with probability at least

1�n
�2, that is, every ball from M(t) is allocated by the end

of round t
0
+loglogn+O(1).

Proof Sketch. Our proof uses layered induction and is
basically the same as the analysis of GREEDY[2] (see [4,
Theorem 4]). The only difference is that the induction in our
proof goes over rounds instead of the balls’ heights. This is
merely a cosmetic difference and does not affect the idea and
structure of the proof. In the following we briefly describe
how to set up the induction, after which the proof then follows
exactly that of [4, Theorem 4].

For i2N0, let Bi :=M(t,t
0
+i) be the subset of balls from

M(t) that are not allocated at the end of round t
0
+i. Define

�0 :=n/(2e) and �i+1 = e ·�2
i /n for i2N. We let i⇤ 2N be

minimal such that �2
i⇤/n4ln(n)/n. For 0 i i

⇤ let ⇠i be
the event that |Bi| �i. The proof now proceeds to bound
the probability of the event ¬⇠i+1^⇠i, which can be achieved
exactly as in [4, Theorem 4]. The result then follows using
a simple union bound.

The lemmas above now finally allow us to prove Statement 2
of Theorem 1.

Proof of Statement 2 from Theorem 1. The proof uses
Lemmas 3 to 5 as well as Statement 1 of Theorem 1. First, State-
ment 1 of Theorem 1 shows that m(t)2·ln

�
1/(1��)

�
·n+4n

with probability at least 1�2
�2n. From Lemma 3 it follows

that for � :=m(t)/(n�n/e) we have m(t,t+�) 2n with
probability at least 1�e

�⌦(n). From Lemma 4 it follows that
after 19 additional rounds we have m(t,t+�+19)n/(2e),
also with probability at least 1�e

�⌦(n). From Lemma 5 it
follows that, with probability at least 1�n

�2, all balls of M(t)

are deleted after loglogn+O(1) additional rounds. Thus, with
a probability of 1�n

�⌦(1), the waiting time is bounded by

�+19+loglogn+O(1)
2·ln

⇣
1

1��

⌘
+4

1�e�1
+loglogn+O

�
1
�
,

giving us the desired statement.

IV. ANALYSIS FOR ARBITRARY CAPACITIES

In this section we extend the analysis from Section III to
arbitrary capacities c2N. Our main result for this section is
Theorem 2, which closely resembles Theorem 1 except for
some slightly weaker constants.

Theorem 2. Consider CAPPED(c, �) for c 2 N and
0�1�1/n with �n2N. Let t2N be an arbitrary round.

1) With probability at least 1�2
�2n, the size of the pool

at the end of round t is less than
4

c
·ln
✓

1

1��

◆
·n+O

�
c·n
�
.

2) With probability at least 1�n
�2, the waiting time of any

ball generated in round t is at most

4·ln
⇣

1
1��

⌘

c·(1�e�1)
+loglogn+O

�
c
�
.

rounds

ca
p
ac
it
y

t

Figure 1. Region that affects or is affected by round t.

In Statement 1 of the theorem, bounding the pool size, we
consider the O

�
c · n

�
term to mainly be an artifact of our

simple analysis using the coupling with MODCAPPED(c,�).
In Statement 2, bounding the waiting time, the term 4 ·
ln

⇣
1

1��

⌘
/
�
c·
�
1� 1

e

��
+ log log n estimates the number of

rounds until a ball is allocated into the buffer of a bin, whereas
the O

�
c
�

is for the time until a ball is deleted from a buffer; in
total the waiting time does not strictly decrease with increasing
c. We believe this O

�
c
�

term not to be an artifact of our analysis
but rather stemming largely from balls having a good chance to
be allocated to a bin already having its buffer filled up to some
constant fraction of its capacity. We observe this happening
experimentally even if the pool size is relatively small.

a) Analysis Outline: The basic idea for the analysis of
Theorem 2 is the same as for c=1 (see also the proof idea in
Section III). However, while for c=1 each round starts with
empty bins, the load situation for general c may vary widely
from round to round and introduce additional dependencies.

To get some intuition about these dependencies, fix some
round t. Note that every ball allocated in round t will be
deleted during a round in [t;t+ c), and any ball deleted in
round t was allocated during a round in (t� c; t]. We can
imagine the region that affects and the region that is affected
by round t as the marked area in Figure 1. We will refer to
these regions as buffers and partition a bin over time into
different buffers that overlap each other (see Figure 2).

Observe that overlapping buffers of a bin have certain
dependencies. In particular, they compete for balls selecting
that bin. To deal with these dependencies, we extend the
coupling used for c= 1. Our extended coupling will ensure
that for each active buffer at least m⇤

/2 balls try to allocate
themselves to that buffer, independently of any other buffer.

We define the modified process MODCAPPED(c,�) (which,
for c=1, simplifies to the modified process from Section III) in
Section IV-A. The analysis in Section IV-B first proves that the
pool size of CAPPED(c,�) is stochastically dominated by the
pool size of MODCAPPED(c,�) (Lemma 6). Then it is sufficient
to prove Statement 1 of Theorem 2 for the modified process
(Lemma 7). Statement 2 of Theorem 2 in turn can be proved
similarly as for c=1, using the bound on the pool size for arbi-
trary c instead of that for c=1. See Section IV-C for the details.

A. Definition of the Coupled Process
This section defines MODCAPPED(c, �), a variant of

CAPPED(c,�) which avoids some of the dependencies that
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plague CAPPED(c,�). We partition time into phases of length
c such that phase j 2 N0 corresponds to the integral time
interval Ij :=[c·j;c·(j+1)�1]. For any j2N0, each bin has a
buffer j with a time-dependent capacity cj(t)2{0,1,...,c}. We
say buffer j is active in round t if cj(t)>0. The capacity is
defined such that buffer j is active only during the phases j�1

and j. More precisely, it starts at capacity 0 in the first round
of phase j�1 and increases its capacity by 1 per round until
capacity c is reached in the first round of phase j. Subsequently,
the buffer’s capacity decreases again by 1 per round, reaching 0

after the end of phase j (see also Figure 2). Formally, we have

cj(t)=

8
><

>:

0 if t 62(Ij�1[Ij),
t�(j�1)·c if t2Ij�1, and
(j+1)·c�t if t2Ij .

(5)

Note that for any bin and any round t, at most two buffers
are active (namely buffers bt/cc and dt/ce), and the capacity
of those active buffers sums up to the bin’s capacity c. We refer
to dt/ce as the bin’s red buffer in round t. If bt/cc 6= dt/ce,
we refer to bt/cc as the bin’s blue buffer in round t.

We are now ready to define MODCAPPED(c, �). It
deviates from CAPPED(c,�) in two ways: ball generation
and ball allocation/deletion. For the ball generation,
we proceed as in Section III. Instead of generating
�n balls at the beginning of each round t 2 N,
MODCAPPED(c, �) generates max {�n,m⇤�m(t�1)}
balls, where m

⇤ :=2c
�1 ·ln

�
1/(1��)

�
·n+6c·n.

The ball allocation/deletion is more involved. For a given
round t let ⌫(t) denote the number of balls after that round’s
ball generation and note that ⌫(t) � m

⇤. We partition the
balls (arbitrarily) into d⌫(t)/2e balls with preference red and
b⌫(t)/2c balls with preference blue. Then, every ball chooses
one of the n bins independently and uniformly at random.
Among all balls that choose a given bin, the bin greedily
selects balls and distributes them between the currently active
buffers, maximizing the number of satisfied (color) preferences
(a ball’s preference is satisfied if it is assigned to a buffer
whose color matches the ball’s preference) without exceeding
the buffers’ capacities. Note that this might result, e.g., in
balls with a blue preference being assigned to the red buffer,
but only if the blue buffer is already full. At the end of the
round, any non-empty red buffer deletes a ball.

B. Analysis of the Pool Size
As in Section III, we first show that at any time the pool size

of CAPPED(c,�) is stochastically dominated by the pool size
of MODCAPPED(c,�). Again, to differentiate between the pool
size of both processes, we use m

C
(t) and m

M
(t) to denote

the pool size of CAPPED(c,�) and of MODCAPPED(c,�) at
the end of round t, respectively. Similarly, for a bin i and
round t, we use `

C
i (t) and `

M
i (t) to denote the number of

balls allocated to bin i at the end of round t.

Lemma 6. At the end of any round t2N, the pool size m
C
(t)

of CAPPED(c,�) is stochastically dominated by the pool size
m

M
(t) of MODCAPPED(c,�).

Proof. Similar to the proof of Lemma 1, we show the
stochastic dominance by inductively defining a coupling that
maintains a suitable invariant. More exactly, given t2N with
m

C
(t�1)m

M
(t�1) as well as `

C
i (t�1) `

M
i (t�1) for

each bin i, we define a coupling for the random choices in
round t that ensures m

C
(t)m

M
(t) as well as `

C
i (t)`

M
i (t)

for each bin i. Once this induction step is proven, the lemma’s
statement follows immediately by noticing that the base
case holds trivially, since m

C
(0) = 0 = m

M
(0) as well as

`
C
i (0)=0=`

M
i (0) for each bin i.

Before we prove the induction step, we introduce some
useful notation. We use ⌫

C
(t) :=m

C
(t� 1)+�n to denote

the number of balls thrown by CAPPED(c, �) in round t.
Similarly, ⌫

M
(t) := m

M
(t� 1) +max{�n,m⇤�m

M
(t�1)}

is the number of balls thrown by MODCAPPED(c, �) in
round t. For a bin i, the values ⌫

C
i (t) and ⌫

M
i (t) are the

number of balls thrown into bin i by CAPPED(c, �) and
MODCAPPED(c,�), respectively. Note that ⌫•(t)=

P
i2[n]⌫

•
i (t)

for •2 {C,M}. Finally, we use ↵
C
i (t) and ↵

M
i (t) to denote

the number of balls accepted by bin i in round t by process
CAPPED(c,�) and MODCAPPED(c,�), respectively, and define
↵
•
(t) :=

P
i2[n]↵

•
i (t) for • 2 {C,M}. Note that, since both

processes accept as many balls as possible without exceeding
the bin’s capacity, ↵•

i (t)=min{⌫•i (t),c�`
•
i (t�1)}.

We are now ready for the induction step. So fix t 2 N
with m

C
(t�1)m

M
(t�1) as well as `

C
i (t�1) `

M
i (t�1)

for each bin i. First, using the induction hypothesis
m

C
(t�1)m

M
(t�1), we observe that

⌫
C
(t)=m

C
(t�1)+�n

m
M
(t�1)+max{�n,m⇤�m

M
(t�1)}

=⌫
M
(t).

(6)

This allows us to couple the processes’ random choices in round
t as follows: we number the balls thrown by CAPPED(c,�)
from 1 to ⌫

C
(t) and those thrown by MODCAPPED(c, �)

from 1 to ⌫
M
(t). The first ⌫C(t) balls of MODCAPPED(c,�)

use the same random bin choices as their counterparts in
CAPPED(c,�). The remaining ⌫

M
(t) � ⌫

C
(t) � 0 balls of

MODCAPPED(c,�) choose independent, uniform bins.
Now we prove the first invariant of the induction step, namely

m
C
(t)m

M
(t). To this end, note that m•

(t)=⌫
•
(t)�↵

•
(t)

for •2{C,M} (the number of thrown balls minus the number
of accepted balls). To upper-bound m

C
(t), we lower-bound

↵
C
(t)=

P
i2[n]↵

C
i (t):

↵
C
i (t)=min{⌫Ci (t)+⌫

M
i (t)�⌫

M
i (t),c�`

C
i (t�1)}

�min{⌫Mi (t),c�`
M
i (t�1)}�

�
⌫
M
i (t)�⌫

C
i (t)

�

=↵
M
i (t)�

�
⌫
M
i (t)�⌫

C
i (t)

�
,

(7)

where the inequality uses ⌫
M
i (t)�⌫

C
i (t)� 0 (Equation (6))

as well as the induction hypothesis `
C
i (t� 1)  `

M
i (t� 1).

Summing over all bins i 2 [n] yields ↵
C
(t) � ↵

M
(t) �

⌫
M
(t)+⌫

C
(t). Thus, we get the first invariant via m

C
(t)=

⌫
C
(t)�↵

C
(t)⌫

C
(t)�↵

M
(t)+⌫

M
(t)�⌫

C
(t)=m

M
(t).

To prove the second invariant of the induction
step for a bin i 2 [n], namely `

C
i (t)  `

M
i (t), note
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Figure 2. Buffers j�1 to j+2 for some bin and c=4.

that `
C
i (t) = max {0,`Ci (t�1)+↵

C
i (t)�1} (old load

plus accepted load minus a potential deletion) and
`
M
i (t) � max {0,`Mi (t�1)+↵

M
i (t)�1} (here we don’t

have equality, because the load after the allocation and before
the deletion could be completely allocated to the bin’s blue
buffer, which performs no deletion). A calculation similar
to Equation (7) yields ↵

C
i (t)↵

M
i (t)+`

M
i (t�1)�`

C
i (t�1),

which in turn allows us to calculate
`
C
i (t)=max{0,`Ci (t�1)+↵

C
i (t)�1}

max{0,`Ci (t�1)+↵
M
i (t)+`

M
i (t�1)�`

C
i (t�1)�1}

`
M
i (t).

With Lemma 6, it is sufficient to prove Statement 1 of
Theorem 2 for MODCAPPED(c,�) instead of for CAPPED(c,�).
This is done in the following lemma.

Lemma 7. Consider MODCAPPED(c, �) for c 2 N and
0�1�1/n with �n2N. Let t be an arbitrary round. With
probability at least 1�2

�2n, the size of the pool at the end
of round t is less than 4·c�1 ·ln

�
1/(1��)

�
·n+O

�
c·n
�
.

Proof. For t 2 N let m
M
(t) denote the pool size of MOD-

CAPPED(c,�) at the end of round t. Remember that m⇤
=2c

�1 ·
ln
�
1/(1��)

�
·n+6c·n. Let ⌧=⌧(t) :=bt/cc�1 (such that t2

I⌧+1) and consider �2N with �⌧+1. We define the events

At :={mM
(t)�2m

⇤} and
B�,t :={9s2I��1 : m

M
(s)m

⇤^8t02(s;t] : m
M
(t

0
)>m

⇤}.

Note that for At to occur, there must be exactly one s<t as
in the definition of B�,t, and any round t

0 2 (s;t] generates
exactly �n balls at its beginning. Moreover, between s and
t there must lie at least one complete phase (otherwise the
pool size could grow by at most 2c·�n<m

⇤ between s and
t, not enough to increase from m

⇤ to 2m
⇤).

Our goal is to prove Pr[At]  2
�2n. By the above

observations, we can partition At via At=
U

�2[⌧(t)]At\B�,t.
Thus, our strategy is to first bound each Pr[At\B�,t]. So fix
t2N and � 2 [⌧(t)] and assume event At\B�,t occurs. Let
s 2 I��1 be maximal with m

M
(s)  m

⇤ (such an s exists
because of B�,t). Note that the pool size at the beginning of
phase � is at most m⇤

+c·�n (each of the at most c rounds
from s to the next phase generates �n balls by event B�,t).
Similarly, the pool size at the end of phase ⌧ is at least
2m

⇤�c ·�n (or the at most c rounds from the end to phase
⌧ to round t could not generate enough balls to reach pool
size 2m

⇤). See Figure 3 for an illustration.

Define ��,⌧ :=⌧��+1 as the number of phases from � to
⌧ . During these phases, MODCAPPED(c,�) generates exactly
��,⌧ · c ·�n balls (since B�,t holds). For each of the n bins
there are ��,⌧ buffers that each delete up to c balls during the
phases � to ⌧ . Let X�,⌧ denote the number of these ��,⌧ ·n
buffers that delete less than c balls. Then, ��,⌧ ·n�X�,⌧ is the
number of those buffers that each delete exactly c balls, and
we can upper-bound the increase of the pool during the phases
� to ⌧ by ��,⌧ · c ·�n� c · (��,⌧ ·n�X�,⌧ ). Consequently,
for the pool size to increase from at most m⇤

+ c ·�n to at
least 2m

⇤ � c ·�n during the phases � to ⌧ , we must have
��,⌧ ·c·�n�c·(��,⌧ ·n�X�,⌧ )�m

⇤�2c·�n or, equivalently,
X�,⌧ �m

⇤
/c+(1��)·��,⌧ ·n�2·�n.

Thus, we have shown At\B�,t =)X�,⌧ �m
⇤
/c+(1��)·

��,⌧ ·n�2·�n, where ⌧=⌧(t)=bt/cc�1. This gives

Pr[At\B�,t]Pr[X�,⌧ �m
⇤
/c+(1��)��,⌧n�2�n]. (8)

We now fix arbitrary phases �, ⌧ 2 N with �  ⌧ and
bound Pr[X�,⌧ �m

⇤
/c+(1��)·��,⌧ ·n�2·�n]. Observe

that the random variable X�,⌧ can be written as a sum
X�,⌧ =

P
j2[�;⌧ ]

P
i2[n]Xj(i) of indicator variables Xj(i),

where Xj(i)=1 if buffer j of bin i deletes less than c balls
and Xt0(i)=0 otherwise.

Fix buffer j2N0 of some bin i2 [n]. By construction, buffer
j is active during the rounds Aj := Ij�1 \ {(j�1)·c} [ Ij .
Remember that buffer j deletes balls only during Ij and note
that if j accepts a ball during a round t2Aj , then that ball will
be deleted by j during Ij (at any time t2 Ij , the maximum
capacity equals the remaining steps in Ij , during each of
which j can delete one ball). Thus, for j to not delete c balls
(Xj(i) = 1), there must be at least c rounds in Aj during
which j receives no balls (otherwise it accepts at least one ball
in at least |Aj |�(c�1)=c rounds, and each of these c balls
is deleted during Ij). By definition of MODCAPPED(c,�),
in each round t

0 2Aj exactly ⌫
M
(t

0
)�m

⇤ balls are thrown
randomly into the n bins, and half of those balls prefer buffer
j. Thus, the probability for j to not receive a ball in round t

0

is at most p :=(1�1/n)
m⇤/2e

�m⇤/(2n). So the probability
that there are at least c out of the |Aj |=2c�1 rounds during
which j receives no ball is at most

�2c�1
c

�
·pc  2

2c�1 ·pc 
2
2c�1 ·e�c·m⇤/(2n), where we used

�n
k

�
2

n.
Note that the reasoning above depends only on the random

choices of the balls that prefer buffer j, of which we have
at least m⇤

/2 each round during which j is active.
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tphase � phase ⌧

 m⇤ + c · �n � 2m⇤ � c · �n
roundss

pool size > m⇤ (no additional balls generated)

pool sizes: � 2m⇤ m⇤

Figure 3. Situation in the proof of Lemma 7 if event At\B�,t holds: the pool size after round t is at least 2m⇤ and s2 I��1 is the last round before
t after which the pool size was at most m⇤.

Thus, we have shown that for a fixed j,
Pr[Xj(i)=1]2

2c�1 ·e�c·m⇤/(2n).
Note that, by our choice of m

⇤
=2c

�1 · ln
�
1/(1��)

�
·n+

6c ·n, we can bound E[X�,⌧ ]��,⌧ ·n ·22c�1 ·e�c·m⇤/(2n)
=

(1� �) ·��,⌧ · n/(2e) · (4/e3�1/c
)
c  (1� �) ·��,⌧ · n/(2e).

Together with m
⇤
/c� 2 ·�n, this gives R :=m

⇤
/c+(1��) ·

��,⌧ ·n�2 ·�n� 2e ·E[X�,⌧ ]. Similar to Lemma 2, we note
the negative association of (Xj(i))j2[�,⌧ ],i2[n] and bound
Xj(i) by only considering the first m⇤

/2 balls. We can then
apply the Chernoff bound from Lemma 8 to get

Pr[X�,⌧ �m
⇤
/c+(1��)·��,⌧ ·n�2·�n]

=Pr[X�,⌧ �R]2
�R

=2
�m⇤/c+2·�n ·2�(1��)·��,⌧ ·n.

(9)

We are now ready to prove Pr[At]  2
�2n. Using

the partitioning At =
U

�2[⌧(t)] At \ B�,t and combining
Equations (8) and (9) yields

Pr[At]=

X

�2[⌧(t)]

Pr[At\B�,t]


X

�2[⌧(t)]

Pr
⇥
X�,⌧(t)�m

⇤
/c+(1��)·��,⌧(t) ·n�2�n

⇤


X

�2[⌧(t)]

2
�m⇤/c+2·�n ·2�(1��)·��,⌧(t)·n

2
�m⇤+2·�n ·

X

i2[⌧(t)]

�
2
�1
�i2

�m⇤+2·�n
,

(10)

where the penultimate inequality uses �1�1/n and reverses
the summation, and the last inequality bounds the sum via a
geometric series. From this, the desired result follows by noting
that m⇤

=2c
�1 ·ln

�
1/(1��)

�
·n+6c·n�2·�n�2n.

C. Analysis of the Waiting Time

The proof of Statement 2 of Theorem 2 directly follows
from the following observation and the fact that any allocated
balls wait for at most c rounds to be deleted.

Observation 1. Lemmas 3 to 5 hold for c�1.

Proof. In Lemmas 3 to 5 we used that no ball in M(t) can be
delayed by younger balls. While this only holds for c=1, every
bin has at least one empty slot at the beginning of a round. A bin
will still never assign a ball created later than t while rejecting

a ball of M(t). Therefore, Lemmas 3 to 5 overestimate the
number of rounds to allocate all balls of M(t) for c>1.

Then we use Statement 1 of Theorem 2 to bound m(t) for
Lemma 3 to get the desired results in the same way as we
did in the corresponding proof of Theorem 1.

V. EMPIRICAL ANALYSIS

In this section we present our empirical data for
CAPPED(c,�). The goal of this section is two-fold. Firstly,
we compare the theoretical results (for the pool size and the
waiting time) with our simulations to gauge how much we
lose by explicitly not optimizing constants in the analysis,
and to show that the process works very well in practice.
Secondly, our theoretical results indicate the existence of a
sweet spot for the choice of c, and we wish to determine its
value through the experiments.

Our simulator is implemented in C++ (https://github.com/t-c-
hahn/balls-and-bins-simulation). The simulations are performed
for an initially empty system of n = 2

15 bins. Extensive
simulations have shown that the actual number of n has
negligible impact on the (normalized) simulation results. Hence
we only present the data for n=2

15. All measurements refer to
a stabilized system after a burn-in phase of suitable length. For
each data point we average over 1000 rounds. In our figures
we use the normalized pool size (actual value divided by n).

Pool Size: In the first set of experiments we consider
varying values of � and c. The left plot in Figure 4 shows the
normalized pool size as a function of capacity c2 [1,5]. The
right plot in Figure 4 shows it as a function of �=1�1/2

i for
i2 [1,10]. The data indicate that the number of jobs awaiting
allocation is bounded by n/c · ln(1/(1� �)) + n, which is
essentially the bound of Theorem 2 omitting the factor of
four. This suggests that our theoretically derived bound of
4n/c·ln(1/(1��))+O

�
c·n
�

is rather pessimistic.
Waiting Times: In Figure 5, we consider the balls’

average and maximum waiting times. The left plot shows
the waiting time as a function of the capacity c2 [1,5]. The
right plot shows it as a function of �=1�2

�i for i2 [1,10].
Similarly to the pool size, our data indicate that the waiting
time is bounded by ln(1/(1� �)) + log logn+ c, which is
again the bound of Theorem 2 omitting the constant factors.
Furthermore, the data in Figure 5 show a minimum for both
the average and the maximum waiting times around c=2 and
c=3 for the specified values of �.
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Figure 4. The left plot shows the normalized pool size for two fixed injection rates, �=1�1/22 and �=1�1/210. The right plot shows the normalized
pool size for two fixed capacities, c=1 and c=3. The dashed lines correspond to the function 1/c·ln(1/(1��))+1.
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Figure 5. The left plot shows the average waiting time (in triangles) and the maximum waiting time (in points) for �= 1�1/22, �= 1�1/210, and
�=1�1/213. The right plot shows the average waiting time (in triangles) and the maximum waiting time (in points) for c=1 and c=3. The dashed
lines correspond to the function ln(1/(1��))/c+loglogn+c.
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APPENDIX

A. Tail Bounds
We use the following two variants of the Chernoff inequality.

The former is stated and proved in [3] (and is based on
Theorem 4.4 in [17]), and the latter may be found in [14].

Lemma 8. Let X1, ... ,Xn be independent Bernoulli trials
such that Pr[Xi=1]=pi. Let X=

Pn
i=1Xi. Then

Pr[X�R]2
�R if R�2eE[X].

Lemma 9. Let X=
Pn

i=1Xi, where Xi=1 with probability
pi and Xi = 0 with probability 1 � pi, and all Xi are
independent. Let µ=E[X]=

Pn
i=1pi. Then

Pr[X�(1+�)µ]e
� �2µ

2+� for all �>0.

The next lemma gives tail bounds for the number of empty
bins when throwing m balls into n bins.

Lemma 10 ([18, Theorem 4.18]). Assume we allocate m

balls into n bins. Let Z be the number of empty bins after
the allocation. Then

Pr[|Z�E[Z]|��]2exp

 
��

2 ·(n�1/2)

n2�(E[Z])
2

!
.

The following useful inequality can be found in [4] (as
Lemma 3.1) and relates to the Binomial distribution B(n,p).

Lemma 11. Let X1,X2, ... ,Xn be a sequence of random
variables with values in an arbitrary domain. Let Y1,Y2,...,Yn

be a sequence of binary random variables with the property
that Yi=Yi(X1,...,Xi). If

Pr[Yi=1 | X1,...,Xi�1]p

then

Pr

"
nX

i=1

Yi�k

#
Pr[B(n,p)�k].
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