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Abstract—Biases can filter into AI technology without our
knowledge. Oftentimes, seminal deep learning networks champion
increased accuracy above all else. In this paper, we attempt to
alleviate biases encountered by semantic segmentation models
in urban driving scenes, via an iteratively trained unlearning
algorithm. Convolutional neural networks have been shown to
rely on colour and texture rather than geometry. This raises
issues when safety-critical applications, such as self-driving cars,
encounter images with covariate shift at test time - induced by
variations such as lighting changes or seasonality. Conceptual
proof of bias unlearning has been shown on simple datasets
such as MNIST. However, the strategy has never been applied
to the safety-critical domain of pixel-wise semantic segmentation
of highly variable training data - such as urban scenes. Trained
models for both the baseline and bias unlearning scheme have
been tested for performance on colour-manipulated validation sets
showing a disparity of up to 85.50% in mIoU from the original
RGB images - confirming segmentation networks strongly depend
on the colour information in the training data to make their
classification. The bias unlearning scheme shows improvements
of handling this covariate shift of up to 61% in the best observed
case - and performs consistently better at classifying the “human”
and “vehicle” classes compared to the baseline model.

Index Terms—Fair Al Bias Unlearning, Bias Removal, Semantic
Segmentation, Convolutional Neural Networks

I. INTRODUCTION

Recent years have seen a surge in the development of
artificial intelligence (AI) systems; largely fuelled by the
symbiosis of deep learning progress [!], [2], [3], [4], [5],
[6], and advancements in micro/nanochip manufacturing —
harnessing remarkable compute power. Ubiquitous deployment
of Al throughout modern society means that practitioners have
an ethical and moral responsibility in the dissemination of this
cutting-edge technology.

Within the field of deep learning, convolutional neural
networks (CNNs) have gained substantial traction in the last
decade, and their performance in computer vision tasks is state
of the art [7], [8], [°]. Due to the complex nature of these
systems, a “black box” stigma is often attached to them; since
deep learning networks are now achieving unprecedented levels
of accuracy, external scrutiny and media spotlight demands a
push towards transparency, fairness, and accountability [10],
[11]. This has led to the more recent movement of “explainable
artificial intelligence” (XAI).

Amir Atapour-Abarghouei
Department of Computer Science
Durham University, UK
amir.atapour-abarghouei @durham.ac.uk

Urban Scene Example

Semantic Segmentation

|

Instance Segmentation
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The crux of developing fair Al is the elimination of bias
— a long sought issue in any statistical modelling application.
Bias can manifest itself in a multitude of guises which are
generally quite context specific. For the purposes of this work,
we will focus on algorithmic bias. Bias of this nature can
creep into our models from training data, meaning our models
exhibit the same systemic discrimination found in the wild.
This bias can often be unknown and undetected — making
for a particularly insidious force. Indeed, George Santayana
warned us that “those who do not remember the past are
condemned to repeat it”. If bias is allowed to creep into our
models undetected, we risk propagating this bias throughout
society; eventually distilling into a self-fulfilling prophecy —
one which automates inequality.

This research focuses on colour bias which exists within
urban scenes. Urban scene segmentation is at the heart
of autonomous vehicle (AV) technology [13], and to date,
many network architectures have been developed achieving
impressive accuracy [5], [14]. This blinkered push towards
optimal accuracy often neglects to consider biases within the
training data; thus, any advancements in the field of bias
mitigation in particular within the realm of image segmentation
are significant.

Colour bias can manifest in many ways within urban scenes.
Successful AV technology must be dependable in a multitude



of conditions, including densely populated urban streets, fog,
rain, snow, glare, and seasonal changes. This highly variable
distribution of data poses a great challenge. Clearly, the same
tree that a segmentation model picks up on in summer might
look very different in winter, or in New York would a CNN
learn to categorise all yellow boxes as cars due to the number
of taxis? We humans are extremely adaptable and can make
decisions to correct our actions depending on external stimulus.
Machines, however, struggle to perform well in edge cases or
situations not encountered in the training phase. Consequently,
a push towards robustness and generalisation is paramount for
the evolution of safe AV technology.

The umbrella of image segmentation covers three main
domains: instance segmentation [15], semantic segmentation
[14], [5], and more recently a hybrid of both — panoptic
segmentation [16] (Figure 1). In this work, we will consider
semantic segmentation, which concerns categorising each pixel
in an image into one of n predefined classes. This process splits
the image into different regions based on what the pixels show
and is the adopted methodology for AV systems. While this
work focuses on semantic segmentation, the same principles
can be applied to instance and panoptic segmentation or in
fact many other computer vision tasks [17], [18], [19], [20].

The aim of this paper is to mitigate colour bias from semantic
segmentation models trained on urban driving scenes. The
primary contributions of this work are twofold:

o We provide empirical evidence that seminal semantic
segmentation architectures do overfit to the colour in-
formation in highly variable urban scenes and, where
possible, attempt to quantify this.

o We also demonstrate that a multi-headed network architec-
ture can adversarially remove a known bias during training
in a pixel-wise semantic segmentation model.

In the interest of reproducibility, transparency and progres-
sion, all code is publicly available in a project repository'.

II. RELATED WORK

We consider related work within the context of Semantic
Segmentation (Section II-A) and Bias Removal (Section II-B).

A. Semantic Segmentation

For the purposes of semantic segmentation, fully convolu-
tional networks (FCN) have gained the most traction in recent
years after the work of Long et al. [21]. FCNs do not have
any fully-connected layers, solely relying on convolutional
layers passed to a classification layer. This preserves spatial
information from the input and significantly reduces the number
of parameters in the network, thus increasing computational
efficiency.

Encoder-decoder style networks achieve impressive results
with U-Net [22], SegNet [5] and DeConvNet [23] all adopting
the same idea, whereby the first half of the network is
a mirror image of the second half, albeit with different
methodical nuances. SegNet [5] proposes a computationally

! https://github.com/JackStelling/BiasMitigation

fast and memory efficient network by saving the indices of the
maximum values on the max-pooling operation — this is then
used during upsampling in the decoder part of the network.
U-Net utilises skip connections, allowing for information from
the encoder part of the network to be used in the decoding
procedure.

Later, the DeepLab family [24], [25], [14], [7] of architec-
tures pushed the boundaries in semantic segmentation using
atrous convolutions [25], effectively developing the Atrous
Spatial Pooling Pyramid (ASPP) module to handle objects
of different scales in the same image. ASPP is based on
simultaneously performing dilated convolutions with different
atrous rates and concatenating the resultant feature maps.
This essentially combines multiple fields of view, tackling
the issue of different scale objects. The DeepLab family have
achieved state-of-the-art results on benchmark datasets with
each iteration of the network.

More recently, the concept of attention has been applied
to semantic segmentation tasks [26], creating a more efficient
and higher performing model than using multiscale inference.
Similarly to the problem that DeepLab attempted to solve
with the ASPP module, Tao et al. [26] argue that fine detail
(bollards, a person in the distance, etc.) is often better predicted
with a scaled-up image size. Whereas large objects (roads,
buildings, etc.) require more global context and downscaled
images are generally more beneficial as the convolutional filters
have a larger field of view and thus capture more context. Tao
et al. develop a system whereby prediction for some pixels
is performed using the scaled-up images and others use the
scaled down images. Further, the ASPP module and other
multiscale context methods e.g., PSPNet [27] are static and
not learned, whereas relational methods build context based on
image composition. This means that unlike [25], [14], [7], [27],
the region of interest using an attention-based mechanism is not
restricted to being square — this is advantageous in the context
of urban scenes when the geometry is often a product of visual
perspective, like a road sign in the foreground covering a long
skinny rectangular patch. Tao et al. maintain state-of-the-art
performance on the CityScapes [28] and Mallipary Vistas [29]
datasets at the time of writing.

In this work, we adopt the DeepLabV3 [14] and SegNet [5]
architectures to use as baselines for testing novel bias removal
concepts in the context of semantic segmentation. DeepLab
architectures have been shown [30] to be less susceptible to
adversarial attacks, an increasing concern in safety-critical
applications such as self-driving cars. Other segmentation
models, however, can similarly be used given the overall
pipeline of our approach.

B. Bias Removal

As mentioned in Section I, “bias”, in the context of urban
scene segmentation, can manifest in many forms. Examples
include adverse weather conditions experienced at test time
when training data does not account for this, seasonality
affecting physical colours (e.g., tree leaves, flora), seasonality
affecting lighting/shadows/luminance, more obvious lighting



fluctuations from night to day, reflection, shadow and different
countries/localities using different colour systems for highway
codes, among others. This is by no means an exhaustive list, as
even edge cases such as sporting events, parades and accident
blockades can cause out-of-sample differences that networks
must tackle if we are to trust AV technology. These unknown
perturbations cause a covariate shift from the input data that
the models are trained on, which can cause adverse effects on
performance due to the high intercorrelation between network
weights.

Large-scale, finely annotated datasets for segmentation are
expensive to obtain, requiring human annotation which can
often take experienced workers up to 90 minutes an image to
complete [28]. Due to this bottleneck, it is not feasible to create
site specific training datasets for multiple locations where the
cars will operate, thus robust generalisable models must be
developed which perform well in a wide variety of situations.
Models which can learn bias in the data and account for it
are highly desirable. Not only does this problem exist within
the sphere of AV technology, it also extends to many others,
including the fields of augmented reality and virtual reality
where indoor scene segmentation is paramount — another task
which relies on a highly diverse input distribution.

Under the umbrella of bias removal, the taxonomy forms
three natural groupings:

o Those seeking to increase generalisation and thus reduce

the effects of bias via image augmentation.

o Those using the network architecture to attempt to remove

or mitigate a known bias.

o Those attempting to learn the bias within a given dataset

and mitigate it accordingly.

Image augmentation increases variability in the training data
by adding variation to images. This synthetically increases
the training set without affecting the information contained.
Common perturbations include crops, sheers, flips, and colour
jitter. This technique has been well researched in computer
vision tasks, specifically image classification [31], [32].

Augmentation techniques have been adapted specifically to
semantic segmentation where sheering and flipping images
may not be the most appropriate approach. Kamann et al.
[33] propose the use of a colour mask gained from alpha-
blending the ground truth segmentation map with the input
data during training, which they coin “Painting-by-Numbers”.
Building on the evidence of Geirhos et al. [34] who showed
that CNNs are biased towards texture, Painting-by-numbers
improves the robustness of semantic segmentation models to
common image corruptions by making the texture of image
classes less reliable and pushes the model to use geometry in
the image to perform effective segmentation. This technique
does not require more training data and is thus efficient during
training. Also motivated by CNN textural reliance, Jackson
et al. [35] explore style randomisation via altering colour and
texture of the input image using style transfer whilst preserving
semantic content, again showing an increase in accuracy.

Multi-head models have been explored [36], [37], [38] posing
the ability of networks to unlearn a known bias. In fact, it

has been shown in [38] that some models even exacerbate the
biases that are known in the datasets after training is complete,
thus, models are using the bias itself as a cue to make a certain
categorisation. Kim et al. [36] demonstrate a proof-of-concept
approach showing that after planting a synthetic colour bias
in the MNIST dataset, the model uses the obvious colour
cue for categorisation rather than geometry of the numbers.
A second model head employs an iterative algorithm using
reverse gradients to successfully “unlearn” the known colour
bias, pushing the model to use the shape of the numbers as the
cue for correct classification. To the best of our knowledge, such
a technique has not been applied to highly variable domains
such as semantic segmentation. As such, in this paper, we
attempt to evaluate its success with semantic segmentation.

The contribution of this paper is to increase the robustness
of CNNs via the mitigation of algorithmic bias - specifically
colour bias found in highly variable urban road scenes. Building
on the foundations of Kim et al. [36], we aim to implement an
“unlearning” procedure within the network architecture itself
rather than increase generalisability via augmentation of the
input data. The unlearning procedure employs a multi-headed
network to adversarially remove a target bias using reverse
gradient loss. Semantic segmentation is used as a vehicle
to assess the effectiveness of such a system, albeit the core
principle should, in theory, be applicable to any deep learning
architecture.

III. REMOVING A KNOWN BIAS

This work takes advantage of the work in [36] entitled
Learning Not to Learn referred to, hereafter, as LNTL. This
proof-of-concept paper synthesises colour bias into the MNIST
[39] dataset and successfully uses a gradient reversal strategy
to remove the colour information from the training data. In real
data, we are not afforded the luxury of knowing exactly what
the bias is and where it manifests — although it has implicitly
been shown that CNNs can pick up on the wrong cues [34].
Thus, a comparison between standard training data, a greyscale
baseline and an implementation of bias unlearning is tested.
This strategy is a self-supervised task as we can extract the
true colour labels from pixel values of the training data, which
we already have.

A. Problem Statement

In theory, the set of all images that self-driving cars encounter
at test time is drawn from one set. This set contains all possible
situations that the car could ever encounter, whether it be across
a desert track in midday sun or a snow storm in a mountain
pass. Indeed, many landscapes could provide this challenge in a
single journey - confirming that this rich theoretical variation is
not hyperbole. Practicality dictates that the training dataset is a
restricted subset, and due to this, it is not a true representation
of situations we could encounter in the real world. In this
sense, we assume the test set to be unbiased. We aim to train
a network on biased data, attempt to systematically unlearn
that bias during the training phase and then deploy the model
to perform on unseen and unbiased test data.
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Fig. 2: Network architecture showing separate networks f, g and & and their roles in the system.

Training and test sets are normally split randomly, in
an attempt to eliminate the domain gap between the two
distributions X7;q;, and Xr.4:. Despite best efforts, a gap can
still remain, and an even larger gap is the domain shift between
X7est and the actual distribution X . For this reason, the results
of the bias mitigation strategy might appear slightly subdued.
Analogously, results published for segmentation accuracy are
inflated compared to performance in the real world. The
Cityscapes dataset [28] - which consists of dash-cam footage
from European cities - is partitioned on city for train, validation,
and test sets, which means that model may lean on the nuances
apparent in the training cities, making it an ideal candidate to
use for the purposes of this work.

Our setup splits a standard semantic segmentation classifica-
tion network (e.g. DeepLabV3), into a double-headed network —
one with a pixel-wise classification head for the task of semantic
segmentation and one with an auxiliary bias classification head.
The networks are modular constructs consisting of a feature
extractor network, f : X — RN, a pixel-wise classification
network, g : RY +— Y, and the bias classification head,
h : RN — B, where N is the amount of feature maps produced
by the embedding network f.

Figure 2 shows the implemented network architecture, with
the sub-networks f, g and h, with the fork depicted at the
last convolutional layer prior to classification. The precise
architecture is left intentionally vague because the theory should
apply to any system. Specific networks are discussed in more
detail in Section IV-B.

B. A Caveat on Fork Placement

Interestingly, since f feeds its output feature maps into
network g, the bias propagates through the network, and so
the location of the fork is an arbitrary choice. Furthermore,
f o g will be void of any bias so long as h has done its job
in correctly classifying the bias and the subsequent gradient
reversal step successfully discourages f from using such cues.
Prior work [40], [41] has shown that feature maps extracted
at the start of a CNN generally contain low-level information,
often containing blocks of colour and edges, whereas the final
layer feature maps contain higher-level features with tightly
integrated colour information.

Intuitively, we expect that the feature maps towards the end
of the network would be the most suitable place to add the
fork. The training regime requires a short burst of end-to-end
training without including the bias classification network, h.
This ensures that the network already has some classifying
ability and weights are converging. If we do not allow this
head start for the classifying network, when the auxiliary bias
network is activated, a mode collapse situation could occur,
where the network weights are unable to converge towards
optimisation [36].

Thus, a fork located towards the end of the main bulk of
the segmentation network would allow the weights upstream
to be amended whilst the classification layer would be largely
unaffected. We hypothesise that a different fork location
further upstream would achieve the same result eventually
but would take longer to reach convergence. Furthermore, the
fork has been added leaving one convolutional layer before the
SoftMax layer. This ensures learnable parameters remain in
the classification head and allows for any reactive adjustments
in network g from a change of its input, f(x).

IV. EXPERIMENTS

The following section details the experiments undertaken,
and provides results and analysis. As such, in this section, the
datasets are introduced (Section IV-A), an explanation of the
specific networks used are provided (Section IV-B), evaluation
metrics are explained (Section IV-C) and all experiments and
results are discussed.

A. Datasets

Cityscapes [28] The Cityscapes dataset is a public and
widely-used semantic segmentation benchmark. Cityscapes
contains data from 50 cities and images are annotated with 30
semantic classes. The dataset contains over 20,000 coarsely
annotated images and ~ 5,000 finely annotated images provid-
ing pixel-level, instance-level and panoptic semantic ground
truth labels. Raw images and segmentation masks are provided
in portable network graphics format. Data contains both 16-bit
High-Dynamic Range images and 8-bit Low-Dynamic Range
format to use at an image size of 1024x2048. We evaluate
our semantic segmentation performance on the official 500
annotated validation set.



SYNTHIA [42] The SYNTHIA dataset is also publicly
available and comprised of nearly-photo-realistic images from a
synthetically-rendered virtual city. The dataset used in this paper
is the synthia-rand-cityscapes subset containing 9,400 images
at a resolution of 1280 x 760, which contains labels compatible
with Cityscapes, allowing for a fairer examination of the results.
The dataset provides fine detail instance segmentation labels -
thus data preprocessing is undertaken to create semantic labels
from the data provided.

SYNTHIA images contain very realistic granular detail and
complex scenes; some images contain very high numbers
of pedestrians - all of which have pixel perfect annotation,
leveraging the automatic ability to label images in a generated
scene. Further, SYNTHIA has a rich variety of luminance,
high scene diversity and vantage differences, making it a more
variable sample space than Cityscapes. Input perturbations
during rendering create similar images with slight nuances.
When creating 70% / 30% training / validation sets, the data
is split as though a temporal dependence exists within the
data. This ensures that similar images do not occur in both the
training and validation sets — providing a more representative
interpretation of a real setting, where a test set is a wholly
unseen set of images. This also ensures that we do not get
over-optimistic metrics upon evaluation.

B. Network Architecture

Since the network f consists of a feature extraction sub-
network, we have the flexibility to choose any architecture we
wish. Indeed, we have positioned this paper for the task of
mitigating colour bias in urban scenes, but we could equally
apply the technique to other fields of computer vision; say,
facial recognition de-biasing.

We have chosen to test two seminal semantic segmentation
architectures, namely, DeeplabV3 and SegNet as discussed
in Section II. DeeplabV3 is trained with multiple ResNet
backbones with ImageNet [43] pretrained weights. Adopting
this pretraining procedure could add noise to the results
as it adds uncertainty about the origins of the CNN bias.
Nevertheless, it is an efficiency trade off, and as mentioned
in Section III-B, anything upstream from the fork can be
unlearned. The fork is located directly after the concatenation
of the ASPP module within DeepLabV3 and f(X) outputs
1280 feature maps to both the auxiliary bias head, h, and the
primary semantic classifier, g.

SegNet follows a simple symmetric encoder-decoder architec-
ture. The encoder is topologically identical to the convolutional
layers of the VGG16 [44] network, whilst the decoder upsam-
ples hierarchically by using the indices of the corresponding
max pooling operation from the encoding operation. Again,
the fork for network h is placed before the last convolutional
layer and f(X) outputs 64 feature maps to both h and g.

C. Metrics

In semantic segmentation dealing with multi-class problems,
we often encounter the issue of class imbalance. This occurs
when background parts of an image, say buildings or sky,
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Fig. 3: Left pane: Visual demonstration of intersection over
union calculation. Right Pane: Predicted segmentation masks
from our trained DeepLabV3 model are overlaid on ground
truth image masks to demonstrate realistic IOU scores.

dominate the total pixel count compared to say that of a
pedestrian or a red traffic light. Due to this, accuracy becomes
an ambiguous metric; inaccuracy of minority classes gets
overshadowed by the accuracy of majority classes. Furthermore,
in the context of driving, the more infrequent classes are often
the most important for human safety. As a result, it is common
to use the intersection over union metric (IoU). IoU measures
the ratio between the amount of overlap between the predicted
and ground truth pixels and the total number of pixels taken
up by the prediction and the ground truth. See Figure 3 for a
visual interpretation.

It is customary to use the mean intersection over union
(mloU) which is quoted in this paper. However, during
evaluation, we also compute and inspect the individual IoU
per category to give a more granular understanding of the
model performance. Scores theoretically fall between 0 and 1,
although percentages are often quoted.

D. Comparing the Baseline and LNTL Schemes

All models are trained for 100 epochs until convergence. A
learning rate of 0.001 is used with the Adam optimiser [45].
Learning rate decay is enforced with the scheduler reducing the
learning rate by a factor of 0.1 every 40 epochs. Class weights
are computed for all the training data so the cross-entropy loss
function could allow for class imbalance, a common occurrence
in urban driving scenarios.

Baseline models are trained for both SegNet and DeepLab,
with inputs of colour training images and greyscale training
images. Since the LNTL scheme penalises the classifier by
using the gradient reversal module to adjust the weights, it
was expected that the accuracy may suffer somewhat. We did,
however, expect that the LNTL scheme would perform better
than the networks making predictions using limited colour
information, as is supplied in the greyscale training set.

This intuition is confirmed given the loss curves displayed in
Figure 4; the LNTL scheme has penalised the loss compared to
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Fig. 4: Learning Not To Learn scheme vs. colour and greyscale
baseline for SegNet and DeepLab segmentation architectures.

the converged colour input data for both SegNet and DeepLab
architectures. Note that the SegNet minimum loss is 0.730,
which DeepLab achieves after just 20 epochs of training. Of
course, further image augmentation, extra training data and
hyperparameter tuning could be used to drive down the loss
even further and improve accuracy; however, to satisfy the
project hypothesis, we only need a comparable canvas to test
the concept of applying colour unlearning within the domain of
urban scenes. In subsequent experiments, the Deeplab network
is favoured for its slightly more stable learning, and higher
accuracy.

E. Synthesising a Covariate Shift in Validation Data

In order to properly test our hypothesis that the LNTL
scheme can unlearn colour information in highly variable scenes
such as urban images, it is necessary to test both the baseline
DeepLab architecture and the LNTL scheme on unseen data

which contains a covariate shift from images it was trained on.

To this end, three synthesised validation sets are created:

« converting the validation set to greyscale,
« applying random colour jitter to validation images,
« applying a colour invert transform to validation images.

Visual examples of these transformations are shown in Figure
5. Models are re-trained on the normal training set, both on
SYNTHIA and Cityscapes datasets and only validated on the
transformed images. All other parameters remain the same to
allow for a fairer comparison. This enables us to monitor the

network loss over the training cycle to see if the LNTL scheme
slowly improves in its validation convergence. Monitoring
loss in this way allows us to assess overall model health,
since the network is technically focussed on minimising loss
not maximising accuracy. Furthermore, during training, we
can monitor the loss in the bias head to check for signs of
divergence. This behaviour is welcomed and can be an indicator
that colour information is being extracted out of the feature
maps in network f. This makes categorisation in the bias head
more difficult thus manifesting as a diverging loss in network
h.

Intuitively, it is worth noting that although greyscale images
remove a lot of the colour information, distances between pixel
values can still be leveraged, synonymously for colour jitter,
despite the stochasticity. Colour invert, however, maximises this
difference and corrupts this relationship the most, disrupting
spatial inter-correlations between different pixel values.

Figure 6 shows the disparity in loss between uncorrupted
validation images and those with perturbed colour. Reference
lines on the bottom of the graph highlight the extent to
which the networks overfit to the colour in the training data.
In the Cityscapes dataset, the LNTL scheme shows a clear
improvement over the baseline method when colour invert is
applied to the validation images. This suggests that the LNTL
scheme has increased model robustness and has diminished
its dependence on colour for categorisation. Although random
colour jitter in Cityscapes validation has an increased loss, it
appears to be converging on a downward trajectory.

Results are not as desirable for the SYNTHIA dataset.
Firstly, we notice a significant reduction in disparity between
uncorrupted and corrupted validation images. This may be due
to the rich variety of luminance in SYNTHIA, as mentioned
in Section IV-A. Colour invert seems to affect both schemes
equally, whilst colour jitter is marginally favourable to the
baseline scheme. As we may expect, jitter creates less of an
impact on the loss than the invert in all cases.

Original RGB Input Data

Fig. 5: Input image manipulations.

F. Using Synthesised Weather Corruptions as a Proxy for
Different Driving Conditions

From the Cityscapes data repository, researchers [46], [47]
have created imitations of rain and fog over the normal
Cityscapes training data. Ground truth labels are exactly the
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Fig. 6: Top Pane: Cityscapes dataset. Bottom Pane: SYNTHIA dataset. Large graph shows the validation results on the normal
validation set and the results for manipulated validation sets with colour invert (dashed) and colour jitter (dotted). Adjacent are
magnified and truncated plots to the last 40 epochs for the manipulations.

same as for the standard training data, so we can leverage this
dataset to more closely resemble test images an autonomous
vehicle may encounter in the wild. Different severities of image
manipulation are provided. We randomly select one level of
severity for each image, yielding a 295-image validation set
for rain and 550-image validation set for fog.

Figure 7 uses the synthesised rain and fog validation images
fed into the best trained model for each of the baseline and
LNTL schemes. All prediction images contain more noise and
demonstrate much poorer performance, as expected from the
loss curves in Figure 6. Bounding boxes, denoting regions
of interest, show that the LNTL scheme has managed to

better segment the pedestrians in the first quadrant scene.
The baseline model has produced nonsensical predictions,
hallucinating pedestrians on the building in the scene. In the
second quadrant “Less Red More Tree” we observe similar
erroneous red patches - our debiasing method mitigates much of
this and correctly identifies more tree through the synthesised
fog. Similar pedestrian hallucinations can be seen in the tree in
the fog in the third quadrant, and again the de-biasing scheme is
more accurately able to segment the tree through the fog. Once
more the fourth quadrant demonstrates the ability of the bias
unlearning network to correctly classify a tree given a corrupted
test image, where comparatively the baseline struggles. The fog



image corruptions perform better than the baseline on average
(see Table I). Although both predictions contain noise and
artefacts, results show a robustness to covariate shift at test
time for the bias unlearning scheme. Table II shows congruence
with qualitative observations with a clear improvement in the
Nature, Human and Vehicle categories.

Rain Weather Corruption

More defined people Less Red More Tree

Test Image
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Fig. 7: Qualitative results from running the best models
displayed in Figure 4 for the baseline and the LNTL models.
Regions of interest are shown in boundaries.

G. Quantitative Results

A distinction between classes and categories is to be made;
classes comprise the objects the model is seeking to predict
used in the Softmax function of the network. In this case, we
adopt the 20 Cityscape classes consisting of Road, Sky, Car,
Truck, Person, Rider, etc. On the other hand, categories consist

TABLE I: Class-wise averages of minimum loss and mloU
validation results for a DeepLabV3 model trained on Cityscapes
training set. Bold typeface indicates optimal results.

mloU (%) loss
Baseline Ours Baseline Ours
Original RGB 58.50 58.80 0.542 0.546
Greyscale 36.20 37.50 1.173 1.156
Image

Mani . Invert 8.50 13.70 3.112 2.423

anipulation
Jitter 33.30 34.10 1.259 1.180
Weather Rain 39.40 38.90 1.190 1.249
Corruption Fog 52.80 54.00 0.873 0.788

of groupings of classes — e.g. Human, Vehicle, Nature and
so on. Table I provides average class-wise mloU scores for
both the DeepLabV3 baseline model and our bias unlearning
model. Bold values highlight the best performers for each
image transformation. The LNTL scheme not only performs
marginally better on the original image, but it performs
consistently better when validated on an out-of-distribution
test image - only failing to beat the baseline in the rain
validation set. This could be due to the relatively small size
of the rain validation set compared to others tested, hindering
model convergence.

The disparity between the manipulated validation sets and
the RGB images empirically shows just how severe the lack of
generalisability is - these results come from the same images
only with colour corruptions added. This demonstrates that the
networks do overfit to colour information available, highlighting
the Occam’s Razor nature of CNN learning, that is if the colour
information is sufficient to drive down the loss, then why use
another cue? Indeed, the results allow to quantify this degree
of overfitting with an average reduction of 41.80% in mloU
score over all validation sets reported. The worst observed
covariate shift is from RGB — Invert giving a mloU reduction
of 85.50%.

Table II shows the category-wise intersection over union
scores providing a more granular understanding of the per-
formance of the networks. The penultimate two rows display
the average class scores and the performance increase, or
decrease observed by the LNTL from the baseline. These
values, and all others quoted in this paper, are displayed as
a percentage increase from one percentage to the other, not
simply a difference in percentages. Consistency is maintained
in reporting value differences throughout our work.

Bold values in Table II highlight some interesting obser-
vations from these experiments. Firstly, the LNTL scheme
performs consistently better in the “human”, “nature” and
“vehicle” classes than the baseline model. One subjective
interpretation is that these categories in particular have a more
unique, and largely unchanged geometry from scene to scene,
i.e. the human form is distinctive and largely unchanged from
individual to individual. Furthermore, the ASPP module of
DeepLab handles objects at different scales. In contrast, the
category-wise results show the model performing consistently
worse at predicting the “flat” class - perhaps, in the same



TABLE II: Category-wise validation mIoU results for a DeepLabV3 model trained on Cityscapes training data. Observations of

interest are highlighted in bold and discussed.

Categories Normal Invert Jitter Greyscale Rain Fog
Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours Baseline Ours
Flat 93.6 93.1 32.8 55.8 80.3 74.6 88.7 85.7 71.9 55.1 94.3 92.3
Construction 85.0 85.4 20.5 40.5 56.6 64.1 61.9 64.4 55.6 47.5 72.6 73.7
Object 47.7 49.0 9.8 14.7 27.3 28.6 31.1 30.8 34.7 38.1 41.5 43.4
Nature 87.6 87.5 3.6 34.6 68.7 72.0 54.8 56.2 49.0 58.5 52.8 58.1
Sky 86.8 86.0 0.3 2.6 65.1 62.3 78.7 71.9 63.4 69.0 55.1 56.4
Human 66.5 67.8 13.9 10.1 19.3 31.8 29.8 394 48.5 55.6 63.3 64.6
Vehicle 86.3 86.8 17.0 26.9 38.6 49.8 49.5 64.5 46.9 47.5 80.8 81.5
Average 79.1 79.4 14.0 26.5 50.8 54.8 56.4 59.0 53.2 53.0 65.8 67.1
Ours =% +0.3 +89.3 +7.9 +4.6 -0.3 +2.0

vein, from buildings having no fixed geometry from scene
to scene. This could mean that we have coerced the network
to use more geometric-based cues to perform classification
rather than colour. Quantitative results agree with qualitative
observations. Furthermore, the debiasing scheme performs
unanimously better in the “human” category than the baseline
architecture. This is a promising result, given the safety-critical
nature of the applications of segmentation technology.

V. LIMITATIONS AND FUTURE WORK

Further work is needed to reinforce the reported findings.
A deeper analysis of class-wise mloU scores would provide
more insight into precisely where the bias manifests within
images. In particular, more granular understanding of the class-
wise false-positives and false-negatives of predictions would be
useful since in safety-critical applications such as autonomous
vehicles, this is a vital requisite. This means that failing to
correctly identify a pedestrian has attached with it more gravity
than incorrectly classifying a pole, moreover - classifying a
pedestrian as “road” has more consequence than classifying a
pedestrian as a “rider”.

Another consideration is analysing the extent to which
augmentation techniques, e.g. [33], interact with the proposed
bias unlearning scheme. Does the robustness offered by
adequate augmentation reduce the performance observed in this
work - or does it compliment it? In addition, urban scene data
has high temporal dependence in the wild - a domain of active
research and one which would be interesting to incorporate
within our scheme.

Additionally, this project only focused on the mitigation of a
known bias - colour. In the burgeoning world of big data, it is
often unsurmountable to assess data for such bias. Furthermore,
we are also at the mercy of our own biased representations.
Amini et al. [48] tackle this issue with the use of variational
autoencoders (VAEs). The proposed model actually learns, in
an unsupervised manner, the latent structure of the input data
and adaptively uses this learned latent distribution to selectively
upsample underrepresented data points. This allows the model
itself to determine the bias inherent within the data during
training. Although Amini et al. demonstrate this technique

through racial and gender bias in facial recognition systems, the
idea itself is generalisable to multiple domains. We have shown
that while colour bias does exist, the inter-correlation between
variables in the input distribution may be more sophisticated
than simply penalising a colour value.

VI. CONCLUSION

In this paper, we applied a colour bias unlearning scheme
to highly variable images of urban road scenes as an iterative
learning process during training. Our contribution empirically
shows that semantic segmentation architectures do overfit to
the colour within training data, and they struggle to generalise
to unseen test data — even from a very similar input distribution,
as seen in raw — weather manipulation experiments. In the
worst case, when validating on a set with a colour invert
transformation, reductions of 85.50% were observed. We
demonstrate that the unlearning technique itself is viable,
showing a qualitative improvement to both stuff and things
classes in pixel-wise semantic segmentation, from a benchmark
seminal architecture - mloU metrics confirm this improvement.
We observed a 62% increase in mloU score for colour invert;
when neglecting the result for colour invert, we still observe an
average increase of 1.5% over all validation set manipulations
tested. Furthermore, an average increase of 14.5% is observed
for the “human” class, enhancing pragmatic performance
in a safety-critical application such as autonomous driving.
We position this paper to push towards robust, trustworthy
technology - aiming for a transparent and explainable future
in artificial intelligence, alleviating algorithmic bias.
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