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Abstract. Bayesian variable selection is one of the popular topics in
modern day statistics. It is an important tool for high dimensional statis-
tics, where the number of model parameters is greater than the number
of observations. Several Bayesian models have been proposed for variable
selection. However, a convincing robust Bayesian approach is yet to be
investigated. Here in this work, we investigate sensitivity analysis over a
simplex of probability measures. We sample from this simplex to get an
inclusion probability of each variable. The sensitivity analysis gives us a
set of posteriors instead of a single posterior. This set of posteriors gives
us a behaviour of the model parameters with respect to different prior
elicitations resulting in robust inferential conclusions.

Keywords: High Dimensional · Variable Selection · Bayesian Analysis
· Imprecise Probability.

1 Introduction

High dimensional statistical modelling is a popular topic in modern day statis-
tics. These type of problems are often very hard to be dealt using classical meth-
ods and we often rely on regularisation methods. There are several well-known
frequentist methods which are efficient in tackling high dimensional problems.
Tibshirani introduced least absolute shrinkage and selection operator or simply
LASSO [11]. Fan and Li investigated asymptotic properties for variable selec-
tion and introduced SCAD [4]. Zou introduced adaptive LASSO [12], a weighted
version of LASSO that gives asymptotically unbiased estimates.

High dimensional modelling is equally well investigated in a Bayesian con-
text. George and McCulloch introduced stochastic search variable selection [5]
which uses latent variables for the selection of predictors. Ishwaran and Rao
used a continuous bimodal prior for hyper-variances in spike and slab model to
attain sparsity [6]. Park and Casella introduced a hierarchical model using the
double exponential distribution [9]. Lykou and Ntzoufras [7] proposed a dou-
ble exponential distribution for the regression parameters along with bernoulli
distributed latent variables. Several other works have been done.
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In this article, we follow the approach of Narisetty and He [8] to attain spar-
sity. Moreover, we introduce an additional imprecise beta-Bernoulli to specify
the selection probability of the latent variables similar to [7]. We perform a
sensitivity analysis over these sets of selection probabilities to obtain a robust
Bayesian variable selection routine.

The rest of the paper is organised as follows: We first define our hierarchical
model in Section 2, followed by the posterior computation in Section 3. We use
an orthogonal design case to show the closed form posteriors and discuss their
properties. In Section 4, we illustrate our results using both synthetic and real
datasets and finally, we draw conclusions in Section 5.

2 Model

Let, Y := (Y1, · · · , Yn)T denote the responses and X := (X1, · · · ,Xn)T be corre-
sponding p-dimensional predictors. Then we define a linear model in the following
way:

Y = Xβ + ε (1)

where, β := (β1, · · · , βp)T is the vector of regression coefficients and ε :=
(ε1, · · · , εn)T are Gaussian noises so that for 1 ≤ i ≤ n, εi ∼ N (0, σ2).

We define the following hierarchical model for linear models, so that for
1 ≤ j ≤ p,

Y | X, β ∼ N
(
Xβ, σ2In

)
(2)

βj | γj = 1 ∼ N (0, σ2τ21 ) (3)

βj | γj = 0 ∼ N (0, σ2τ20 ) (4)

γj | qj ∼ Ber(qj) (5)

qj ∼ Beta(sαj , s(1− αj)) (6)

where, s > 0 are fixed constants.
The latent variables γ := (γ1, · · · , γp) in the model corresponds to spike and

slab prior specification routine where γj represents the selection of the co-variate
xj . We fix sufficiently small τ0 (1� τ20 > 0) so that βj |γj = 0 has its probability
mass concentrated around zero. Therefore, probability distribution of βj |γj = 0
represents the spike component of our prior specification. To construct the slab
component, we consider τ21 to be large so that τ1 � τ0. This allows the prior for
βj | γj = 1 to be flat. We assume σ2 to be known for the ease of computation.
In a more generalised setting, we may choose an inverse-gamma distribution.

We use imprecise beta priors to specify the selection probabilities q := (q1,
. . . , qp). We use α := (α1, . . . , αp) to represent our prior expectation of the selec-
tion probabilities (q) and s to represent concentration parameter. We consider
α ∈ P, where

P := (0, 1)
p
. (7)

Note that, in our model we consider a near vacuous set for the elicitation of each
αj . That is, for 1� ε > 0, αj ∈ [ε, 1− ε]. Therefore, the prior elicitation on the
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total number of active co-variates lies between pε to p(1− ε). More generally, we
can consider the following:

α ∈ P ⊆ (0, 1)p. (8)

Each αj assign a prior selection probability for each co-variate.

3 Posterior Computation

Let γ := (γ1, . . . , γp) and q := (q1, . . . , qp). The joint posterior of the proposed
hierarchical model can be computed in the following way:

P (β, γ, q | Y,X) ∝ P (Y | X, β)P (β | γ)P (γ | q)P (q). (9)

For the ease of computation we will use orthogonal design case ie, XTX = nIp.

3.1 Selection indicators

Using Eq. (9), we write posterior of γ as

P (γ | Y,X) =

∫∫
P (β, γ, q | Y,X)dqdβ (10)

∝
∫
P (Y | X, β)

(
P (β | γ)

∫
P (γ | q)P (q)dq

)
dβ. (11)

Let fγj (βj) be the density of βj | γj as mentioned in Eq. (3) and Eq. (4). So,

fγj (βj) :=
1√

2πστγj
exp

(
−

β2
j

2σ2τ2γj

)
. (12)

Since P (γj | qj) = q
γj
j (1− qj)1−γj and qj follows Beta distribution,

P (β | γ)

∫
P (γ | q)P (q)dq

=
∏
j

(
[f1(βj)]

γj [f0(βj)]
1−γj

∫
q
γj
j (1− qj)1−γjP (qj)dqj

)
(13)

=
∏
j

(
[αjf1(βj)]

γj [(1− αj)f0(βj)]
1−γj

)
. (14)

Now for the orthogonal design case that is when XTX = nIp, we have β̂ =

XTY/n, where β̂ := (β̂1, . . . , β̂p) are the ordinary least square estimates. Then,

P (Y | X, β) =
1√

(2πσ2)n
exp

(
− 1

2σ2
‖Y −Xβ‖22

)
(15)

=
1√

(2πσ2)n
exp

(
− 1

2σ2

(
nβTβ − 2nβT β̂ + Y TY

))
. (16)
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Then combining Eq. (11), Eq. (14) and Eq. (16) we have the decomposed pos-
terior of γj such that

P (γj | Y,X) = Mj

∫
exp

(
−n(βj − β̂j)2

2σ2

)
× [αjf1(βj)]

γj [(1− αj)f0(βj)]
1−γjdβj (17)

where, Mj is a normalisation constant independent of γj . Then we have,

P (γj = 1 | X, Y ) = Mjαj

∫
exp

(
−n(βj − β̂j)2

2σ2

)
f1(βj)dβj . (18)

Now, by completing the square, it can be shown that for k ∈ {0, 1} and j ∈
{1, · · · , p} we have

exp

(
−n(βj − β̂j)2

2σ2

)
fk(βj) = wk,j

1√
2πσk

exp

−
(
βj − β̂k,j

)2
2σ2

k

 (19)

where, β̂k,j :=
nτ2

k β̂j

nτ2
k+1

, σ2
k :=

σ2τ2
k

nτ2
k+1

and wk,j := 1√
nτ2

k+1
exp

(
− nβ̂2

j

2(nσ2τ2
k+σ

2)

)
.

Then using Eq. (19) we have

P (γj = 1 | X, Y ) = Mjαjw1,j (20)

and
P (γj = 0 | X, Y ) = Mj(1− αj)w0,j . (21)

Therefore,

γj | X, Y ∼ Ber
(

αjw1,j

αjw1,j + (1− αj)w0,j

)
. (22)

Co-variate selection For the co-variate selection we investigate the posterior
odds of each γj . We assign a co-variate to be non-active when

sup
αj∈P

{
P (γj = 1 | X, Y )

P (γj = 0 | X, Y )

}
< 1, (23)

for j = 1, · · · , p. Or equivalently when,

sup
αj∈P

{
w1,jαj

w0,j(1− αj)

}
< 1. (24)

Similarly, we assign a co-variate to be active if,

inf
αj∈P

{
w1,jαj

w0,j(1− αj)

}
> 1. (25)

We define the rest to be indeterminate, as it depends on prior elicitation on the
selection probability.
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Properties of the posterior: The posterior odds are given by:

w1,jαj
w0,j(1− αj)

=
w1,j

w0,j

(
1

1− αj
− 1

)
. (26)

Now, the first derivative of the posterior odds are given by:

w1,j

w0,j

1

(1− αj)2
> 0. (27)

Therefore, the posterior odds are monotone with respect to the prior selection
probability αj .

Near vacuous set: Let 1 � ε > 0. We define a near vacuous set for prior se-
lection probability αj . So that, αj ∈ [ε, 1−ε]. Then, because of the monotonicity
of posterior odds, we can compute the posterior odds on the lower and upper
bounds of the set instead of the whole interval. Alternatively,

sup
αj∈[ε,1−ε]

{
w1,jαj

w0,j(1− αj)

}
=

(1− ε)
ε
· w1,j

w0,j
(28)

and,

inf
αj∈[ε,1−ε]

{
w1,jαj

w0,j(1− αj)

}
=

ε

(1− ε)
· w1,j

w0,j
(29)

3.2 Regression coefficients

The joint posterior of regression coefficients i.e. β is given by:

P (β | Y,X) =
∑
γ

∫
P (β, γ, q | Y,X)dq (30)

∝
∑
γ

∫
P (Y | X, β)P (β | γ)P (γ | q)P (q)dq (31)

∝ P (Y | X, β)
∑
γ

(
P (β | γ)

∫
P (γ | q)P (q)dq

)
. (32)

From Eq. (14) we have

P (β | γ)

∫
P (γ | q)P (q)dq =

∏
j

(
[αjf1(βj)]

γj [(1− αj)f0(βj)]
1−γj

)
. (33)

Then we can write Eq. (32) as

P (β | Y,X) ∝ P (Y | X, β)
∑
γ

∏
j

(
[αjf1(βj)]

γj [(1− αj)f0(βj)]
1−γj

) .
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Therefore, swapping sum and product operations we get,

P (β | Y,X) ∝ P (Y | X, β)
∏
j

∑
γj

(
[αjf1(βj)]

γj [(1− αj)f0(βj)]
1−γj

)
(34)

∝ P (Y | X, β)
∏
j

[αjf1(βj) + (1− αj)f0(βj)]. (35)

Now, combining Eq. (16) and Eq. (35) we have

P (β | Y,X) ∝ exp

(
− 1

2σ2

(
nβTβ − 2nβT β̂

))∏
j

[αjf1(βj) + (1− αj)f0(βj)]

∝ exp
(
− n

2σ2
‖β − β̂‖22

)∏
j

[αjf1(βj) + (1− αj)f0(βj)] (36)

∝
∏
j

exp

(
−n(βj − β̂j)2

2σ2

)
[αjf1(βj) + (1− αj)f0(βj)]. (37)

Therefore, the βj ’s are a posteriori independent and for each 1 ≤ j ≤ p, we have,

P (βj | Y,X) ∝ exp

(
−n(βj − β̂j)2

2σ2

)
[αjf1(βj) + (1− αj)f0(βj)]. (38)

Let Wj := αjw1,j +(1−αj)w0,j . Then combining Eq. (38) and Eq. (19) we have,

βj | Y,X ∼
αjw1,j

Wj
N
(
β̂1,j , σ

2
1

)
+

(1− αj)w0,j

Wj
N
(
β̂0,j , σ

2
0

)
. (39)

Properties of the posterior: To analyse the properties of the posterior, we
first consider the ratio of the weights in Eq. (39). For 1 ≤ j ≤ p, ratios of the
weights are given by:

αjw1,j

(1− αj)w0,j
. (40)

This corresponds to posterior selection probability of selection indicators. There-
fore, for active co-variates this ratio becomes greater than 1 for all αj ∈ (0, 1)

and N
(
β̂1,j , σ

2
1

)
dominates the posterior. Similarly, for non-active co-variates

this ratio becomes less than 1 for all values of αj and N
(
β̂0,j , σ

2
0

)
dominates

the posterior.
An interesting case occurs when, τ0 � 1/n and αj ∈ [ε, 1 − ε]. Then,

N
(
β̂1,j , σ

2
1

)
dominates the posterior if,

β̂2
j >

σ2

n

nτ21 + 1

nτ21

[
2 log

(
1− ε
ε

)
+ log

(
nτ21 + 1

)]
, (41)

and similarly, N
(
β̂0,j , σ

2
0

)
dominates the posterior if,

β̂2
j <

σ2

n

nτ21 + 1

nτ21

[
2 log

(
ε

1− ε

)
+ log

(
nτ21 + 1

)]
. (42)
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Posterior mean and variance: The posterior expectation of βj is given by:

E(βj | Y,X) =
αjw1,j

Wj
β̂1,j +

(1− αj)w0,j

Wj
β̂0,j . (43)

Therefore, for orthogonal design, the posterior mean of βj is equal to the least
square estimate of βj . The posterior variance of βj is given by:

Var(βj | Y,X)

=
αjw1,j

Wj

(
σ2
1 + β̂2

1,j

)
+

(1− αj)w0,j

Wj

(
σ2
0 + β̂2

0,j

)
−

[
αjw1,j β̂1,j + (1− αj)w0,j β̂0,j

Wj

]2
(44)

=
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj
+
αjw1,j β̂

2
1,j + (1− αj)w0,j β̂

2
1,j

Wj

−

[
αjw1,j β̂1,j + (1− αj)w0,j β̂0,j

Wj

]2
(45)

=
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj
+
α(1− α)w1,jw0,j(β̂1,j − β̂0,j)2

W 2
j

. (46)

Therefore, we get a set of posterior variances Sj such that:

Sj

=

{
αjw1,jσ

2
1 + (1− αj)w0,jσ

2
0

Wj
+
α(1− α)w1,jw0,j(β̂1,j − β̂0,j)2

W 2
j

: αj ∈ (0, 1)

}
(47)

where, wk,j and σk are as defined before.

4 Illustration

We analyse both synthetic datasets and a real dataset to illustrate our method.

4.1 Synthetic Datasets

We use three different synthetic datasets to showcase the performance of our
method in terms of variable selection.
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Synthetic Dataset 1: In this dataset, we construct an orthogonal design ma-
trix Xi,j with 100 predictors and 100 observations. We assign the regression
coefficients to be, (β1, · · · , β6) := (100, 125,−80, 100, 200,−150) and βj = 0 for
j > 6. We consider standard normal noise to construct the response vector
yi =

∑6
j=1Xi,jβj + εi where, εi ∼ N(0, 1) for i = 1, · · · , 100. This setting allows

us to evaluate the performance of our method with only strong non-zero effects.
We analyse this dataset with two different sets of αj ’s and three different choices
of τ1. We show the summary in Table 1.

Synthetic Dataset 2: In this case, we construct a similar design matrix as of
synthetic dataset 1. We assign the regression coefficients such that the first 12
βj ’s represent a strong effect and the next 20 βj ’s represent a mild effect. We
set βj = 0 for j > 32. We construct the response vector in the following way:

yi =
∑32
j=1Xi,jβj + εi where, εi ∼ N(0, 1) for i = 1, · · · , 100. This type of

coefficient assignment allows us to investigate both small and large effects within
the model. We analyse this dataset with two different sets of αj ’s and three
different choices of τ1. We show the summary in Table 1. We observe that in this
case, the choice of τ1 plays an important role.

Synthetic Dataset 3: We use the third synthetic data set to illustrate the high
dimensional case. We construct the design matrix with 100 observations and 200
predictors. We assign the first 12 regression coefficients to demonstrate large ef-
fects and the next 28 as small effects. We set the rest of the regression coefficients
to be zero, ie, βj = 0 for j > 40. We construct the response vector in a similar
fashion as for synthetic datasets 1 and 2. We use two different sets of weights.
We use three different τ1’s for each set of weights. We provide the summary in
Table 1.

In all of the three cases, we also provide a comparison of different variable
selection methods. We use basad [8], blasso [9] and SSLASSO [10] along with
our method. We observe that in all the cases our method gives similar results
to blasso. However, for blasso, we use the median values of the posteriors to
identify the variables unlike our method of computing the posterior expectation
of the latent variables. We also notice that for these three synthetic datasets,
fixing τ1 = 10, gives us more accurate sets of active co-variates and also the num-
ber of indeterminate variables is less. We also observe that for high dimensional
case, our method is more accurate in detecting the inactive variables unlike the
other two datasets. We also see that our method does not identify an inactive co-
variate as an active co-variate. However, for high dimensional case, our method
identifies some of the small effects as inactive for smaller values of τ1 and for
larger values of τ1 it tends to identify variables as indeterminate, which can be
understood by Eq. (41) and Eq. (42).

4.2 Real Data Analysis

We investigate the gaia dataset to illustrate our method using real data. This
dataset was used for computer experiments [3, 2] prior to the launch of European
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True Active True Inactive

Parameter Setting/ Method Act Inact Indet Act Inact Indet

Dataset 1, active 6 and inactive 94

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 1 6 0 0 0 62 32
α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 6 0 0 0 86 8
α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 100 6 0 0 0 78 16

α ∈ [0.05, 0.95], τ0 = 10−6, τ1 = 1 6 0 0 0 0 94
α ∈ [0.05, 0.95], τ0 = 10−6, τ1 = 10 6 0 0 0 69 25
α ∈ [0.05, 0.95], τ0 = 10−6, τ1 = 100 6 0 0 0 63 31

BASAD 6 0 – 1 93 –

BLASSO (Median) 6 0 – 1 93 –

SSL (Double Exponential) 6 0 – 0 94 –

Dataset 2, active 32 and inactive 68

α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 1 12 0 20 0 56 12
α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 5 32 0 0 0 68 0
α ∈ [0.1, 0.9], τ0 = 10−6, τ1 = 10 32 0 0 0 68 0

α ∈ [0.3, 0.95], τ0 = 10−6, τ1 = 5 32 0 0 0 51 17
α ∈ [0.3, 0.95], τ0 = 10−6, τ1 = 10 32 0 0 0 63 5
α ∈ [0.3, 0.95], τ0 = 10−6, τ1 = 100 32 0 0 0 57 11

BASAD 12 20 – 0 68 –

BLASSO (Median) 32 0 – 1 67 –

SSL (Double Exponential) 12 20 – 0 68 –

Dataset 3, active 40 and inactive 160

α ∈ [0.1, 0.2], τ0 = 10−6, τ1 = 1 14 26 0 0 160 0
α ∈ [0.1, 0.2], τ0 = 10−6, τ1 = 5 16 14 10 0 160 0
α ∈ [0.1, 0.2], τ0 = 10−6, τ1 = 10 19 0 21 0 160 0

α ∈ [0.2, 0.5], τ0 = 10−6, τ1 = 5 22 2 16 0 159 1
α ∈ [0.2, 0.5], τ0 = 10−6, τ1 = 10 40 0 0 0 160 0
α ∈ [0.2, 0.5], τ0 = 10−6, τ1 = 100 17 0 23 0 102 58

BASAD 12 28 – 0 160 –

BLASSO (Median) 40 0 – 0 160 –

SSL (Double Exponential) 12 28 – 0 160 –
Table 1. Summary of variable selection for three different synthetic datasets.

Space Agency’s Gaia mission [1]. The data contains spectral information of 16
(p) wavelength bands, and four different stellar parameters. In this example, we
take stellar-temperature (in Kelvin scale) as the response variable. This dataset
contains 8286 observations which are highly correlated. We show the correlation
between the co-variates in Fig. 1. We randomly sample 100 (n) of them to fit
our model and 100 more to measure the prediction accuracy. We standardise the
dataset for the sake of clearer interpretation.

A robust Bayesian routine needs different measure(s) of accuracy as we don’t
have a single posterior for prediction. We introduce a new measure which can be
considered to evaluate prediction accuracy and call it minimum squared error.



10 T. Basu et al.

Let

A(α) :=

{
j :

{
P (γj = 1 | X, Y )

P (γj = 0 | X, Y )

}
> 1

}
. (48)

Therefore, A(α) or simply, A denotes the set of active variables for each value
of α. We define minimum squared error by:

Minimum Squared Error = min
α∈P
‖Y −XAβ̂

post
A ‖22 (49)

where β̂post
A := E(βA | Y ) is the posterior mean of βA. The sensitivity analy-

sis also creates an indeterminacy in prediction. Therefore, we define a similar
measure called maximum squared error over the set of α ∈ P. We use both
minimum and maximum squared error to introduce a new measure to capture
the indeterminacy such that:

Indeterminacy =
Maximum Squared Error−Minimum Squared Error

Maximum Squared Error
. (50)

Note that, for classical methods, indeterminacy is equal to zero.
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Fig. 1. Correlation plot matrix of the gaia dataset
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Literature [3] suggests that this dataset contains 1-3 main contributory vari-
ables. Based on this information, we take two sets for α so that α ∈ [0.05, 0.2]
and α ∈ [0.2, 0.4]. We use JAGS to perform our analysis which we show in Ta-
ble 2. We observe that for α ∈ [0.05, 0.2], our model performs better in terms of
minimum squared error as well as indeterminacy. We observe that our method
identifies only one active variable (band 6) irrespective of the choice of α. We
also observe that unlike the synthetic datasets, we don’t have a better choice of
τ1. The higher values of τ1 result in smaller minimum squared errors. However,
indeterminacy is much higher than the case where τ1 = 1. We notice that our
method is in agreement with Spike and Slab lasso [10] and Bayesian Lasso [9].
For Bayesian lasso, we use the posterior median of the selected variables to fit
the model instead of posterior mean. We see that for basad [8], it selects two
active variables (band 2 and 6). This can be related to our setting where we have
indeterminate co-variates contributing to higher minimum squared error.

Parameter Setting/ Method Act Inact Indet Min. SE Indeterminacy

α ∈ [0.2, 0.4], τ0 = 10−1, τ1 = 1 1 11 4 8.44 0.57
α ∈ [0.2, 0.4], τ0 = 10−1, τ1 = 10 1 15 0 8.31 0.49
α ∈ [0.2, 0.4], τ0 = 10−1, τ1 = 50 1 12 3 8.26 0.56
α ∈ [0.2, 0.4], τ0 = 10−2, τ1 = 1 1 13 2 8.07 0.38
α ∈ [0.2, 0.4], τ0 = 10−2, τ1 = 10 1 13 2 8.38 0.25
α ∈ [0.2, 0.4], τ0 = 10−2, τ1 = 50 1 15 0 8.85 0.34

α ∈ [0.05, 0.2], τ0 = 10−2, τ1 = 1 1 15 0 8.14 0.19
α ∈ [0.05, 0.2], τ0 = 10−2, τ1 = 10 1 15 0 8.20 0.58

BASAD 2 14 – 10.83 0

BLASSO (Median) 1 15 – 8.16 0

SSL (Double Exponential) 1 15 – 8.14 0
Table 2. Comparison of different methods for the Gaia dataset.

5 Conclusion

Bayesian variable selection is a very important topic in modern statistics. In this
paper, we discuss a novel and robust Bayesian variable selection routine based
on the notion of spike and slab priors. The robustness within the hierarchical
model is introduced using imprecise beta model which allows us to incorporate
prior elicitation in a more flexible way. We inspect posterior properties of re-
gression coefficients and selection indicators for the orthogonal design case. For
the illustration of our method, we use three synthetic datasets covering different
aspects of design matrices and a real life dataset to evaluate performance of our
method for general cases. Under suitable scaling parameter, our method outper-
forms other methods in variable selection using the synthetic datasets. For the
considered real dataset, it is in good agreement with other methods.
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