2021 International Conference on Rebooting Computing (ICRC)

Enhanced methods for Evolution in-Materio
Processors

Benedict. A. H. Jones Noura Al Moubayed

Dagou A. Zeze Chris Groves

Department of Engineering Department of Computer Science Department of Engineering Department of Engineering

Durham University
Durham, DH1 3LE, UK

Durham University
Durham, DH1 3LE, UK

benedict.jones @durham.ac.uk noura.al-moubayed @durham.ac.uk

Abstract—Evolution-in-Materio (EiM) is an unconventional
computing paradigm, which uses an Evolutionary Algorithm
(EA) to configure a material’s parameters so that it can perform
a computational task. While EiM processors show promise,
slow manufacturing and physical experimentation hinder their
development. Simulations based on a physical model were used
to efficiently investigate three specific enhancements to EiM
processors which operate as classifiers. Firstly, an adapted
Differential Evolution algorithm that includes batching and a
validation dataset. This allows more generational updates and a
validation metric which could tune hyper-parameters. Secondly,
the introduction of Binary Cross Entropy as an objective function
for the EA, a continuous fitness metric with several advantages
over the commonly used classification error objective function.
Finally, the use of regression to quickly assess the material
processor’s output states and produce an optimal readout layer,
a significant improvement over fixed or evolved interpretation
schemes which can ‘hide’ the true performance of a material
processor. Together these enhancements provide guidance on the
production of more flexible, better performing, and robust EiM
processors.

Index Terms—Batching, binary cross entropy, evolution in-
materio processors, evolutionary materials, evolvable processors,
material kernel

I. INTRODUCTION

Challenges to the development and further improvement of
traditional CMOS technology [1] has led to a growing interest
in unconventional computing methods. Evolution in-Materio
(EiM) is one such approach which seeks to exploit a material’s
physical properties to perform a computational task. EiM is
inspired by the complex functions that simple nucleotides can
perform when configured by evolution into a genome [2]. The
electronic capability of an EiM processor is discovered through
the use of an Evolutionary Algorithm (EA) which seeks to
improve the performance of the system. This EA attempts to
harness the innate computational ability present in the material
processor using only a few configurable parameters, thereby
conforming to the complexity engineering approach [3]. EiM
processors have been used to achieve a range of applications
such as logic gates [4]-[7] and classification [8]-[10]. While
EiM processors show promise, they still require significant
development before any mainstream adoption. Recent work
has addressed some fundamental questions about the effect that
simple algorithm and material changes have on classification
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Fig. 1. Schematic diagram of a generic physical EiM processor.

performance [11], and establishes a framework to perform
EiM. In this paper, we present three techniques which can
be applied to EiM processors to leverage significantly better
performance for classification.

EiM processors are generally formed from three constituent
parts: (i) a material whose characteristics can be altered via
external stimuli, (ii) a hardware interface which can apply
inputs and read outputs from the material, and (iii) a device
which can host and execute an EA to optimise the material.
Materials are generally selected for their configurability and
complexity, such as metallic nanoparticles [7], [12], liquid
crystals [13], [14], single walled carbon nanotubes [5], [9], and
dopant networks [6], [15]; all of which are material networks
that can be configured by the application of voltages. As
such, EiM processors are generally fabricated by depositing
the chosen nanomaterial on a microelectrode array, which is
used to apply and measure voltages, similarly to the design
depicted in Fig. 1. The work presented in this paper focuses on
three enhancements to the EiM paradigm, specifically relating
to how the EA exploits the material processor. We now discuss
these three contributions in turn.

EiM systems are limited by the available memory provided
by the microprocessors that control the hardware interface
which interacts with the nanomaterial electrode array. Exam-
ples from previous work include an Mbed with 32KB of RAM
[10] or the MECOBO with 128KB RAM [16]. As execution
speeds within in-materio processors improve, possibly up to
100MHz [6] or more, it becomes increasingly important to
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make efficient use of the memory available, to avoid unneces-
sary waiting and keep the (in-materio) processing unit running
at full capacity. Similarly, Artificial Neural Network (ANN)
systems often have limited local fast GPU memory preventing
large datasets being executed all at once. Instead, batching
(or mini-batching) is commonly used to split up the data
into smaller groups or ‘batches’ [17], this has several benefits
including a smaller memory footprint, more network updates
and helping to prevent the model from over fitting. Our first
contribution is the examination of the effect of introducing
batching to a Differential Evolution EA, which to the best of
our knowledge is used to exploit EiM for the first time.

EiM processors for classification are commonly achieved
via the readout and interpretation of physical voltages. These
signals will be subject to noise from the hardware, power
supplies etc., meaning the placement of the EiM classifiers
decision boundary is of great importance. Some recent work
introduced a confidence measure for a carbon-nanotube/liquid
crystal classifier [18] relating the physical output signals with
a Figure of Merit. These results suggest that the ‘depth’ of an
assigned data instance into a particular class from the physical
classifiers decision boundary contains useful information. Our
second contribution is the proposal that incorporating this
Figure of Merit into the EA’s objective function will lead to
EiM systems with superior decision boundary placement com-
pared to systems operating with the commonly implemented
classification error [10], [18], [19]. To this end, we investigate
the adaptation of Binary Cross Entropy (BCE) as a modified
objective function for an EiM’s exploiting EA for the first
time.

Ensuring that a material is consistently and successfully
exploited for EiM has proved challenging. Previous work
has shown that if a material’s outputs are inappropriately
interpreted the performance of an EiM processor may be
hidden [11]. However, materials with monotonically increas-
ing current-voltage (IV) characteristics often require some
interpretation process of combination and/or comparison to
solve complex classification problems. Other materials, such
as those with IV characteristics containing negative differ-
ential resistance (NDR) [6], [7], can achieve more complex
output states which may require less complex interpretation.
EiM processors have therefore traditionally contained some
evolvability in the output interpretation, e.g. output weights
[11], [19] or evolvable thresholds [10]. Our final contribution
is to enhance the assessment and exploitation of the material.
We investigate the introduction of a regression step into
the EA algorithm, used to produce a readout layer for the
material. This results in an optimised output layer every time
a population member is tested, a significant improvement
compared to evolving the output layer. It should be noted that
the use of regression brings the EiM computational paradigm
one step closer to Reservoir Computing (RC) [20]. Indeed,
by adapting an EiM processor to temporal data, it could be
classed as physical RC with an evolvable reservoir.

The paper first outlines the background and basic operation
of EiM processors for classification in §II. This is followed

by the implementation of the three proposed enhancements in
§$III, namely the introduction of batching, BCE as an objective
function, and a regression step. The testing methods, simulated
material networks and considered datasets are outlined in §IV.
The results of the three proposed enhancements are discussed
in §V. Finally, we summarise the paper and conclude in §VI.

II. BACKGROUND

EiM exploits nanomaterials using an optimisation algorithm
such that they can perform useful tasks. Since in-Materio pro-
cessors are analogue and generally lack an analytical model,
population-based derivative-free optimisation algorithms are
used, rather than gradient based algorithms [9]. EAs are a
subset of evolutionary computing, consisting of population-
based metaheuristic search algorithms, making them ideal for
EiM. EAs take advantage of biologically inspired operations
such as reproduction, mutation, recombination and natural
selection [21]. Many types of EAs have been used for EiM
such as Evolutionary Strategies [19], Genetic Algorithms [7],
Differential Evolution [9], [10] or Particle Swarm Optimisation
[22], [23]. In particular, Differential Evolution (DE) is an
easily implemented and effective optimisation algorithm for
exploiting EiM processors. DE is a derivative-free, stochastic,
population-base, heuristic direct search method [21], [24]
which only requires a few robust control variables [25] and
is attractive for real parameter optimisation [26].

In this paper, we combine a DE algorithm with a material
simulation (developed in [11]) which allows significantly
faster testing and analysis of EiM processors than physical
manufacturing and experimentations would allow. Full details
are available elsewhere [24], [26], but briefly, the DE algorithm
uses the greedy criterion that involves evaluating the fitness
of each member of a generation’s population, with those
members of the population with better fitness being more
likely to proceed to the next generation. The characteristics
of the population thus change gradually over time due to
the random mutation of characteristics and cross-over with
other population members. Every member of the population
is represented by a vector of decision variables X. This
decision vector contains configuration parameters which the
EA optimises each generation. In this paper the decision vector
is defined as:

X=[Va Vea ... mq]" (1)

where T is the vector transpose. The included configuration
parameters are as follows [11]: Input “configuration” voltage
stimuli V,,, applied to a node p, where the total number of
configuration nodes is P. The shuffle gene G;, which allows
for reassignment of input electrodes to access different inter-
node arrangements. Input weights [, € [—1,1] that scale the
input voltages V" applied at the data driven input electrodes
r due to a corresponding input attribute a.., such that:

Vi (k) =1, x a(k), )

‘/;p Gsh ll l2 lR my Mo ...

where £ is a given data instance and the total number of data
driven input electrodes is R. Output weights m, € [—2,2]

110



for each output electrode ¢, which allows flexibility in how
the network combines a particular data instances’ resulting
material outputs into a single overall network response Y, as
follows:

Q
Y(k) = mgVy(k), 3)
q

where () is the total number of output nodes and anut is the
material’s output voltage. The generated network response Y
is then used to designate a class label to the processed data
instance using a simple threshold:

{

where class is the predicted class label. The operation of the
EiM processor is shown in Fig. 2, illustrating how the system
is affected by the configuration parameters.

During each generation, every member of the population is
evaluated using the training data and an associated fitness is
calculated using the EA’s objective function. Commonly, in
EiM systems, the objective function ¢ is defined as the mean
error of a dataset (i.e., the classification error):

1 K
= —
K ];e(k)ﬂ

where k is an instance within a dataset of total length of K.

Each data input instance produces an error value e(k) of 0 or
1 for correct or incorrect classification, respectively. Generally,
the dataset D, containing R attributes aq, as, ..., ar, is split
into two subsets: a training set D"%" and a test set D¢’
The training set is used to evaluate and update the population
during the evolutionary optimisation, and a test set is used
to evaluate the final best population member pp.s:. The pseu-
docode describing the DE optimisation process is presented
in Algorithm 1, where f(pop, Dataset) is a fitness function

—
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Fig. 2. Illustration of an EiM processor structure. Input data is applied to the
material as voltages. The output voltages are summed to generate an overall
response (Y') which is used to determine the class. If enabled input weights
(I+) and output weights (mg) are applied. A shuffle gene can re-arrange the
application of the input nodes (both input data and configuration nodes)
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(e.g., (5)) evaluating member(s) of a particular population
on a data subset, and BestFitness(pop, Dataset) returns
the population member with the best fitness on selected data
subset.
Algorithm 1:
Pseudocode for DE based EiM.

Initialise the population p;

Evaluate initial population f(p, D'"@i");

Prest = BestFitness(p, D),

epoch = 0;

while epoch < MaxNumber Epochs do
Generate trial population ¢;
Evaluate trial population f(¢, D¥r@in);
Update population p with respect to ¢;
Drest = BestFitness(p, D" ein);
epoch = epoch + 1;

end

Evaluate ppes; using the test data f(ppest, DP¢5?);

III. MODEL DEVELOPMENT
A. Batching

Batching (or mini-batching) is a technique used in ANNs
[17], [27], which involves dividing up the training data into
smaller groups known as batches. The use of small batch sizes
leads to a significantly smaller memory footprint, and in the
case of ANNSs is found to improve generalisation performance
[17]. Each batch is fed into the ANN and used to update
its parameters. When all the batches (and therefore all the
training data) has been used, then we say that a single epoch
has occurred. Previous work has introduced batching into a
DE algorithm for Neural Network Optimisation [28]. Using
similar principles, we implement batching within DE for an
EiM processor as follows: The dataset D is split into three
subsets: a training set Dtrain g validation set DV®“d  and
a test set D't The training set is split equally into N
balanced batches By, B1,..., By_1. These batches are used
sequentially to train the population, where each batch results
in a single generational update. The validation set is used to
provide a uniform evaluation of the population at the end of an
epoch and maintain the best ‘global” member. If the population
has produced a member which yields a better validation fitness
than previously, that member is selected as the new global
best member Gpes:. While not implemented here, we note
that validation fitness could also be used to tune the system’s
hyper-parameters. The test set is unseen data used to evaluate
the global best member once some termination criteria is met.

The pseudocode describing the DE optimisation process
is presented in Algorithm 2. Here we must clarify that to
enable a reliable comparison between the parent/previous
generation population (which was evaluated using a batch
B,,_1) and a new trial/child population (evaluated using the
current batch B,,), it is necessary to compare the trial fitness
to a re-evaluated parent fitness (using the current batch B),,).
Therefore, by using batching we are doubling the number
of training data computations being carried out. We define a
special case when N = 1, where there is only one batch which



is the entire training set D% In this case, there is no need
to re-evaluate the parent population, and the new algorithm is
differentiated from the original Algorithm 1 by its use of the
validation set.

Algorithm 2:

Pseudocode for DE based EiM with batching.
Initialise the population p;
Generate N batches By, By, ..., B(ny_1);
Evaluate initial population f(p, By);
Gest = 00;
epoch = 0;
n=1;
while epoch < MaxNumberEpochs do
if N > 1 then

| Evaluate population p on new batch f(p, By):

end
Generate trial population ¢;
Evaluate trial population f(¢, By,);
Update population p with respect to ¢;
Dest = BestFitness(p, By);
if n > N — 1 then

if BestFitness(p, DV*9) < Gy, then

| Giest = BestFitness(p, DU*d);

end
n = 0;
epoch = epoch + 1;
else
| n=n+1;
end

end
Evaluate Gpes; using the test data f(Gpess, DP5?);

B. Cross Entropy Loss

As mentioned in the introduction, classification error is a
commonly used objective function for EiM processors which
evaluates a data input instance by assigning an error value e(k)
of 0 or 1 for correct or incorrect classification respectively.
While this is a flexible approach shown to work for many
EiM systems, it provides a discrete fitness evaluation where
members of the same fitness cannot be differentiated. Consid-
ering a very simple, linearly separable problem, it is easy to
see how a decision boundary may achieve a zero classification
error, but still have varying qualities in operation due to the
inevitable presence of noise, as shown in Fig. 3. Instead, by
introducing a continuous metric associated to the distance of
the data from the decision boundary, similar to the Figure of
Merit or the ‘confidence’ that it is within the correct class [18],
a more consistently favourable decision boundary should be
achieved, as shown in Fig. 3b.

Binary Cross Entropy (BCE) or log loss is an established
loss function for machine learning binary classification tasks.
Cross entropy generates larger loss values as the predicted
probability of a label diverges from the value of the actual
label. To adapt BCE as an objective function for EiM systems,
the raw output of the EiM processor must be first constricted
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Fig. 3. Example decision boundary for the (a) discrete classification error
objective function where evolved systems with 100% accuracy may be
susceptible to noise, and (b) Binary Cross Entropy objective function which
uses information from the classified data to maximise the likelihood of
successful classification.

to € [0, 1]. To do this a sigmoid function o(k) is used such
that for a particular input data instance k:

1

O'(k) = 1 + 67Y(k)’

(6)
where Y (k) is the network response of the system defined in
(3). The entropy or log loss H (k) is defined as:

) —In(l —o(k)), if class(k) =1
o= {_ In(o(k)), if class(k) =2 0

where In() is the natural logarithm and class(k) is the actual
label associated with the data instance. Therefore, the adapted
BCE objective function that the system attempts to minimise
is defined as:

poor _ 1 iH(k) ®)
I :

k=1

This new cross entropy based objective function is designed to
penalise classified instances which are both confident (i.e., far
from the decision boundary) and wrong, but reward classified

instances which are both confident and right, as shown in Fig.
4

—— Class 2
\ —— Class 1

H(k)

Fig. 4. Entropy generated by the EiM processor’s output response.



C. Regression Generated Output Layer

Recent work has shown that the use of output weights is
important in EiM processors [11] allowing a material’s output
states to be combined and produce more complex decision
boundaries which can significantly improve the results for
classification problems. This suggests that the interpretation
scheme used to extract information from an EiM material’s
outputs is of great importance, and if one such scheme is
inappropriately chosen it may “hide” the true computational
performance possessed by the material.

As discussed in the introduction, interpretation schemes for
EiM processors have typically been fixed, or contain evolvable
parameters such as classification thresholds or output weights.
Here, we consider the use of ridged regression to efficiently
generate and optimise a readout (i.e., output) layer. There are
two notable changes to the algorithm brought about by the
introduction of regression: (i) a readout layer is generated
during the evaluation of a population member in the training
phase, and (ii) the regression will have its own separate loss
function which does not necessarily align with the EA objec-
tive function. The generated readout layers must be stored
and updated in a vector, which corresponds to the current
population, so that the best decision vector and readout layer
combination is tracked and may be recalled when evaluated
on the test (or validation) data set.

IV. TESTING METHODOLOGY
A. Material Simulation & Algorithm Evaluation

This paper focuses on investigating algorithm adaptations
which boost the performance of EiM processors. To this end,
the simulated material was selected such that it would not
be the limiting factor. Here we focus our attention on a
simulated Diode Random Network (DRN) material processor
[11]. The DRN is based on randomly interconnected diode
and resistor networks, it acts as an exemplar of a highly non-
linear material. These networks contain either voltage driven
input nodes, or measured output voltage nodes, calculated

Y2

I34

370k0

Fig. 5. An example five node DRN material, where each node is connected
to every other node via a resistor and diode. In this example, two nodes are
behaving as outputs (yi1,y2) and three nodes as inputs (z1,x2,x3) which
could be allocated as either data driven or evolvable configuration voltages.
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using a SPICE DC analysis. The DRN consists of a diode
of random orientation is in series with a randomly selected
resistor between every node pair. The rapid changes in con-
ductivity when a diode is turned on allows for a flexible
and non-linear classification decision boundary. The DRN is
physically realisable using discrete circuit components and its
properties are common in nanomaterials. Therefore, the DRN
is a reasonable representation of an EiM material with good
complexity which will not limit the performance and hinder
the investigation of the proposed algorithm adaptations. Other
IV characteristics are possible [11] but these are outside the
scope of the current paper. An example of a five node (i.e.,
electrode) material is given in Fig. 5.

To exploit the material as an EiM processor and perform
classification, DE is used to optimise the vector of decision
variables (i.e., (1)). In this work, a DE/best/1/bin algorithm is
used [26] with a mutation factor of F' = (.8, crossover rate
of CR = 0.8, and population of 20. The DE algorithm was
then altered to include batching, BCE and the intermediate
regression step.

To ensure a fair comparison between the proposed al-
gorithms, fifteen DRN materials were generated, each with
twelve nodes which correspond to electrodes in a physical
system, and these were used in all the experiments. There-
fore, differences in performance can only be attributed to
the algorithm exploiting the materials. However, EAs are
stochastic in nature which leads to variations in convergence
speed. To mitigate this randomness during experimentation,
the algorithm under consideration is repeated five times on
each of the fifteen materials. The results from these seventy-
five executions are used to evaluate the proposed algorithms.

In this paper we consider datasets containing different num-
bers of attributes. It is important that the material electrodes
(i.e., simulated material nodes) are appropriately assigned.
Assuming the selected dataset D contains R attributes, then
R nodes were allocated as input nodes. To help ensure ex-
ploitability, the inputs are then projected to higher dimensional
outputs. Here, R+1 nodes were allocated as output nodes. The
remaining nodes are allocated as configuration voltage input
stimuli, as seen in Fig. 2.

B. Datasets

To assess the performance of the EiM classifiers a pair
of two attribute binary datasets was generated. The first is a
simple linearly separable 2D dataset (2DDS), containing one
thousand data instances with two attributes, a; and as, and
two classes, 1 and 2, as seen in Fig. 6a. Similarly, the second
dataset contains a thousand data instances, but generated
concentrically, as seen in Fig. 6b, and will be referred to here
as the c2DDS. The ¢2DDS is a more challenging dataset,
requiring the algorithm to exploit non-linearities within the
material processors to produce an enclosed decision boundary.
Lastly, the Banknote UCI dataset [29] is also used in this
work as an example of a real world, four attribute binary
classification problem containing 1372 data instances.
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Fig. 6. The randomly generated (a) 2DDS and (b) c2DDS datasets.

V. RESULTS AND DISCUSSION
A. Batching

Algorithm 2 (i.e., the batching algorithm) needs to re-
compute the parent fitness on each new batch and therefore
processes double the amount of training data per epoch than
Algorithm 1 (i.e., the original algorithm) or the special case
when the number of batches NV = 1. Recalling how the data
is split into the subsets for the different algorithms (§IV-B),
the number of computations per epoch n,. for Algorithm 1 is:

ne = 0.8ng, )

where n, is the number of data instances in the selected dataset
D. For Algorithm 2, when N > 1, the number of computations
per epoch nbetehing s

nléatchmg =2x0.6ng +0.2ng = 1.4n4. (10)

train valid

Therefore, if the algorithms were compared for an identical
number of epochs, Algorithm 2 would process significantly
more data in the allotted evolutionary period. Instead, the
systems were evolved until 8x10° data instances had been
processed, at which point the EA terminated.

The more challenging ¢2DDS and BankNote datasets were
considered and used to compare the Algorithm 1 with the
special case N = 1 and various other batch sizes used
for Algorithm 2. The evolution of the mean best population
member (ppes) training fitness is shown in Fig. 7a & 7c for
the ¢2DDS and BankNote datasets respectively. Fig. 7b & 7d
show the corresponding change in mean validation accuracy
of Algorithm 2’s global best member (G5t ), or in the case of
Algorithm 1 simply the mean training accuracy of the ppes:.

Algorithm 2, with N = 1, shows comparable results to
the original Algorithm 1. As the number of batches N was
increased, the EiM processors converged substantially faster,
and a higher validation and final test fitness is achieved.
Significantly, the introduction of batching leads to an increased
number of generations per epoch. The number of computations
(i.e., number of data instances processed) used for a single
generational update v for the original Algorithm 1 is:

an

and the number of computations per generation for the batch-
ing Algorithm 2 (when N > 1) is on average:

v = 0.8n4,

1.4Tld

N
The large increase in performance is attributed to this faster
rate of useful generational updates. This should allow physical
EiM devices to be trained more quickly and be more computa-
tionally efficient. However, if the batch size is too small (e.g.,
batches containing six data instances or fewer), not enough
information from the dataset D will be present, leading to
wild variation in training population fitness. This can result in
poor population updates and a lack of EA convergence to an
acceptable solution.

~batching _

12)

B. Cross Entropy Loss

The EiM processors were used to classify the 2DDS using
the classification error objective function (5), over 40 epochs,
with Algorithm 2 and N = 1. This process was then repeated
using the BCE objective function (8). A histogram of the
processor output response Y generated by the test data from all
the repetitions is plotted in Fig. 8a. The error evolved system
produced output responses much closer to the decision bound-
ary (i.e., Y = 0). The BCE evolved systems generate output
responses much further away from the decision boundary,
meaning these EiM processors are placing boundaries between
the data much more successfully.

The BCE objective function requires the output layer (3)
to evolve and exploit the sigmoid (6) to learn which data
instances are considered ‘deep’ or not. Therefore, insufficient
flexibility within the output layer (such as the maximum
and minimum output weight), could limit the final fitness an
EiM processor could achieve. We also note that Algorithm 2
grants the system design more flexibility, with the opportunity
to select different objective functions for the training and
validation evaluations. However, in this work the selected
objective function was used for both training and validation
fitness scores.
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Fig. 7. Evolution of the (a) mean best population member training fitness and (b) mean global best member validation accuracy, with standard error, comparing
the different batch sizes on the c2DDS. This was repeated to examine the evolution of the (c) mean best population member training fitness and (d) mean
global best member validation accuracy, with standard error, comparing the different batch sizes on the Banknote dataset. Inset graphs show the convergence
during the final 0.5 x 10° computations, to more easily distinguish between the approaches.

To examine the different systems’ resilience to noise, the
test data is combined with varying levels of Gaussian noise
X ~ N(0,0?) and then evaluated on the trained systems. The
same set of random seeds is used such that a fair comparison
between the systems can be made. The mean test accuracy is
plotted against a variation of o, as seen in Fig. 8b. As expected,
the BCE evolved system is significantly more resilient to the
input noise due to the decision boundary being placed in a
location which provides a better probabilistic assignment of
class. While the addition of input noise has been used to
illustrate the superior quality of boundary placement achieved
by the BCE objective function, this is still considering a system
evolved under ideal conditions. Further work, with simulations
accounting for more realistic sources of noise, would help
establish the importance and effect of noise during the training
& operation of physical EiM processors.

C. Regressed EiM

Standard EiM processors using an output layer defined and
evolved in the decision vector X were used to solve the c2DDS
and Banknote dataset. Algorithm 2 was used with NV = 1 for
60 epochs, using the classification error objective function.
The change in the mean validation accuracy of the systems’
global best member is tracked in Fig. 9a and Fig. 9b for the
¢2DDS and Banknote dataset respectively. The EiM processors
were then re-trained, but with ridge regression as an interme-
diate step to generate the output layer, referred to here as
Regressed EiM. To ensure a fair comparison, ridge regression
was used without fitting an intercept, so only a readout layer
using output weights (and no bias) is generated. After just
one epoch, the Regressed EiM processors achieved a 23.9%
and 14.7% better mean validation accuracy for the ¢2DDS
and Banknote datasets respectively. The performance of the
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Fig. 8. (a) Histogram of the test data responses for all material and algorithm repetitions trained on the 2DDS. (b) The effect of increasing the standard
deviation of Gaussian noise (added to the test data) on the mean test accuracy of the differently trained EiM systems.

Standard EiM processors is clearly tied to the interpretation
scheme, in this case dependant on an output layer defined by
the output weights contained in the decision vector. Possibly
well performing configured materials are being hidden by
poorly performing output weights. By contrast, the use of
ridge regression allows the output layer to be independently
optimised, and therefore ensure that material outputs are
exploited fully for the target problem.

As the evolutionary period progresses the mean accuracy
of the Standard EiM processors rapidly increases. This is due
to the optimisation of both the material configuration and the
interpretation scheme. However, in the case of Regressed EiM,
the performance gains are only driven by an improvement
of the material configuration. After 60 epochs, the mean
validation accuracy of the Regressed EiM processors increased
by 7.21% and 1.84% for the c2DDS and Banknote dataset
respectively. For these simulated material processors, only
small gains in fitness, and therefore accuracy, are made during
the evolutionary process. However, we expect that the benefits
of optimising the material’s configuration parameters and stim-
uli will be closely related to the computational problem and
material processor’s properties. Indeed, an EiM processors’
voltage stimuli, input weights and electrode allocation have
been shown to provide distinct (if limited) benefits [11].

Ridge regression does not impose limits on the output
weights, as is necessary for the DE algorithm’s decision vector.
Ridge regression can also be used with a fitted intercept (i.e., a
bias), which further improved performance. The introduction
of a regression stage allows for the efficient generation of
an exploiting readout layer, without the need to optimise
output configuration parameters within the slower EA process.
We propose that the Regressed EiM presents a much better
representation of the true capabilities of the material proces-
sor, and significantly improves the speed of convergence to
an acceptable classification accuracy. These benefits should
translate directly to practical examples of EiM systems, such

as SWCNT networks [4], [5], [9]. The regression optimised
output weights are not limited, and this flexibility may also
allow smaller more subtle differences in a nanomaterials
output voltages to be identified and exploited.

The test data results are reported in Table 1 and suggest
that the Standard EiM processors overfitted slightly for the
Banknote dataset (Fig. 9b). Here, the EiM processors are also
compared to the application of logistic and ridge regression
on the raw data, which both the Standard EiM and Regressed
EiM approaches outperform. The material is acting similarly
to a kernel, transforming the input data into a useful, higher di-
mensional representation. This is very similar to the behaviour
of reservoirs in RC [20]. Indeed, if an EiM processor was
extended to process temporal data, then it could be described
as a physical RC with an evolvable reservoir. From the
perspective of conventional computing, nanomaterials often
contain undesirable temporal properties such as hysteresis,
charge leakage, etc. Within the EiM computing paradigm,
these properties can be exploited to produce unconventional
processors. We hypothesise that extending the EiM paradigm
to RC will lead to more flexible reservoirs and performance
gains, warranting further research.

TABLE I
TEST RESULTS FOR THE EVOLVED AND REGRESSED EIM.

Dataset  Processor Type mean(®) std(P) Best
Standard EiM 0.055 0.050 0.000

Regressed EiM 0.004 0.017 0.000

c2DDS Ridge Regression - - 0.490
Logistic Regression - - 0.490

Standard EiM 0.009 0.010 0.000

Banknote Regressed EiM 0.004 0.002 0.000
Ridge Regression - - 0.018

Logistic Regression - - 0.015
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VI. CONCLUSION

Evolution in-Materio (EiM) processors are a promising
unconventional computing paradigm where materials can be
configured to perform computational tasks. However, inves-
tigating the EiM computational framework is challenging on
physical systems due to slow fabrication and testing. Here,
a simulation of a physically realisable circuit is paired with
Differential Evolution (DE) to produce an EiM processor. This
is used to efficiently experiment and explore improvements to
the EiM framework and algorithm.

The DE algorithm was adapted to enable batching of the
training data. This involved the introduction of a validation
step at the end of an epoch to provide a uniform evaluation
of the population. Smaller batch sizes were found to converge
more quickly to a final solution due to the reduced number
of computations needed per generational update. However,
extremely small batch sizes were found to cause poor gen-
erational updates as not enough information from the dataset
was represented.

Binary Cross Entropy (BCE) was introduced to replace the
commonly used classification error objective function, and was
shown to generate more noise resistant EiM classifiers. BCE is
a continuous fitness (i.e., loss) metric which uses information
from the classified data instance’s distance from the decision
boundary. This ensures that a successful comparison between
a trial population member and its parent will always be pos-
sible, leading to more reliable convergence, and also superior
decision boundary placement.

Regression was used as an additional intermediate step to
train the output (i.e., readout) layer of the material processor.
This replaced the evolution of output weights, previously
defined in the DE decision vector. These generated output
layers needed to correspond to, and be maintained alongside,
the DE’s population of solutions. Using ridged regression,
this technique was found to far outperform the standard EiM
algorithm. This highlights that slow to evolve or inappropriate
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interpretation schemes can “hide” the performance of well
configured materials.

EiM processors have the potential to harness complex
nanomaterial properties to produce efficient unconventional
computing devices. This work shows how the traditional
EiM algorithm can be adapted to produce more robust and
better performing systems, ensuring physical nanomaterial
processors are fully exploited. These enhancements bring EiM
processors one step closer to future real-world applications.
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