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Abstract—This paper proposes a method of migrating work-
load among geo-distributed data centres that are equipped with
on-site renewable energy sources (RES), such as solar and wind
energy, to decarbonise data centres. It aims to optimise the perfor-
mance of such a system by introducing a tunable Reinforcement
Learning (RL) based load-balancing algorithm that implements a
Neural Network to intelligently migrate workload. By migrating
workload within the network of geo-distributed data centres,
spatial variations in electricity price and intermittent RES can
be capitalised upon to enhance data centres’ operations. The
proposed algorithm is evaluated by running simulations using
real-world data traces. It is found that the proposed algorithm is
able to reduce costs by 6.1% whilst also increasing the utilisation
of RES by 10.7%.

Index Terms—Data centre, Machine Learning, Load Balanc-
ing, Reinforcement Learning

I. INTRODUCTION

THE rapid development of the digital economy has led to
exponential growth in the number of data centres. Large ser-
vice providers operate many data centres, each powering and
cooling thousands of servers which consume vast amounts of
power [1]. Data centres’ energy consumption is projected to be
4.5% of global energy use by 2025 [2], leading to significant
CO2 emissions. This has driven the adoption of renewable
energy sources (RESs), such as wind or solar energy, as a
promising solution for companies aiming to reduce their CO2
emissions due to either legislation requirements or increasing
public scrutiny. Since a large proportion of a data centre’s load
is made up of delay-tolerant tasks, existing studies have mainly
concentrated on how to intelligently dispatch and schedule
them to increase penetration of RES and minimise costs.

Kwon [3] considered the co-location of solar power gen-
eration with large-scale battery storage for improving RES
utilisation by using a mathematical optimisation model that
successfully minimised energy cost whilst ensuring the desired
level of RES with the required service guarantee quality. Li et
al. [4] reduced data centres’ dependence on large scale battery
storage systems by applying an I-switch algorithm to integrate
RES. It intelligently shifts the computing load from one energy
source to another to best achieve load power matching.

To deal with the intermittency of RES, Buyya et al. [5]
proposed a short-term prediction algorithm using a Gaussian
mixture model. The algorithm trained itself by using previ-
ously observed energy levels to predict future time steps’

energy level. Goiri et al. [6] developed a parallel batch job
scheduler that used short-term solar predictions to make effec-
tive scheduling decisions depending on job deadlines. Alsanli
et al. [7] studied how to use prediction models to allocate
load between geo-distributed data centres whilst considering
the impact of wide-area networks on data centres.

Lei et al. [8] focused on maximising the utilisation of
RES and customer satisfaction whilst minimising total cost by
using an enhanced co-evolutionary algorithm. Deng et al. [9]
developed an online power management and load scheduling
algorithm which models the problem as a constrained stochas-
tic optimisation problem. Qi et al. [10] furthered this research
by developing a new Lyapunov optimisation-based algorithm
that utilised task scheduling to minimise costs by deferring
delay-tolerant tasks to periods with reduced carbon emission
rates. Toosi et al. [11] aimed to exploit the spatiotemporal
variations in on-site power and grid prices by balancing data
centre load among numerous geo-distributed data centres.

Zhou et al. [12] developed a Reinforcement Learning (RL)
based adaptive resource management algorithm that aims to
balance power consumption and quality of service revenue.
Xu et al. [13] studied a neural network to evaluate the RL
algorithm’s value function and applied it to the minimisa-
tion problem of big data analytics on geo-distributed data
centres. They successfully developed an algorithm that used
performance-enhancing techniques, such as random pool sam-
pling and unidirectional bridge network structures, to reduce
computational complexity.

Compared to the algorithm proposed in [13], the unique
contribution of this paper is to produce an RL based load
scheduling algorithm for geo-distributed data centres using a
tunable value function. Such a value function can help data
centre operators adapt to political or economic changes, e.g.,
the UK government’s net-zero target or the introduction of
a carbon tax. The implementation of a neural network to
estimate a tunable value function has not yet been researched
in existing studies.

The remainder of this paper is organised as follows: Section
II discusses the problem definition. Section III presents the
proposed RL based algorithm. The simulation results are
described in section IV. Finally, Section V concludes the paper
and discusses potential areas for future research.
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Fig. 1: System Model

II. SYSTEM MODEL

In this section, a model similar to that adopted in [13]
is employed. It explores three geographically distributed data
centres 𝐷 = {𝑑1, 𝑑2, 𝑑3} each partially powered with on-site
solar and/or wind energy generations. The model considers a
large set of job requests 𝐽 = { 𝑗1, 𝑗2 . . . 𝑗𝑚 . . . 𝑗𝑀 } arriving
at different gateways which then pass them on to three geo-
graphically distributed data centres. The power consumption
of each data centre is dependent on the data arrival rate, 𝑐𝑘 of
job 𝑗𝑘 . When this data rate is high, the data centre will have to
increase the number of active servers leading to higher power
consumption. The CPU utilisation of the 𝑖-th data centre is
denoted by 𝑟𝑐

𝑖
. The total energy consumption 𝑢𝑖,𝑡 at time 𝑡

is calculated using a discrete-time power model with 𝑇 time
intervals

𝑢𝑖,𝑡 =

∫ 𝑡

𝑡0

[ ∑︁
𝑑𝑖 ∈𝐷

𝑃𝑖 (𝑡)
]
𝑑𝑡, (1)

where

𝑃𝑖 (𝑡) = 𝑝𝑖𝑑𝑙𝑒𝑖 +
(
𝑝
𝑓 𝑢𝑙𝑙

𝑖
− 𝑝𝑖𝑑𝑙𝑒𝑖

) (
2𝑟𝑐𝑖 (𝑡) − {𝑟𝑐𝑖 (𝑡)}1.4

)
, (2)

where 𝑝𝑖𝑑𝑙𝑒
𝑖

and 𝑝
𝑓 𝑢𝑙𝑙

𝑖
represent the power of data centre

𝑑𝑖 when the CPU utilisation is at 0% and 100% utilisation
respectively. Server provisioning and other power management
techniques allow server systems to reduce consumption when
the CPU is not fully utilised. A typical server will consume
40% of its peak power when idle [14], so for this paper
𝑝𝑖𝑑𝑙𝑒
𝑖

= 0.4𝑝 𝑓 𝑢𝑙𝑙

𝑖
.

As shown in [15], available on-site wind power can be
modelled as a function of the actual wind speed at each data
centres location. The power output of a single turbine 𝑃𝑤𝑖𝑛𝑑

for a given wind speed 𝑣 (𝑡) can be approximated as follows

𝑃𝑤𝑖𝑛𝑑 =


0, 𝑣 (𝑡) ≤ 𝑣𝑖𝑛 , 𝑣 (𝑡) ≥ 𝑣𝑜𝑢𝑡

𝑃𝑟

(
𝑣 (𝑡) − 𝑣𝑖𝑛
𝑣𝑟−𝑣𝑖𝑛

)
, 𝑣𝑖𝑛 < 𝑣 (𝑡) < 𝑣𝑟

𝑃𝑟 , 𝑣𝑟 ≤ 𝑣 (𝑡) < 𝑣𝑜𝑢𝑡
(3)

where 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 are the turbine cut-in and cut-out speeds,
respectively. The total power 𝑃𝑊 generated from 𝑋 wind
turbines is given by

𝑃𝑊 =

𝑋∑︁
𝑥=1

𝑃𝑥
𝑤𝑖𝑛𝑑 . (4)

The available on-site solar power is modelled as a function
of solar irradiance. The output power of a photovoltaic panel
is given by

𝑃𝑠𝑜𝑙𝑎𝑟 = 𝛼 · 𝐴 · 𝑠 (𝑡) · 𝑑𝑢 (5)

where 𝛼 is the efficiency of electrical conversion, 𝐴 represents
the total solar panel area, 𝑠(𝑡) is the solar irradiance, and 𝑑𝑢

is the time duration of solar irradiance.
To reduce carbon emission, we prioritise renewable energy

over brown energy, in other words, the grid electricity is only
required when all available renewable energy is consumed.
The energy cost at time slot 𝑡 is calculated using,

𝐶𝑡
𝑒𝑛 = 𝜌𝑏𝑟𝑜𝑤𝑛

𝑖,𝑡 ·max
(
𝑢𝑖,𝑡 − 𝑒𝑖,𝑡 , 0

)
+𝜌𝑔𝑟𝑒𝑒𝑛

𝑖,𝑡
·min

(
𝑢𝑖,𝑡 , 𝑒𝑖,𝑡

)
(6)

where 𝑒𝑖,𝑡 is the available renewable energy at time 𝑡, and the
price of renewable and brown energy of the 𝑖-th data centre
at time 𝑡, are denoted as 𝜌

𝑔𝑟𝑒𝑒𝑛

𝑖,𝑡
and 𝜌𝑏𝑟𝑜𝑤𝑛

𝑖,𝑡
respectively.

The impact of job migration at time 𝑡 can be given by using
core relevant factors [13],

𝐶𝑡
𝑚𝑖𝑔 =

∑︁
𝑗𝑘 𝜖 𝐽

𝑀 𝑗𝑘 · 𝐿 (𝑑, 𝑑 ′) · 𝜎𝑗𝑘 (7)

where 𝑀 𝑗𝑘 represents the memory size of the job being
migrated, 𝐿 (𝑑, 𝑑 ′) represents the distance from current data
centre 𝑑 to destination data centre 𝑑 ′, and 𝜎𝑗𝑘 represents the
sensitivity to migration of the job 𝑗𝑘 .

A trade off between energy cost and impact of job migration
can be described by

𝐶 =

𝑇∑︁
𝑡 =1

(
𝛽 · 𝐶𝑡

𝑒𝑛 + (1 − 𝛽) · 𝐶𝑡
𝑚𝑖𝑔

)
, (8)

where 𝛽 allows the cost of energy and the job migration impact
to be varied. This allows for data centre operators to customise
the value function so that the tradeoff between RES utilisation
and migration impact can be balanced to meet specific data
centre requirements.

III. LOAD BALANCING ALGORITHM DESIGN

The algorithm proposed in this paper is designed to balance
load by migrating jobs between geo-distributed data centres
using feedback from historical migration decisions. Each inter-
action begins with the agent selecting an action and interacting
with the environment by informing the data centre. The data
centre then executes this action by either processing the job



Algorithm 1 Load Balancing Algorithm

1: begin
2: Initialise neural network 𝐹 (𝑠𝑡 , 𝑎𝑡 ) with random weight 𝑤 and

bias 𝑏.
3: for time step 𝑡 ∈ (1, 2, ..., 𝑇) do
4: Update available green power at each data centre.
5: for job identity 𝑚 ∈ (1, 2, ..., 𝑀) do
6: Generate random number 𝑧𝑚 ∈ [0, 1]
7: if 𝑧𝑚 < 𝜂 then
8: Select the minimum of neural network output
9: else

10: Randomly select an action 𝑎∗𝑡 .
11: end if
12: Execute 𝑎∗𝑡 , update 𝑟𝑡+1 and 𝑠𝑡+1.
13: Add dataset (𝑎∗𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) to batch.
14: Set 𝑠𝑡 = 𝑠𝑡+1.
15: end for
16: end for
17: end

at its current location or migrating it to one other data centre
locations. The agent then receives feedback and the next state
from the environment. At the start of each time step 𝑡, the
load balancer chooses an action 𝑎𝑡 for each job, where the
action corresponds to the location selected to complete the
job. These are chosen using information contained in the
current state of the system 𝑠𝑡 . Once all of these jobs are sent
to the corresponding data centres, the load balancing agent
observes the new state of the system 𝑠𝑡+1 and the reward
𝑟𝑡+1 = 𝛽𝐶𝑡

𝑒𝑛 + (1 − 𝛽)𝐶𝑡
𝑚𝑖𝑔

before transitioning into the next
time step.

The load balancing algorithm’s pseudo-code is provided in
Algorithm 1. This proposed algorithm begins by initialising
a neural network that takes 𝑠𝑡 as the input and uses it to
approximate the reward associated with each possible action.
The optimal action can then be found by taking the minimum
value of the neural network output.

At each time step, it starts by calculating the available
solar and wind power for each data centre using weather data
from the environment’s state. The algorithm then generates a
random number, 𝑧𝜖 [0, 1] for each job and compares this with
𝜂 to determine how the selected action 𝑎∗𝑡 , is chosen. If a job’s
𝑧 is less than an exploration parameter 𝜂, then the minimum
value of the neural network output is selected. Otherwise 𝑎∗𝑡 is
chosen randomly to allow for exploration of the environment’s
state-space. The action 𝑎∗𝑡 is then executed and the algorithm
moves to the next job in the time step. At the end of each
time step, the environment transitions to the next state 𝑠𝑡+1 and
the associated reward 𝑟𝑡+1 is added to the batch of historical
results. If this batch is full, then the data is shuffled and used to
retrain the neural network using Stochastic Gradient Descent.
Stochastic Gradient Descent methods attempt to minimize the
error by slightly shifting the neurons weight vector in the
direction that minimizes the error for that set of examples
[16]. By repeating the retraining process, the neural network
could converge towards an optimal load balancing policy.

The algorithm’s performance can be evaluated by consider-

TABLE I: Experimental Setup of RL Algorithm
Parameters

𝜆 = 0.5 𝑝𝑖𝑑𝑙𝑒
𝑖

= 0.4𝑝 𝑓 𝑢𝑙𝑙

𝑖
𝜂 = 0.9 𝛽 = 0.5
𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 100 𝑁𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐵

ing its time complexity, which is a measure of the number of
elementary operations performed by the algorithm. Since the
retraining process dominates the proposed algorithm’s runtime,
it is used to approximate the time complexity. The retraining
process uses Stochastic Gradient Descent, which relies on
back-propagation. The time complexity of back-propagation
in a fully connected multilayer perception type neural network
can be approximated by O(𝐼2 · 𝐿𝑎) where I is the number of
nodes in the hidden layer, and 𝐿𝑎 is the number of layers. The
time complexity of the whole retraining process is thus,

Time ∼ O(𝑇 · 𝐵 · 𝐼2 · 𝐿𝑎) (9)

where 𝑇 is the number of iterations, and 𝐵 is the number
of training samples in each batch. The actual runtime of the
algorithm will be far smaller when implemented in reality.
Matrix multiplication can be accelerated using mathematical
techniques such as the Strassen algorithm or the Coppersmith-
Winograd algorithm, which can approximate matrix multi-
plication in O(𝑛2.375) and O(𝑛2.807) respectively which is
much faster than the O(𝑛3) associated with basic matrix
multiplication. The algorithm runtime can also be reduced
considerably using parallel processing, which can be easily
implemented in data centre operation.

IV. EXPERIMENTS AND RESULTS

This section evaluates the proposed algorithm based on real-
world traces of user workloads, electricity prices, and available
on-site wind and solar power. The experimental setup for the
simulations will first be described, and then the results will be
presented along with detailed analysis.

A. Experimental Setup

To evaluate the performance of the algorithm, the following
datasets were used,

1) Available renewable energy: To find the available wind
and solar energy, weather data was used for three poten-
tial data centres located in Lancaster, California (CA),
Flagstaff, Arizona (AZ) and Santa Rosa, New Mexico
(NM). It was sourced from [17] and [18].

2) Electricity price from grid: Prices for the three data cen-
tre locations were sourced from the Energy Information
Administration [19].

3) Data centre workload: The Google cluster data-trace
represents 29 days’ worth of Borg cell information from
May 2011 on a cluster of about 12.5k machines [20].
Each job has a scheduling class.

It was found that the exploration parameter 𝜂 clearly
influenced the performance. This is because, at low 𝜂,
the algorithm prioritises exploration over exploitation. The
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Fig. 2: Performance comparisons: (a) Different neural network structures on learning rates, (b) Cost, (c) RES utilisation, and
(d) Latency cost, of different algorithms.

TABLE II: Neural Network Configurations

ID No. of Layers Structure (Neurons/Layer)

A 4 9-20-10-3

B 5 9-45-30-15-3

C 8 9-45-40-35-30-20-10-3

D 10 9-150-115-90-50-30-20-15-10-3

exploration-exploitation dilemma is where an RL algorithm
must exploit knowledge gained from previous experiences to
achieve reward; however, it also must explore the environment
so that forthcoming decisions are better informed. Xu’s paper
[13] found that the algorithm performed optimally for higher
values of 𝜂. Therefore, the exploration parameter was set at
𝜂 = 0.9. For the neural network itself, a multilayer perception
type neural network with five layers was chosen.

B. Performance comparisons

To better understand the learning rate, Figure 2(a) shows
the accuracy of different neural network configurations shown
in Table II. It can be seen that neural network B converges
fastest, closely followed by C. Structure A converges slowly

and clearly underfits the problem. In contrast, D overfits the
training data and does not achieve the same accuracy as
B and C when tested on validation data. For the proposed
algorithm, structure B was chosen as it offered high accuracy
without adding unnecessary complexity. As can be seen from
the computational complexity described above, the number
of neural network layers significantly affects the algorithm’s
overall runtime.

We also compare the proposed algorithm with four bench-
mark algorithms in terms of total cost, migration cost and
renewable energy utilisation.

1) Round-Robin (RR): This algorithm schedules jobs to
data centres in a round-robin manner without any in-
formation about RES [21]. Although the RR algorithm
is simple, its performance can be used to exhibit the
importance of the migration policy for minimising data
centre costs and improving RES utilisation. RR is unable
to exploit spatial variations in the available renewable
energy or electricity price to reduce total cost. It also
incurs high migration costs as it has no knowledge of
job sensitivity, job size or migration distance.

2) Minimum Latency (Min-Lat): This algorithm aims to
minimise the job latency by always completing each task



at the data centre that it was initially scheduled to avoid
ever migrating tasks between data centres. Min-Lat is
used to evaluate the performance of a data centre without
workload migration. Similarly to RR, this algorithm
cannot utilise spatial variations; however, it does not
incur migration costs.

3) Maximum RES (Max-RES): This algorithm aims to
maximise RES utilisation by always completing each
task at the data centre with the smallest variation be-
tween the available RES and current energy usage [22].
Max-RES can fully utilise the spatial variations in elec-
tricity price and RES availability. Its performance can be
used to show the optimal utilisation of renewable energy
that the proposed algorithm will attempt to achieve.
However, without knowledge of job characteristics, this
algorithm will incur high migration costs similar to RR.

4) Offline Optimal Solution (Optimal): This algorithm
represents the optimal solution of the load balancing
problem. The neural network is trained with complete
future information of system states thus incurring high
computational cost. The offline algorithm requires all
data at the beginning of the simulation so is not appli-
cable to real-time load balancing problems; however, it
does offer a good metric for evaluating the performance
of the proposed online algorithm.

5) Proposed RL-Based Algorithm (Proposed) This is the
proposed online algorithm detailed in Section III.

Figure 2(b) shows the total cost of the simulation using each
of the benchmark algorithms. The results are normalised to the
maximum cost, which was incurred using the RR algorithm.
The graph shows that the proposed algorithm can minimise
total cost compared to RR, Min-Lat and Max-RES. The pro-
posed algorithm shows a 6.1% cost reduction when compared
to Min-Lat. Since the Min-Lat algorithm represents data centre
performance without workload migration, this reduction can be
attributed to intelligent migration of jobs, better using available
renewable energy and variations in electricity price. It is worth
noting that the cost reduction was achieved while incurring a
significant migration cost which was not incurred by the Min-
Lat algorithm. This can be seen in Figure 2(d) which shows
the normalised migration cost associated with each algorithm.
Evidence for the proposed algorithm’s opportunistic migration
of jobs can be seen in Figure 2(c) which shows the percentage
of total energy consumption supplied by RES. The proposed
algorithm boasts a 10.7% increase in RES utilisation when
compared to the Min-Lat algorithm. The Max-RES algorithm
achieved the optimal utilisation of RES; however, this was
reached by disregarding job sensitivity, job size and migration
distance, resulting in a migration cost over five times that
incurred by the proposed algorithm.

When comparing the total costs of the offline optimal
algorithm against the proposed algorithm in Figure 2(b); the
proposed algorithm is able to achieve 82.7% of the potential
cost savings demonstrated by the optimal algorithm when
taking RR as the reference. In terms of RES utilisation, the

proposed algorithm shows only a slight reduction from the
optimal algorithm suggesting that the it can correctly identify
potential savings due to variations in available RES. When
comparing the proposed algorithms migration costs with the
offline optimal, it shows a relatively large increase of 76%.
This results from algorithm’s exploration parameter 𝜂 = 0.9
which results in 10% of actions being chosen randomly.

C. Sensitivity analysis

This section evaluates the effects of varying the value
function tuning parameter 𝛽 on the performance of proposed
algorithm. Figure 3(a) and Figure 3(b) shows the impact that
varying 𝛽 have on the migration cost and renewable energy
utilisation. It can be seen that increasing 𝛽 reduces migration
costs at the expense of renewable energy utilisation. Therefore,
the tunable parameter integrated into the RL value function
gives data centre operators the ability to vary the level of task
migration to balance latency and utilisation requirements.

Figure 3(c) compares the RES utilisation of Max-RES, Min-
Lat, and the proposed algorithm as the amount of available
RES is varied. As can be seen, the proposed algorithm
can outperform the Min-Lat algorithm for all RES capacity
values. The Max-RES represents the upper bound of potential
RES utilisation achievable with job migration. The proposed
algorithm can fulfil a significant proportion of this potential,
even as the RES is increased. This is an essential factor in
the future-proofing of this load balancing approach as the
penetration of renewable energy will increase over the coming
years to meet emission reductions targets set out in political
legislation such as the 2015 Paris agreement.

V. CONCLUSION AND FUTURE WORK

To reduce carbon emissions and electricity cost, many
service providers have built data centres with on-site renewable
energy generation. Larger companies tend to have a network
of geographically distributed data centres, which allows for
potential cost savings through the migration of workload
to take advantage of spatial variations in renewable energy
availability. However, due to the complex nature of data
centre operation, load-balancing optimisation is a challenging
problem to solve. This paper investigates a tunable RL based
load balancing algorithm that integrates a neural network into
the RL framework to approximate the optimal solution with
minimum cost. Extensive simulations were run using real-
world data traces of user workload, available renewable energy
and grid prices. These show that the proposed algorithm can
reduce the total cost of the data centre by 6.1% compared
to the Min-Lat algorithm. The proposed algorithm can also
increase the utilisation of RES by 10.7%.

To build upon this paper, there are several directions that
could be further researched. One aspect worth exploring is the
RL-based method’s performance as the distributed data centre
network size increases. Another aspect that should be explored
is improving the proposed model to optimise task scheduling
in heterogenous data centre environments by considering more
constraints associated with real data centre operation. For
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Fig. 3: (a)Variation of migration cost with 𝛽, (b) Variation of renewable energy utilisation, and (c) Variation of renewable
energy utilisation with RES capacity.

example, it was assumed in this paper that all virtual machines’
ability was the same and that each could only complete
one task at a time. These further explorations could build
on the findings of this paper helping to further demonstrate
the effectiveness of RL-based algorithms for optimising data
centre workload scheduling.
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