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Abstract
Numerical tables are widely employed to communicate or report the classification performance of machine learning (ML)
models with respect to a set of evaluation metrics. For non-experts, domain knowledge is required to fully understand and
interpret the information presented by numerical tables. This paper proposes a new natural language generation (NLG) task
where neural models are trained to generate textual explanations, analytically describing the classification performance of
ML models based on the metrics’ scores reported in the tables. Presenting the generated texts along with the numerical
tables will allow for a better understanding of the classification performance of ML models. We constructed a dataset
comprising numerical tables paired with their corresponding textual explanations written by experts to facilitate this NLG
task. Experiments on the dataset are conducted by fine-tuning pre-trained language models (T5 and BART) to generate
analytical textual explanations conditioned on the information in the tables. Furthermore, we propose a neural module, Metrics
Processing Unit (MPU), to improve the performance of the baselines in terms of correctly verbalising the information in the
corresponding table. Evaluation and analysis conducted indicate, that exploring pre-trained models for data-to-text generation
leads to better generalisation performance and can produce high-quality textual explanations.
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1. Introduction
Structured data-to-text generation is a natural language
generation (NLG) task aiming to generate text from a
structured source of data, most commonly either graphs
or tables (Wen et al., 2015; Liu et al., 2018; Strauss
and Kipp, 2008). Earlier work on data-to-text genera-
tion predominantly used rule-based methods (Goldberg
et al., 1994; Reiter and Dale, 1997; Strauss and Kipp,
2008). These methods generate natural language text
by employing linguistic rules and heuristics to select
and populate pre-defined templates. However, a typical
NLG system requires different sets of rules to perform
content determination, text planning, sentence planning
and surface realisation modules (Goldberg et al., 1994;
van der Lee et al., 2017). This makes traditional NLG
models difficult to maintain and less generalised.
Recently, leveraging deep neural methods for NLG has
been shown to outperform existing rule-based methods
(Wen et al., 2015; Liu et al., 2018; Puduppully et al.,
2019; Parikh et al., 2020; Suadaa et al., 2021). These
models are usually trained end-to-end without the need
for pre-defined linguistic rules. In broader terms, trans-
fer learning has been shown to produce close to state-
of-the-art performance for downstream NLP tasks with
a limited amount of the dataset by utilising large pre-
trained language models (Devlin et al., 2019; Radford
et al., 2019). Furthermore, (Peng et al., 2020; Chen
et al., 2020c) argue that pre-trained language models
(GPT-2 (Radford et al., 2019) and T5 (Raffel et al.,
2020)) can indeed improve performance on structured
data-to-text task.
The performance of trained ML models is widely re-
ported using numerical tables (for example, see the ta-
ble in Fig. 1) and graphs. However, background and
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Given the machine learning problem under consideration, the model 
achieved a high accuracy  score of 90.73% with a corresponding high 
AUC score of 95.87%. Also, the precision score  is 89.13% and the 
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Figure 1: A table summarising the classification per-
formance of a classifier.

domain knowledge are required to make sense of the
graphs and tables. Therefore, non-experts will find it
more challenging to fully understand the implications
of the model’s scores across the metrics. In response,
this work presents a study on training neural models
to generate textual explanations that analytically de-
scribe the classification performance of machine learn-
ing models. The generated textual explanation is based
on the evaluation metrics’ scores achieved, along with
information on the underlying dataset (class labels and
dataset distribution across the classes) of an arbitrary
classification problem. The neural models are trained
on table-explanation pairs annotated by computer sci-
ence experts. Due to the limited size of our dataset, ex-
periments are conducted by fine-tuning the pre-trained
language models T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020). These pre-trained models treat
all text-based language tasks as text-to-text generation;
therefore, following (Moryossef et al., 2019; Chen et



al., 2020b; Suadaa et al., 2021), the performance sum-
mary tables are linearised as flat strings. However,
converting structured data to flat strings can result in
the loss of important information and relations (Mager
et al., 2020; Hoyle et al., 2021; Suadaa et al., 2021),
therefore, exploring strategies to improve the encoding
of the structured data can further improve the quality
of the output generated texts. To this end, we propose
a neural module, Metrics Processing Unit (MPU), to
improve the performance of the pre-trained language
models in terms of producing textual explanations ver-
balising correctly the information in the corresponding
table. The MPU is employed to learn a semantic rep-
resentation by directly encoding the information about
the metrics from the table. The encoder combines the
MPU’s output representation with the embedding of the
linearised representation to generate the contextualised
joint representation information passed to the decoder.
The contributions of this work are as follows:

• Introducing a new dataset1 for generating ana-
lytical textual explanations describing the perfor-
mance of classifiers on several machine learning
tasks. The textual explanations are written by
computer science experts and checked manually
to ensure that they accurately reflect or verbalise
the information in the corresponding performance
table. To the best of our knowledge, this is the first
of its kind to focus on explaining the performance
of ML models.

• Proposing a neural module, Metrics Processing
Unit (MPU), which improves the encoding of the
information about the metrics ensuring that the
outputs of the pre-trained models accurately ver-
balise the performance report summarised by the
related table.

• Experiments with state-of-the-art neural models
demonstrating the opportunities and challenges
for future research on this table-to-text generation
task.

The remainder of the paper is organised as follows:
Section 2 briefly reviews the related works and Sec-
tion 3 introduces the model performance explanations
dataset. Section 4 introduces the models trained on the
proposed dataset, the experiments conducted are pre-
sented in Section 5, and the results are compared and
discussed in Section 6. Finally, the conclusions are pre-
sented in Section 7, together with avenues for future
work.

2. Related Works
2.1. Natural Language Generation (NLG)
Generating text from structured data has been a persis-
tent NLG task over the years (Kukich, 1983; Reiter and

1https://github.com/Durham-University-VIVID-Noura-s-
Lab/ClassificationPerformanceExplanations

Dale, 1997; Goldberg et al., 1994). Earlier work on
data-to-text generation predominately employed rule-
based methods (Goldberg et al., 1994; McKeown,
1992; Reiter and Dale, 1997; Strauss and Kipp, 2008).
These methods generate natural language text by em-
ploying linguistic rules and heuristics to select and
populate pre-defined templates. A typical NLG sys-
tem requires different sets of rules to perform the con-
tent determination and text planning, sentence planning
and surface realisation modules (Goldberg et al., 1994;
McKeown, 1992; van der Lee et al., 2017). This makes
traditional NLG models difficult to maintain and less
generalisable. Furthermore, the output texts lack flexi-
bility and diversity given that the same set of templates
are used for text generations.
Recent NLG research studies are moving towards ex-
ploring deep neural applications to automatically gen-
erate texts from structured data without relying on
hand-engineered features and rules. These applications
are table-to-text (Liu et al., 2018; Parikh et al., 2020;
Su et al., 2021; Suadaa et al., 2021), table-based ques-
tion answering (Wang et al., 2018; Chen et al., 2020a;
Chemmengath et al., 2021), and graph to text gener-
ation (Ribeiro et al., 2020; Koncel-Kedziorski et al.,
2019). However, neural models, despite their appeal,
are data-hungry models requiring a large amount of
high quality data to achieve higher generation perfor-
mance.
The findings of the research works (Su et al., 2021;
Peng et al., 2020; Chen et al., 2020b) demonstrate
that state-of-the-art pre-trained language models such
as GPT-2 (Radford et al., 2019), T5 (Raffel et al., 2020)
and BART (Lewis et al., 2020) can be exploited to im-
prove the performance on text generation tasks with
limited amount of dataset. These pre-trained language
models are well suited for text-to-text; hence appli-
cations to data-to-text tasks such as table-to-text and
graphs-to-text require converting the structured data
into linearised strings (Moryossef et al., 2019; Chen
et al., 2020b; Hoyle et al., 2021). Despite this solution,
the findings of (Mager et al., 2020; Hoyle et al., 2021;
Suadaa et al., 2021) argue that the linearisation process
can result in the loss of important information and re-
lations. Therefore, in this work we propose the Metrics
Processing Unit (MPU), which improves the encoding
of the information about the metrics ensuring that the
generated texts from the pre-trained models accurately
verbalise the performance report summarised by the re-
lated table.

2.2. Dataset and Task Design
Existing datasets for table-to-text generation task in-
clude ROBOCUP (Chen and Mooney, 2008), RO-
TOWIRE (Wiseman et al., 2017), E2E (Novikova et al.,
2016; Novikova et al., 2017), KBGEN (Banik et al.,
2013), WEATHERGOV (Liang et al., 2009), and WIK-
IBIO (Lebret et al., 2016). These datasets cover differ-
ent topics and themes. For example, E2E focuses on



Property Original Permuted
size: train/test 725 / 100 4529 / 100
Unique words 3548 3548
Min. / Max. summary length 35/160
# summaries with 2 sentences 113 579
# summaries with 3 sentences 347 1844
# summaries with >3 sentences 368 2206

Table 1: Statistics of the model performance narrations
dataset

generating restaurant descriptions, ROTOWIRE gener-
ates summaries of basketball sporting event and WIK-
IBIO focuses on producing biographies from a given
Wikipedia bio-table.
Numerical tables are usually employed to report the
performance of trained ML models. Understanding
these numerical tables requires background and do-
main knowledge; hence augmenting the numerical ta-
bles with analytical texts will enable non-experts to
find it easy to make sense of the scores achieved by
the model on the arbitrary ML task. To the best of
our knowledge, there is no work conducted on generat-
ing textual explanations describing the performance of
ML models trained on arbitrary prediction tasks. The
dataset most similar to the one introduced in this pa-
per is the NUMERICAL TABLE-TO-TEXT proposed by
Suadaa et al. (2021). Unlike (Suadaa et al., 2021), our
dataset is not curated from numerical tables of experi-
mental results published in scientific research articles.
We trained different ML models on 59 classification
tasks, and the performance of each model was sum-
marised in numerical tables. For each table, computer
science experts were tasked to provide analytical state-
ments describing the performance of the model on the
corresponding classification task. Fig. 2 shows an ex-
ample of a classification performance summary table
and the corresponding textual explanation.

3. Performance Explanations Dataset
To acquire the dataset for this study, different ML mod-
els were trained on 59 classification tasks across dif-
ferent application domains. Across each classification
task, five different classifiers were trained. These clas-
sification models include random forest, support vector
machines, logistic regression and K-nearest neighbour
(KNN). For simplicity, only the common classification
metrics (accuracy, precision, AUC, recall, specificity,
F1-score, and F2-score) were considered. Ten com-
puter science experts were hired to provide the analyti-
cal textual explanations. For each classifier, the expert
is tasked to provide sentences summarising the perfor-
mance based on the information in the corresponding
table. To guide the annotators, they were instructed to
respond (in English) to the following:

a Provide a summary of the scores achieved by the
model across the evaluation metrics.
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Figure 2: An example of a classification performance
report table (containing the score with respect to each
metric along with information on the distribution of the
underlying data across the two classes: C1 and C2) and
the corresponding textual explanation.

b Discuss the overall performance of the model as
shown by the values of the evaluation metrics.
(Your answer should capture the implications of
achieving such scores across the different met-
rics.)

When tasked to summarise information in numerical
tables, humans typically perform numerical reasoning
where the values are rated as either high or low or
moderate. These ratings are used as a guide to accu-
rately present the implications of the values in numeri-
cal tables. Therefore, during the annotation, the experts
were asked to rate the scores across each metric (taking
into account the distribution of the dataset across the
classes) on a 3-point scale (Low, Moderate, and High).
These ratings are used to enrich the metrics’ tables (for
example, see Fig. 2), providing the NLG model with a
form of numerical reasoning.
We collected 1010 annotations from experts; each sub-
mission was analysed manually by comparing it to the
corresponding table. Out of 1010 submissions, 825 ac-
curately captured the information presented in the ta-
ble. We sampled 100 table-explanation pairs randomly
as the test set and the remaining 725 table-explanation
pairs are used for the training set. Ideally, we expect
the NLG model to generate similar narratives for a nu-
merical table, irrespective of the order of the metrics in
the linearised input. However, our preliminary analy-
sis suggested that neural models tend to be sensitive to
the order of the metrics; that is, the models generated



Dataset Imbalanced (62% and 38%)

Labels C1 and C2

Metrics

Sensitivity Precision Accuracy AUC

Value 90.32 89.13 90.73 95.87

Rate HIGH HIGH HIGH HIGH

Metrics Processing Unit

Lineariser

Encoder

Decoder

<MetricsInfo> auc | VALUE_HIGH | 95.87% && precision | VALUE_HIGH | 89.13%
&& accuracy | VALUE_HIGH | 90.73% && sensitivity | VALUE_HIGH | 90.32%
&& sensitivity | also_known_as | recall <|section-sep|><TaskDec> ml_task | data_dist
| is_imbalanced && ml_task | class_labels | C1 and C2 <|section-sep|>

Given the machine learning problem under consideration, the model achieved a high accuracy score of 90.73% with a corresponding high AUC score of 95.87%. Also, the
precision score is 89.13% and the recall/sensitivity score is 90.32%. From the dataset distribution provided, we can conclude that only the precision score and sensitivity
score are important to accurately assess the performance of the model on this ML task. The scores achieved across these metrics are very high which imply that prediction
decisions for the majority of the test cases will be correct. The recall and precision score motivate a higher trust in output predictions.
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Figure 3: An illustration of our table-to-text neural generator trained to produced the textual explanation based on
the linearised table and metrics-ratings-values semantic representation, hs, learned by the Metrics Processing Unit
(MPU).

different narrations for the same table depending on the
order of the metrics. Even though these narrations were
fluent, they sometimes contained incorrect facts when
compared to the related tables. Therefore, to make
the models less dependent on the order of the metrics
and focus more on verbalising the facts presented in
the table, the training set is augmented with new table-
explanation pairs from the permutations of the order of
the metrics. This process increased the training set size
from 725 to 4529 table-explanation pairs. Table 1 pro-
vides some statistics about the dataset. In Section 6,
we compare the performance of the neural generators
trained on the original dataset to those trained on the
permuted dataset.

4. Models
4.1. Problem Definition
In this work, the input to the NLG models is a numer-
ical table containing the evaluation metrics’ scores of
a classifier, the list of class labels and the distribution
of the dataset across the labels. Specifically, the met-
rics table summarising the classifier’s performance on a
given machine learning problem is represented as T =
[D,C, S], where D ∈ {is_balanced, is_imbalanced}
is a flag indicating if the dataset was balanced,
C = [C1, C2, · · · , Ck] is the list of class labels,
and S = [(m1, r1, v1), (m2, r2, v2), · · · , (mn, rn, vn)]
is the list of performance scores. The performance
scores S consist of the metrics [m1,m2, · · · ,mn]
their values [v1, v2, · · · , vn] and the annotator’s ratings
[r1, r2, · · · , rn] where n is the number of metrics. The

goal is to generate an analytical textual explanation
Y = (y1, y2, · · · , yb) of length b based on the infor-
mation presented in T , where yt is the tth target word.
It is noteworthy that the generated text Y should be flu-
ent and numerically supported by T . An example of a
table and the analytical textual explanation is shown in
Fig. 2.
The neural generation model learns its parameter θ by
maximising the likelihood function:

P (Y | T ; θ) =
b∏

t=1

P (yt | y<t, T ; θ)

where y<t = y1, · · · , yt−1 is the partial target se-
quence generated.

4.2. Baselines
Given the limited amount of data, experiments are con-
ducted using pre-trained language models, T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020). Leverag-
ing these pre-trained language models has been shown
to produce high quality texts even when fine-tuned on
limited amount of data (Peng et al., 2020; Su et al.,
2021; Suadaa et al., 2021).

T5 model T5 (Raffel et al., 2020) is a transformer-
based model trained in a multitask fashion on a vari-
ety of unsupervised and supervised NLP tasks includ-
ing summarisation, classification, and translation. This
neural model treats all text-based language problems as
a text-to-text generation task (Raffel et al., 2020).
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Figure 4: Architecture of the Metrics Processing Unit
(MPU) employed to learn to hs from the list of perfor-
mance scores S.

BART model BART (Lewis et al., 2020) is a de-
noising auto-encoder for pre-training sequence to se-
quence models. This transformer-based architecture
was trained to reconstruct the original text from cor-
rupted input text. BART exploits the strengths of BERT
(Devlin et al., 2019) and GPT (Radford et al., 2019).
Specifically, it comprises a bidirectional encoder (sim-
ilar to BERT) and a left-to-right decoder (similar to
GPT).

4.3. Table Representation

BART and T5 were not trained on any table-to-text
generation task and as such, all text-based language
problems using these models need to be framed as
text-to-text generation problems (Chen et al., 2020b;
Suadaa et al., 2021; Hoyle et al., 2021). In this study,
the input to the neural NLG models is a table summaris-
ing the classification performance of a given classier on
an arbitrary ML task, as shown in Fig. 2.
Therefore, in order to convert it to a text-to-text prob-
lem and following (Moryossef et al., 2019; Chen et al.,
2020b; Suadaa et al., 2021), the input table is linearised
into a flat string. In this paper, the linearisation is per-
formed by concatenating metric information, class la-
bels, and the dataset distribution based on the following
template:
<METRICSINFO> m1 | VALUE_r1 | v1 &&
m2 | VALUE_r2 | v2 && · · · && mn |
VALUE_rn | vn <|SECTION-SEP|> <TASKDEC>
ML_TASK | DATASET_ATTRIBUTES | D && ML_TASK
| CLASS_LABELS | C1, C2, · · · , AND Ck <|SECTION-
SEP|> <|TABLE2TEXT|>
Fig. 3 shows an example of the input data and the corre-
sponding linearised representation. The linearised data
is tokenised as X = [x1, x2, · · · , xp] and converted
into the tokens embedding Ex =

[
ex1 , e

x
2 , · · · , exp

]
by

the encoder’s embedding unit. p is the number of
tokens in the linearised data. The encoder outputs
the contextual representation of the linearised table,
h ∈ Rp×dmodel , based on Ex. The decoder itera-
tively attends to previously generated tokens y<t (via
self-attention) and the encoder outputs h (via cross-
attention) to predict the next target token, yt.

4.4. Metrics Processing Unit
One drawback of using only the linearised data input is
that it fails to capture the actual information and rela-
tions represented by the structured data (Suadaa et al.,
2021; Mager et al., 2020; Hoyle et al., 2021). On this
task, we would like the models’ decoders to be able to
accurately verbalise the metrics information. The per-
formance of the decoder is linked to that of the encoder;
hence, exploiting strategies to improve the data rep-
resentation ability of the encoder can further improve
the quality of the output summaries. To this end, we
propose augmenting the linearised input with semantic
representations of the metrics information generated by
a neural module: Metrics Processing Unit (MPU). Fig.
3 illustrates how the MPU is integrated with a given
pre-trained neural generator. The MPU as shown in
Fig. 4 comprises three main parts: Scores Embedding
Unit, Highlight Module and Interaction Module.

Scores Embedding Unit Given S =
[(m1, r1, v1), (m2, r2, v2), · · · , (mn, rn, vn)], this
unit generates the subword token-based embed-
dings M̂ ∈ Rn∗z×dmodel , R̂ ∈ Rn∗z×dmodel and
V̂ ∈ Rn∗z×dmodel , respectively, representing the
metrics, rate and values. z is the maximum number
of subword tokens and dmodel is the dimension of
hidden representation. To reduce the size of the
final model, the embeddings are performed using the
same embedding parameters employed by the Neural
Generator’s encoder and decoder subnetworks.

Highlight Module This module produces the seman-
tic representations of the metric names, values and
ratings from their corresponding subword tokens rep-
resentation produced by the Scores Embedding Unit.
Specifically, the inputs to this module are M̂ ∈
Rn∗z×dmodel , R̂ ∈ Rn∗z×dmodel and V̂ ∈ Rn∗z×dmodel ,
the outputs of the Scores Embedding Unit. Three self-
attention units (one for each input representation) are
employed to transform M̂, V̂ and R̂, respectively into
hm ∈ Rn∗z×dmodel , hv ∈ Rn∗z×dmodel , and hr ∈
Rn∗z×dmodel .

Interaction Module This module generates the rep-
resentation hs ∈ Rn∗z×dmodel , the metrics-values-
ratings contextual information, from combination of
outputs of the Highlight Module. As shown in Fig. 4,
this module consists of two Combination (CM) units
and one Aggregation unit (AGG). The output is com-
puted as follows:

hs = AGG(ĥm, ĥv) + hm + hv + hr

AGG(ĥm, ĥv) = Wa

[
ĥm; ĥv

]
ĥm = CM(hm, hr), ĥv = CM(hv, hr)

ĥ = CM(A,B)

CM(A,B) = ReLU (Wc [A;B]) +B

where W a,W c ∈ R2·dmodel×dmodel are trainable
model parameters employed to compute hs. [·; ·] de-



notes concatenation operation. The generated hs =
[hs

1, h
s
2, · · · , hs

n∗z] is concatenated with the embed-
ding of the linearised input table (Ex), then pro-
cessed via the different encoder layers to generate
the contextualised joint source representations h ∈
R(n∗z+p)×dmodel .

5. Experiments
5.1. Model Settings, Training and Inference
Different variants of the T5 and BART models are
explored in this work: T5-small, T5-base, T5-large,
BART-base, and BART-large. These models differ in
terms of the number of parameters (model size). The
fine-tuning of the models is performed using Adam op-
timizer (Kingma and Ba, 2014) with an initial learning
rate equal to 3e−4. For the T5 models, the learning
rate is scheduled linearly during the course of train-
ing without any warmup schedule steps. However,
our preliminary experiments conducted on BART mod-
els showed that warmup steps are required to achieve
good generation performance. Therefore, 21% of the
training steps are used as the linear warmup schedule
steps. For simplicity, the T5-variant+MPU and BART-
variant+MPU respectively, denote the T5 and BART
model variants augmented with the auxiliary informa-
tion from the MPU. During inference, the textual ex-
planations are generated via beam search with a beam
size of 8, length penalty α = 8.6, and repetition penalty
of 1.5. Our models implementations are based on Hug-
gingface Transformers (Wolf et al., 2019).

5.2. Evaluation Metrics
The generation performance of the models is evaluated
based on the quality of the generated textual explana-
tions. The metrics employed to assess the quality are
BLEU (Papineni et al., 2002) , METEOR (Banerjee
and Lavie, 2005), BLEURT (Raffel et al., 2020) and
PARENT (Dhingra et al., 2019). BLEU2, and ME-
TEOR compute the surface-level similarity between
the generated texts and only the human (reference)
texts. Dhingra et al. (2019) argued that BLEU, and
METEOR sometimes penalise generated text for in-
cluding additional information, correct according to
the table but missing in the reference text. In re-
sponse, they proposed PARENT, a data-to-text evalua-
tion metric that takes into consideration the information
present in the table. The BLEURT score is a semantic
equivalence-based metric indicating the extent to which
the generated text is fluent and conveys the meaning of
reference text. For each metric mentioned above, the
higher the score, the better the model.
Each model is trained five times with different random
seeds and we report the generation performance of the
models based on the average of the scores for each eval-
uation metric.

2computed with https://github.com/awslabs/sockeye/tree/
master/contrib/sacrebleu

Model BLEU METEOR PARENT BLEURT
T5-small 37.83±2.25 39.46±1.83 32.12±1.16 55.52±0.22
T5-small + MPU 40.58±1.95 43.40±1.05 34.04±0.65 56.15±0.40
T5-base 46.31±0.89 47.45±0.35 30.99±0.7 54.09±0.30
T5-base + MPU 45.46±0.60 47.75±0.40 31.33±0.67 54.46±0.19
T5-large 45.70±0.73 47.11±0.31 31.08±0.63 54.53±0.2
T5-large + MPU 46.03±0.75 47.53±0.41 31.58±0.73 54.63±0.42
BART-base 44.83±1.03 47.83±0.22 32.79±0.86 54.71±0.16
BART-base + MPU 45.75±0.84 47.83±0.64 33.26±0.96 55.26±0.31
BART-large 45.57±1.96 46.41±1.44 32.29±2.12 51.29±1.76
BART-large + MPU 46.98±0.73 47.52±1.50 33.27±0.6 51.25±1.67

Table 2: Evaluation of generation performance of the
neural models on the permuted dataset. “+ MPU”
detonates training the variant of the pre-trained base-
lines with Metrics Processing Unit (MPU). The models
are fine-tuned with five different random seed and the
scores are based on the average and standard deviation.

Model BLEU METEOR PARENT BLEURT
T5-small 26.0±0.81 32.64±0.66 30.70±0.51 53.12±0.34
T5-small + MPU 26.70±1.12 33.34 ±1.14 29.39±1.24 53.69±0.72
T5-base 32.83±1.70 35.81±1.36 31.70±0.80 55.51±0.47
T5-base + MPU 32.59±3.6 36.80±1.53 30.36±1.8 55.14±0.36
T5-large 35.11±2.93 38.38±1.69 32.73±2.01 55.67±0.51
T5-large + MPU 32.27±2.40 36.69±1.11 32.58±2.61 55.84±1.04
BART-base 26.91±3.76 34.90±1.34 31.46±2.33 56.30±0.42
BART-base + MPU 28.79±2.84 35.59±0.93 29.71±3.10 55.13±0.61
BART-large 28.03±2.64 35.55±2.86 32.90±2.39 54.40±1.54
BART-large + MPU 30.13±1.8 38.15±1.93 34.68±1.1 56.48±0.23

Table 3: Evaluation of generation performance of the
neural models on the original dataset (725 data-text
training pairs). “+ MPU” detonates training the vari-
ant of the pre-trained baselines with Metrics Process-
ing Unit (MPU).

6. Results
This section presents the evaluation performance of
the models on the NLG task under consideration. Ta-
ble 2 shows the scores achieved by the models across
the evaluation metrics: BLEU, METEOR, PARENT,
and BLEURT. The different variants of the pre-trained
models achieved varying scores. Among the T5 mod-
els, the T5-small achieved the worst performance, ac-
cording to BLEU, and METEOR. However, it outper-
formed T5-base and T5-large in terms of PARENT and
BLEURT scores. For large T5 models (T5-base and
T5-large), there is a higher possibility that the gener-
ated texts will be identical to the reference texts; hence,
the high scores for the word-overlap metrics: BLEU,
and METEOR. The PARENT score suggests the T5-
small is very good at matching both the reference text
and the source table. Between BART-base and BART-
large, the former outperforms the later judging based
on the METEOR, PARENT and BLEURT scores. On
the other hand, BART-large scored +0.74 BLEU over
BART-base.

Effect of Metric Processing Unit According to Ta-
ble 2, augmenting the linearised representation with
the semantic representations of the metrics informa-
tion in the table further improves the generation per-
formance of the underlying models. The T5-small ben-
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efited most among all the models. Specifically, there is
+2.75, +3.94, +1.92, and +0.6 increase in the BLEU,
METEOR, PARENT and BLEURT, respectively. Fur-
thermore, T5-small+MPU is shown to have the best
match to both the reference text and the source table ac-
cording to PARENT. It outperforms the next best mod-
els BART-base+MPU and BART-large+MPU by +0.77
PARENT, and +0.78 PARENT, respectively. Further-
more, despite having a poor surface-level match to the
reference texts according to BLEU and METEOR, it
achieves the best BLEURT score meaning it’s outputs
are fluent and semantically equivalent to the reference
texts.

Permuted vs Original To analyse the impact of aug-
menting the dataset with the diverse representations of
the tables by permuting the order of the metrics, we
trained all the neural models on the original 725 train-
ing pairs. The generation performance of the neural
models is summarised in Table 3. Compared to the re-
sults in Table 2, the models performed worse in gen-
eral according to the BLEU and METEOR scores. For
example, while BART-large scored 28.09 BLEU, and
35.55 METEOR when trained on the original dataset, it
scored 45.57 BLEU and 46.41 METEOR when trained
on the permuted dataset. Conversely, in some cases, the
model trained on the original dataset outperformed the
corresponding variant trained on the permuted dataset
in terms of the PARENT and BLEURT scores. Judging
based on the average performance across all the met-
rics, the augmentation of the dataset is shown to im-
prove generalization performance given that the models
will be exposed to diverse representations of the tables.

Quality Analysis Table 4 shows the performance
textual explanations generated by the models under
consideration based on the table shown in Fig. 2. Sen-
tences and phrases conveying correct information ac-
cording to the related table are highlighted in green,
while incorrect ones are marked in red. As shown,
the generators are able to produce high-quality clas-
sification performance summaries capturing the infor-
mation presented in the input structured data. How-
ever, there were a number of cases where the genera-
tors failed to accurately verbalise the content of the re-
lated performance metric table. The errors are mainly
from the models trained without MPU and among these
models, only BART-base produced a correct verbal-
isation of the input table. The summary from T5-
small is mostly valid; however, the metrics (AUC, ac-
curacy and sensitivity) and their corresponding scores
are mentioned in the wrong order. The T5-base made
an incorrect assessment of the “precision" and “recall"
scores when it concluded that the “false-positive rate"
is moderately high. In the case of the T5-large, it
stated that the precision is very low even though it was
rated “HIGH". BART-large produced a wrong state-
ment about the distribution of the dataset between the
classes, C1 and C2. Augmenting the linearised repre-
sentations with the metrics-values-ratings, contextual

information from MPU allow the T5 and BART mod-
els to generate accurate analytical textual explanations
based on the related table.

7. Conclusion
This work presents a new NLG dataset for generat-
ing textual explanations describing the performance of
classification models. Presenting the generated texts
along with the numerical tables will allow for a better
understanding of the classification performance of ML
models. We trained baselines by fine-tuning state-of-
the-art pre-trained models: T5 and BART. Experimen-
tal results show the feasibility of utilising these large
pre-trained language models to generate fluent and ac-
curate statements based on structured data. However,
analyses suggest that neural models in some instances
produce statements containing wrong information ac-
cording to the input table. This weakness can be at-
tributed to direct linearisation of the input tables. To
address this problem, we introduced the Metric Pro-
cessing Unit (MPU) which, when combined with the
linearised input, produced the best performance across
the different T5 and BART variants.
In the future, we plan on conducting in-depth human
evaluations to assess the quality and usefulness of the
generated texts. As stated in Section 3 only the most
popular evaluation metrics were considered hence the
NLG models will struggle to produce meaningful an-
alytical texts for instances with less common metrics
such as Cohen Kappa, Matthews Correlation Coeffi-
cient (MCC), and Brier score. Therefore a possible av-
enue of future is expanding the dataset to include tex-
tual explanations on these metrics.
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Hoyle, A. M., Marasović, A., and Smith, N. A. (2021).
Promoting graph awareness in linearized graph-to-
text generation. ArXiv, abs/2012.15793.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980.

Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata,
M., and Hajishirzi, H. (2019). Text generation from
knowledge graphs with graph transformers. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2284–2293.

Kukich, K. (1983). Design of a knowledge-based re-
port generator. In 21st Annual Meeting of the As-
sociation for Computational Linguistics, pages 145–
150.

Lebret, R., Grangier, D., and Auli, M. (2016). Neu-
ral text generation from structured data with applica-
tion to the biography domain. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 1203–1213.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer,
L. (2020). Bart: Denoising sequence-to-sequence
pre-training for natural language generation, trans-
lation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7871–7880.

Liang, P., Jordan, M. I., and Klein, D. (2009). Learn-
ing semantic correspondences with less supervision.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing
of the AFNLP, pages 91–99.

Liu, T., Wang, K., Sha, L., Chang, B., and Sui, Z.
(2018). Table-to-text generation by structure-aware
seq2seq learning. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Mager, M., Fernandez Astudillo, R., Naseem, T., Sul-
tan, M. A., Lee, Y.-S., Florian, R., and Roukos, S.
(2020). GPT-too: A language-model-first approach
for AMR-to-text generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1846–1852, Online, July.
Association for Computational Linguistics.

McKeown, K. (1992). Text generation. Cambridge
University Press.

Moryossef, A., Goldberg, Y., and Dagan, I. (2019).
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2267–2277.

Novikova, J., Lemon, O., and Rieser, V. (2016).
Crowd-sourcing nlg data: Pictures elicit better data.
In Proceedings of the 9th International Natural Lan-
guage Generation conference, pages 265–273.

Novikova, J., Dušek, O., and Rieser, V. (2017). The
e2e dataset: New challenges for end-to-end gener-
ation. In Proceedings of the 18th Annual SIGdial
Meeting on Discourse and Dialogue, pages 201–
206.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th an-
nual meeting on association for computational lin-
guistics, pages 311–318. ACL.

Parikh, A., Wang, X., Gehrmann, S., Faruqui, M.,
Dhingra, B., Yang, D., and Das, D. (2020). Totto:
A controlled table-to-text generation dataset. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1173–1186.

Peng, B., Zhu, C., Li, C., Li, X., Li, J., Zeng, M., and
Gao, J. (2020). Few-shot natural language genera-
tion for task-oriented dialog. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing: Findings, pages 172–182.

Puduppully, R., Dong, L., and Lapata, M. (2019).
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 6908–6915.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the limits of transfer learning with



a unified text-to-text transformer. Journal of Ma-
chine Learning Research, 21:1–67.

Reiter, E. and Dale, R. (1997). Building applied natu-
ral language generation systems. Natural Language
Engineering, 3(1):57–87.

Ribeiro, L. F., Schmitt, M., Schütze, H., and Gurevych,
I. (2020). Investigating pretrained language mod-
els for graph-to-text generation. arXiv preprint
arXiv:2007.08426.

Strauss, M. and Kipp, M. (2008). Eric: a generic rule-
based framework for an affective embodied com-
mentary agent. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and
multiagent systems-Volume 1, pages 97–104.

Su, Y., Meng, Z., Baker, S., and Collier, N. (2021).
Few-shot table-to-text generation with prototype
memory. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, pages 910–917.

Suadaa, L. H., Kamigaito, H., Funakoshi, K., Oku-
mura, M., and Takamura, H. (2021). Towards table-
to-text generation with numerical reasoning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1451–
1465.

van der Lee, C., Krahmer, E., and Wubben, S. (2017).
Pass: A dutch data-to-text system for soccer, tar-
geted towards specific audiences. In Proceedings of
the 10th International Conference on Natural Lan-
guage Generation, pages 95–104.

Wang, H., Zhang, X., Ma, S., Sun, X., Wang, H.,
and Wang, M. (2018). A neural question answering
model based on semi-structured tables. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1941–1951.

Wen, T.-H., Gasic, M., Mrksic, N., Su, P.-h., Vandyke,
D., and Young, S. J. (2015). Semantically condi-
tioned lstm-based natural language generation for
spoken dialogue systems. In EMNLP.

Wiseman, S., Shieber, S. M., and Rush, A. M. (2017).
Challenges in data-to-document generation. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2253–
2263.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., et al. (2019). Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.


	Introduction
	Related Works
	Natural Language Generation (NLG)
	Dataset and Task Design

	Performance Explanations Dataset
	Models
	Problem Definition
	Baselines
	Table Representation
	Metrics Processing Unit

	Experiments
	Model Settings, Training and Inference
	Evaluation Metrics

	Results
	Conclusion
	Bibliographical References

