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Abstract—We study the stochastic observability of the power
grid system under communication constraints in the finite block-
length regime. Compared to the study under the assumption of
infinite blocklength, we introduce two new elements: probability
of decoding error and transmission delay. An optimization
problem to maximize the observability of the smart grid over all
possible bandwidth allocation is proposed, incorporating these
two new elements. To solve the optimization problem, for a
given bandwidth allocation, we first solve parallel subproblems,
one for each synchronous phasor measurement unit (PMU),
using alternating optimization, to find the optimal QoS exponent,
transmission delay and probability of decoding error for each
PMU. Then, simulated annealing method is used to find the
optimal bandwidth allocation among PMUs. Numerical results
verify that the assumption of infinite blocklength is indeed too
optimistic and instead, finite blocklength should be studied. Large
bandwidth saving gains of the proposed scheme are demonstrated
compared to the equal bandwidth allocation scheme.

Index Terms—observability, finite blocklength, decoding error,
smart grid, effective capacity

I. INTRODUCTION

In order to ensure the stability of the power grid, it is
necessary to timely and accurately monitor the changes of the
system states of the smart grid. Contributing to the evolution of
this trend is the deployment of synchronous phasor measure-
ment units (PMUs), which can accurately measure voltage and
current phasors on the buses at high sampling rates. The goal
of deploying a large number of PMU devices in a smart grid
system is to be able to detect and cancel grid disturbances
in real time. Therefore, a communication infrastructure is
required to complete the transmission of information, which
needs to meet the strict service requirements of PMU devices,
namely, extremely high reliability and ultra-low (millisecond)
latency.

The emergence of 5G communication network greatly pro-
motes the development of distributed information collection
and real-time information transmission and processing services
required by smart grid systems. Conventionally, studies on
the communication network and the smart grid system is
done separately, for example [1], [2]. However, to better
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serve the needs of the smart grid system, joint study of the
communication network and the power network is needed.
In [3], a unified cyber-physical system model of the power
network and the communication network is established, where
the bandwidth allocation to the PMUs are studied so that
the observability of the smart grid system is maximized. The
definition of observability is extended to take into account
the communication constraints, and effective capacity theory
is used to carry out a cross-layer statistical analysis of the
QoS delay requirements of the communication system. Two
assumptions were made in [3]: 1) the dominant communication
delay is the queueing delay, which is due to the fading charac-
teristics of the wireless channel; and 2) the problem is under
the infinite blocklength regime, and as a result, when applying
effective capacity theory, the Shannon capacity formula is used
and communication errors were not considered.

Due to the stringent delay requirements for the collected
data of the PMU devices, for example, 10 milliseconds, and the
amount of bandwidth allocated to each PMU device, around
20-30 kHz [3], the blocklength of the transmission is no
more than 300. Thus, the assumption that the communication
between the PMU and the base station (BS) is under the
infinite blocklength regime with no communication error is not
accurate. Hence, in this paper, we consider the observability
of the smart grid under communication constraints in the
finite blocklengh regime, in hope of providing a more accurate
analysis and solutions that are more consistent with practical
settings.

In this paper, the statistical power grid observability under
communication constraints in the finite blocklength regime is
studied. The major novelty and contributions are the following:

1) Finite blocklength theory [4] is used for the commu-
nication between the PMUs and the BS. As a result,
communication error is incorporated into the definition
of observability.

2) In terms of communication delay, we consider both the
queueing delay as in [3], and the transmission delay,
which dictates the blocklength of the transmission. With
the requirement of total delay fixed, we optimize the
amount of transmission delay and queueing delay of
each PMU to maximize the observability of the smart
grid.

3) The closed-form approximate expression of the effective
capacity of the PMU under finite blocklength regime is



derived. While previous papers that study the effective
capacity under finite blocklength regime considers the
use of the Automatic Repeat reQuest (ARQ) mechanism
to get rid of decoding error [5]–[7], in the joint study
of the communication network and power network of
this paper, we exploit the redundancy of the PMU
placement of the smart grid to overcome the effect
of decoding error, thus avoiding employing ARQ and
causing additional delay.

4) An optimization problem for maximizing the smart grid
observability is proposed under the finite blocklength
regime. For a fixed bandwidth allocation, we identify the
optimal decoding error of each PMU as a function of its
QoS exponent and transmission delay. Then, alternating
optimization is proposed for finding the optimal QoS
exponent and transmission delay, and this can be done
independently for each PMU. Finally, the simulated
annealing algorithm is employed to find the optimal
bandwidth allocation among PMUs.

5) Numerical results show that there is a large gap between
the performance of the system under the infinite block-
length assumption and the finite blocklength assumption.
This validates the need to study the problem under the
more accurate model of the finite blocklength. Also, the
proposed bandwidth allocation scheme outperforms that
of the equal bandwidth allocation scheme by a signifi-
cant amount, which indicates that judicious bandwidth
allocation is necessary for improving the observability
of the smart grid and saving bandwidth under the finite
blocklength regime.

II. SYSTEM MODEL

A. Observability of the smart grid under the finite blocklength
regime

For a smart grid system with N buses and a fixed topology,
the connection matrix L is a N ×N -dimensional matrix, and
its element values are as follows:

lij =

{
1 if i = j or if bus i and j are connected,
0 otherwise.

for i, j = 1, 2, · · · , N .
Assume there are K PMUs installed to observe the per-

formance of the smart grid system. We define the installation
vector of the PMUs as x =

[
x1 x2 · · · xN

]T
, i.e.,

xi =

{
1 if a PMU is installed at bus i,
0 otherwise. i = 1, 2, · · · , N

When communication constraints are not considered, i.e.,
the channel between each PMU and the control center is
considered an ideal channel, the smart grid observability vector
can be expressed as:

b = Lx (1)

If Bus i satisfies bi ≥ 1, then Bus i is observable, otherwise,
bi = 0 and Bus i is unobservable. The smart grid is observable
if every bus is observable. Hence, when the communication

link between each PMU and the control center is assumed
perfect, i.e., noiseless and delay-free, the observability vector
b would capture the quality of the grid monitoring.

In this paper, we consider the observability of the power grid
under communication constraints under the finite blocklength
regime. In the finite blocklength regime, communication con-
straints means both communication delay and communication
error. In terms of communication delay, we consider both
transmission delay and queueing delay, where queuing delay is
caused by fading channels in wireless communication, and will
be characterized via effective capacity theory, similar to [3].
Transmission delay is linked to the block length and thus also
needs to be considered. More specifically, for a block length m
transmitted over bandwidth B, the transmission delay is m

B [8].
Furthermore, unlike the case of infinite blocklength in Shannon
theory, where the probability of decoding error is negligible,
the influence of decoding error needs to be considered in the
finite blocklength regime.

Hence, we modify the observability vector in (1) to incor-
porate both communication delay and communication error
as follows. To maintain real-time performance, information
measurements for each PMU device will be valid within the
delay threshold Dmax. If the communication delay is longer
than Dmax, then these measurements are outdated and useless.
Assuming that the transmission delay of PMUk is Dt

k, then,
the queueing delay can be no longer than Dq

k, where Dq
k is

defined as

Dq
k , Dmax −Dt

k (2)

However, in most fading channel environments, it is not
feasible to provide a definite queuing delay bound for the com-
munication system [9]. Therefore, we consider a probability
pk to provide a statistical guarantee that the random queueing
delay of PMUk, denoted by Dk, is less than Dq

k, that is:

pk = Pr {Dk ≤ Dq
k} (3)

Furthermore, even if the information of PMUk is transmitted
to the control center within the delay threshold Dmax, when
a decoding error occurs, the information is also useless.
Therefore, the transmitted information is valid if and only if
the delay constraint is satisfied and no decoding error occurs.
This happens with probability

pεk , pk(1− εk), (4)

where εk denotes the probability of decoding error of the
information sent by PMUk, and pk is given by (3).

Hence, in contrast to (1), the random observability vector
under the communication constraints of a non-ideal channel is
given as

b̃ = LΛQx, (5)

where ΛQ is an N ×N -dimensional diagonal matrix, whose
i-th diagonal element Qi is a random variable if a PMU is
installed on Bus i, otherwise, the i-th diagonal element is 0.
Qi = 1 means that the PMU installed on Bus i can transmit
its information to the control center under the constraint of



communication delay and without error, that is, if PMUk is
installed on Bus i, then

Pr {Qi = 1} = Pi, Pr {Qi = 0} = 1− Pi,

where Pi is defined as

Pi , pεk . (6)

The expected observability vector of the smart grid can be
expressed as:

b̄ = E
[
b̃
]

= LΛPx (7)

where ΛP is an N ×N -dimensional diagonal matrix, whose
i-th diagonal element is Pi if a PMU is installed on Bus i.

Next, we characterize pk, i.e., the probability that the
information of PMUk is delivered to the control center within
queueing delay constraint Dq

k, via effective capacity theory
[10]. More specifically, for PMU k, its effective capacity can
be expressed as [10]:

ECk = − 1

θkT
lnE

{
e−θkT r̃k

}
(8)

where θk > 0 is called the QoS exponent, T is the coherence
time of the channel, and r̃k is the instantaneous transmission
rate of PMUk to the BS. Under the finite blocklength regime
[4], we have

r̃k =Bk log2 (1 + ρk)

−Bk

√√√√ 1

m

(
1− 1

(ρk + 1)
2

)
Q−1(εk) log2 e (9)

where Bk is bandwidth occupied by PMUk, εk is the prob-
ability of decoding error due to finite blocklength, and ρk is
the instantaneous signal-to-noise ratio (SNR) of PMUk. We
assume that the channel fading is Rayleigh distributed, then the
instantaneous SNR ρk obeys an exponential distribution with a
mean λk, termed the average SNR of PMUk. The probability
distribution function (PDF) and the cumulative distribution
function (CDF) of ρk are expressed as follows:

f(x) =
1

λk
e
− x
λk , F (x) = 1− e−

x
λk .

Note that Q(x) =
∫∞
x

1√
2π
e
−t2

2 dt is the Gaussian Q function,
whose inverse function is denoted as Q−1 (·). In (9), m is the
finite block length which is equal to bBkDt

kc ≈ BkD
t
k [8],

hence, we have

r̃k ≈Bk log2 (1 + ρk)

−

√√√√Bk
Dt
k

(
1− 1

(ρk + 1)
2

)
Q−1(εk) log2 e (10)

Looking at (10), we see that the first term on the right-hand
side (RHS) of this expression is the Shannon capacity, and
the second term is the adjustment of the transmission rate due
to the existence of the bit error rate εk. We require that the
observability of the smart grid is high, which means that we are

interested in the regime where 0 < εk <
1
2 , i.e., Q−1(εk) > 0.

Therefore, the instantaneous transmission rate of the signal
under the finite blocklength regime is smaller than the Shannon
capacity.

The parameter θk is related to the probability of successful
transmission within the delay constraint as [10]

pk = Pr {Dk ≤ Dq
k} = 1− e−θkECkD

q
k (11)

It is assumed that PMU k take measurements and generate
data at a rate of Rth

k . Thus, we require that the effective
capacity to be no smaller than the data generating rate, i.e.,

ECk ≥ Rth
k . (12)

B. Problem Formulation

We are interested in the problem of using orthogonal fre-
quency division multiple access (OFDMA) and allocate com-
munication bandwidth to different PMU devices, maximizing
the observability of the smart grid over all possible bandwidth
allocation strategies under the finite blocklength regime. Thus,
the problem is formulated as

max
{B1,··· ,BK},{ε1,··· ,εK},
{θ1,··· ,θK},{Dt1,··· ,D

t
K}

Obs(pε1 , pε2 , · · · , pεK ) (13)

s.t. ECk = − 1

θkT
lnE

{
e−θkT r̃k

}
, k = 1, · · · ,K, (14)

pεk = (1− εk)(1− e−θkECk(Dmax−Dtk)), k = 1, · · · ,K,
(15)

ECk ≥ Rth
k , k = 1, · · · ,K, (16)

K∑
k=1

Bk ≤ Btotal (17)

0 < Dt
k < min{T,Dmax}, ∀k = 1, · · · ,K (18)

Bk ≥ 0, ∀k = 1, · · · ,K (19)

0 < εk <
1

2
, ∀k = 1, · · · ,K (20)

θk > 0, ∀k = 1, · · · ,K (21)

where (13) is the optimization objective function of the observ-
ability of the smart grid, which is a function of the probabilities
pεk , k = 1, · · · ,K, which is defined in (4), (14) follows from
(8) with r̃k given in (10), (15) follows from (11), (2) and the
definition of pεk in (4), (16) follows from (12), the constraint
(17) means that the total bandwidth consumed by all PMU
devices should not exceed the given total bandwidth Btotal,
the constraint (18) indicates that the maximum delay Dmax
is split between the transmission delay Dt

k and the queueing
delay Dq

k = Dmax−Dt
k, which is positive. Furthermore, since

the transmission should be finished within the coherence time
of the channel, we require Dt

k < T , and the constraint in
(20) indicate that the decoding error εk is strictly larger than
zero, since we are operating in the finite blocklength regime
and zero error is not possible, and εk is no larger than 1

2 ,
otherwise the observability of the smart grid is too low to be
of practical interest.



For power grid observability under communication con-
straints, we will consider the following three metrics proposed
in [3]:

1) Observability redundancy (OR), which is defined as
Obs1(pε1 , pε2 , · · · , pεK ) , 1TNLΛPx − N .This metric
evaluates thte total smart grid system observability re-
dundancy via the expected observability vector defined
in (7).

2) Observability sensitivity (OS), which is defined as
Obs2(pε1 , pε2 , · · · , pεK ) , min

n
b̄n, where b̄n is the n-th

element of the expected power grid observability vector
b̄ as defined in (7). The bus with the smallest expected
observability value is generally the bus that is least likely
to be observed, so it can be regarded as the performance
bottleneck of the observability of the whole smart grid
system, and maximizing the bottleneck will increase the
observability performance of the whole grid.

3) Observability probability (OP), which is defined as
Obs3(pε1 , pε2 , · · · , pεK ) , Pr

[
b̃ ≥ λ

]
. This is the prob-

ability that the observability random vector is larger than
a threshold vector λ. Maximizing this probability will
increase the observability of the power grid.

III. SOLVING THE OPTIMIZATION PROBLEM IN (13)

The optimization problem defined in (13) is complex.
Firstly, expectation exists in the effective capacity formula in
(14), which is not in closed form. Secondly, the optimization
problem requires the joint optimization of many optimization
parameters, including the QoS exponent of each PMU, the
probability of decoding error of each PMU’s information, the
transmission delay of each PMU, and the bandwidth allocation
to each PMU. In this section, we will discuss in detail how to
solve this problem step by step.

A. Approximate closed-form expression of effective capacity
under the finite blocklength regime

In order to solve the optimization problem in (13), we first
derive the approximate closed-form expression of the effective
capacity of the PMU device under the finite blocklength
regime, namely the RHS expression of (14).

More specifically, we have the following Lemma.

Lemma 1 The approximate closed-form expression of the
effective capacity of PMUk, with bandwidth allocation Bk,
average SNR λk, QoS exponent θk, transmission delay Dt

k,
and probability of decoding error εk, is given as

ECk ≈EC∞k −

√
Bk
Dt
k

Q−1(εk) log2 e (22)

where EC∞k is the effective capacity for the case of infinite
blocklenth, i.e., using Shannon capacity [3], i.e.,

EC∞k = − 1

θkT
ln

[
1

λk
U

(
1, 2 + wk,

1

λk

)]
. (23)

where wk = − θkTBkln 2 , and U(·, ·, ·) is the confluent hyperge-
ometric function, that is:

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt

and Γ(·) is the gamma function.

The proof for Lemma 1 is provided in Appendix A. Note
that the first term on the RHS of (22) is a function of
(Bk, λk, θk) only, while the second term on the RHS of (22)
is a function of (Bk, D

t
k, εk) only.

B. Solving the subproblem for a given {B1, · · · , BK}

When {B1, · · · , BK} is given, the problem in (13) becomes
the following K parallel subproblems, which can be solved
independently for each k = 1, · · · ,K:

max
εk,θk,Dtk

pεk = (1− εk)·(
1− e

−θk
(
EC∞k −

√
Bk
Dt
k

Q−1(εk) log2 e

)
(Dmax−Dtk)

)
(24)

s.t. EC∞k −

√
Bk
Dt
k

Q−1(εk) log2 e ≥ Rth
k , (25)

0 < Dt
k < min{T,Dmax}, (26)

0 < εk <
1

2
, (27)

θk > 0, (28)

where we have used Lemma 1 to replace ECk with its
approximate expression. Since all three observability functions
OR, OS and OP increases with each pεk , k = 1, · · · ,K,
maximizing the observability function is the same as maximize
pεk for each k, when {B1, · · · , BK} is given.

To solve the problem in (24) for each k = 1, · · · ,K,
we first note that in order to maximize the cost function
(24), the constraint in (25) must be satisfied with equal-
ity. This is because given (Bk, λk, εk, D

t
k), the approximate

expression of ECk, i.e., EC∞k −
√

Bk
Dtk
Q−1(εk) log2 e, is

a decreasing function of θk [3]. Hence, if (25) is a strict
inequality, we may always increase θk, and this enlarges the
cost function of (24), because for a given (Bk, λk, εk, D

t
k),

−θk
(
EC∞k −

√
Bk
Dtk
Q−1(εk) log2 e

)
is a decreasing function

of θk [3]. Hence, to achieve the maximum cost function, (25)
should be an equality.

Thus, the problem in (24) is equivalent to

max
θk,Dtk

(
1− e−θkR

th
k(Dmax−Dtk)

)
·1−Q

√Dt
k

Bk
ln 2

(
EC∞k −Rth

k

) (29)

s.t. 0 < Dt
k < min{T,Dmax}, (30)

0 < θk < θ̄k. (31)



where we have used the fact that (25) should be an equality
which leads to εk satisfying

εk = Q

√Dt
k

Bk
ln 2

(
EC∞k −Rth

k

) .

Note that we are operating in the regime of 0 < εk <
1
2 , which

means we are interested in the case where EC∞k > Rth
k . This

is ensured by θ < θ̄k in (31), where θ̄k denotes the root of the
following equation for the fixed Bk,

EC∞k = Rth
k . (32)

Any θ < θ̄k will satisfy EC∞k > Rth
k , because given

Bk, the approximate expression of ECk, i.e., EC∞k −√
Bk
Dtk
Q−1(εk) log2 e, is an decreasing function of θk [3].

To solve the problem in (29), we find via extensive numer-
ical experiments that when given Dt

k, the cost function is a
unimodal function θk, and when given θk, the cost function
is a unimodal function of Dt

k. Thus, we propose to use
alternating optimization to solve (29) and the details are given
in Algorithm 1, where the golden section search method is
used to find the maximum of a unimodal function.

Algorithm 1: Solving the optimization problem in (24)
for each k = 1, · · · ,K.

Input: Bk ← Bandwidth of PMUk, k = 1, · · · ,K
1: initialization: Dt∗

k = min{T,Dmax}
2

2: repeat
3: For Dt

k = Dt∗
k , use the golden section search method

to find the θk that maximizes the cost function in
(29), with the corresponding maximum value denoted
as f1, and the optimal θk denoted as θ∗k.

4: For θk = θ∗k, use the golden section search method to
find the Dt

k that maximizes the cost function in (29),
with the corresponding maximum value denoted as f2,
and the optimal Dt

k denoted as Dt∗
k .

5: until f1 and f2 are close enough
6: Calculate EC∞∗k according to (23) with θk = θ∗k

Output: D∗tk , θ∗k, ε∗k = Q

(√
Dt∗k
Bk

ln 2
(
EC∞∗k −Rth

k

))

C. Solving the optimal problem in (13)

In this section, we mainly discuss how to allocate the
communication bandwidth resources Btotal among the PMU
devices, thus, finding the optimal {B1, · · · , BK}.

First, we deal with the constraints of the optimiza-
tion problem by the interior penalty function method
[11]. More specifically, the new objective function, denoted
as h(B1, · · · , BK , ε1, · · · , εK , Dt

1, · · · , Dt
K , θ1, · · · , θK), ob-

tained by adding the constraint to the original objective
function, is

max
B1,··· ,BK

h(B1, · · · , BK , ε1, · · · , εK , Dt
1, · · · , Dt

K , θ1, · · · , θK)

, Obs(pε1 , pε2 , · · · , pεK ) +mj

[
K∑
k=1

(max(−Bk, 0)2)

+ (

K∑
k=1

Bk −Btotal)2

]
(33)

where the parameter mj is called the penalty factor, which
will continue to increase with iteration, whose index is given
by j. The simulated annealing algorithm is proposed to solve
the problem in (13), whose details are given by Algorithm 2.

Algorithm 2: Solving the optimal problem in (13)
Input: N ← Number of buses

K ← Number of PMUs
Btotal ← Constraint on total bandwidth
L← Connection matrix
x← PMU installation vector
Rth
k ← Minimum data rate requirement of PMU k

Dmax ← Delay constraint
T ← Coherence time
λk ← Average SNR of PMU k
Tinitial ← Initial temperature
Tfinal ← Stop temperature
γ ← Attenuation coefficient

1: initialization:
Bk = Btotal

K , k = 1, · · · ,K
Calculate the optimal (ε∗k, D

t∗
k , θ

∗
k) using Algorithm 1

for k = 1, · · · ,K
Set H , h(B1, · · · , BK , ε∗1, · · · , ε∗K , Dt∗

1 , · · · , Dt∗
K ,

θ∗1 , · · · , θ∗K)
t = Tinitial

2: repeat
3: m = M ← Markov chain length
4: repeat
5: Generate a random neighbor {B′1, · · · , B′K}
6: Calculate the optimal (ε∗

′

k , D
t∗′
k , θ∗

′

k ) using
Algorithm 1 for k = 1, · · · ,K

7: Set H ′ , h(B′1, · · · , B′K , ε∗
′

1 , · · · , ε∗
′

K , D
t∗′
1 , · · · ,

Dt∗′
K , θ∗

′

1 , · · · , θ∗
′

K)
8: ∆E = H ′ −H
9: if ∆E > 0 then

10: Bk = B′k, ∀k = 1, 2, · · · ,K, H = H ′

11: else
12: with probability e

∆E
t , take Bk = B′k,

∀k = 1, 2, · · · ,K
13: end if
14: m = m− 1
15: until m = 0
16: Update temperature t = γt.
17: until t ≤ Tfinal
Output: B1, · · · , BK and the corresponding optimal
{ε∗1, · · · , ε∗K}, {Dt∗

1 , · · · , Dt∗
K} and {θ∗1 , · · · , θ∗K}

More specifically, to initialize, we assume that the K
PMUs share the total bandwidth equally, and then find the
corresponding optimal (ε∗k, D

t∗
k , θ

∗
k) using Algorithm 1 for



k = 1, · · · ,K. We calculate the value of the new objective
function, and save it as H , thus completing the initializa-
tion process of the algorithm, i.e., Line 1. For each tem-
perature t, run the simulated annealing algorithm M times,
each of which does the following: firstly, a random new
neighbor {B′1, · · · , B′K} is generated based on the solu-
tion {B1, · · · , BK}, and then find the corresponding optimal
(ε∗
′

k , D
t∗′
k , θ∗

′

k ) using Algorithm 1 for k = 1, · · · ,K. Based on
this solution, the new objective function value is calculated,
denoted as H ′. If H ′ is better than H , accept the neighborhood
bandwidth allocation scheme {B′1, · · · , B′K} as the optimal
scheme and update H to be H ′, as indicated by Line 10.
If H ′ is no better than H , accept the neighborhood strategy
with a certain probability, as indicated on Line 12. Note
that the worse H ′ is, and the lower the temperature, the
smaller the probability that the worse neighborhood strategy
will be accepted. Note that even when the worse neighborhood
strategy is accepted, H still records the best value of the new
objective function. After running the iteration M times, the
temperature is lowered in Line 16, where γ < 1. The whole
algorithm stops when the lowest temperature is reached, and
the final bandwidth allocation strategy, and its corresponding
optimal QoS exponents, probabilities of decoding error and
transmission delays obtained via Algorithm 1, are the output
of Algorithm 2.

IV. NUMERICAL RESULTS

In this section, we simulate and verify the theories and
algorithms proposed in this paper, and compare them with the
corresponding results assuming infinite blocklength [3]. We
further compare our result with the equal bandwidth allocation
scheme: for each k = 1, · · · ,K, Bk = Btotal

K , and for this equal
bandwidth allocation, we calculate θ̄k as the root of (32) and
set θk = θ̄k

2 . Furthermore, set Dt
k = min{T,Dmax}

2 .
All simulations in this paper are based on the IEEE-14 bus

power system standard test case, which has been widely used
as a standard test case to verify power system performance
[12], [13]. In this test case, there are 14 buses in the system,
namely N = 14, and there are 9 PMUs installed in the system,
namely K = 9. Assume that all PMU device have a source
data rate of Rth

k = 60Kbps, k = 1, · · · ,K. The maximum
delay allowed by this information is 10ms, namely Dmax =
0.001. The installation vector of the PMU on the smart grid
system is taken as [14]

x = [0 1 0 1 1 1 1 1 1 0 1 0 1 0]
T
. (34)

Assuming that the channel environment experienced by all
PMUs is a Rayleigh fading channel, and the average SNR of
the device PMUk is shown in Table I. Based on the above
parameters, the results obtained are as follows.

Fig. 1 illustrates the OR observability achieved by varying
the total bandwidth Btotal. We plot the performance of three
cases: the red dotted-stared line corresponds to the perfor-
mance under the assumption of infinite blocklength [3], the
blue dash-dot-triangle line corresponds to the case of finite
blocklength with equal bandwidth allocation among PMUs,

TABLE I
INSTALLATION AND AVERAGE SNR OF EACH PMU

PMU index 1 2 3 4
Installed on Bus 2 4 5 6
Average SNR λk 18.25 32.00 29.25 15.50

PMU index 5 6 7 8 9
Installed on Bus 7 8 9 11 13
Average SNR λk 10.00 21.00 23.75 26.50 12.75

Fig. 1. OR observability vs. total bandwidth Btotal

and the cyan solid-circled line corresponds to the proposed
scheme under the finite blocklength regime, i.e., Algorithm
2. As can be seen, the gap between the performance under
the infinite blocklength assumption and that of the proposed
scheme under finite blocklength regime is quite large. Since
the infinite blocklength assumption does not hold in practice,
the performance under the infinite blocklength assumption is
too optimistic and indeed, finite blocklength regime should be
studied, as is done in this paper.

The highest achievable OR observability is 25 and this can
only be reached with infinite bandwidth. To achieve the OR
observability of 24, the equal bandwidth allocation scheme
requires a total bandwidth of 320kHz, while the proposed
algorithm only requires a total bandwidth of 254kHz, which
amounts to a bandwidth saving of 20.6%. To achieve the
OR observability of 25 · 99% = 24.75, the equal bandwidth
allocation scheme requires a total bandwidth of 706kHz, while
the proposed algorithm only requires a total bandwidth of
440kHz, which amounts to a bandwidth saving of 37.7%.

Similar performance gains may be observed when OS ob-
servability is considered, as shown in Fig. 2. More specifically,
with infinite bandwidth, the highest achievable OS is 2. To
achieve an OS observability of 1.9, the equal bandwidth
allocation scheme requires a total bandwidth of 300kHz, while
the proposed algorithm only requires a total bandwidth of
234kHz, which amounts to a bandwidth saving of 22%. To
achieve an OS observability of 2 · 99% = 1.98, the equal
bandwidth allocation scheme requires a total bandwidth of
690kHz, while the proposed algorithm only requires a total
bandwidth of 424kHz, which amounts to a bandwidth saving
of 38.6%.

OP observability characterizes the probability that the ob-



Fig. 2. OS observability

Fig. 3. OP observability

servability of each individual bus exceeds the corresponding
element of the threshold vector λ, i.e., Pr

[
b̃ ≥ λ

]
. Here, we

take λ = 1N . In addition to the performance shown in Fig.
3, we provide Table II which provides the total bandwidth
needed for achieving the OP observability of 99%, 99.9% and
99.99%, respectively. As can be seen, compared to the equal

TABLE II
BANDWIDTH FOR DIFFERENT OP REQUIREMENTS

OP threshold proposed scheme
equal bandwidth
allocation
scheme

infinite
blocklength
assumption

99% 234kHz 272kHz 180kHz
99.9% 338kHz 468kHz 201kHz
99.99% 725kHz 1060kHz 232kHz

bandwidth allocation scheme, to reach the OP observability
of 99%, 99.9% and 99.99%, the proposed scheme achieves
a bandwidth saving of 14%, 27.8% and 31.6%, respectively.
In Table II, again we see that under the infinite blocklength
assumption, the total bandwidth required is much smaller than
what is actually needed under the finite blocklength regime,
and this gap increases as the a higher OP observability is
needed.

We observe that for all OR, OS and OP observability, the
bandwidth savings of the proposed scheme over the equal

bandwidth allocation scheme is large, and furthermore, the
savings are more when the observability requirement is more
stringent. This justifies that judicious allocation of bandwidth
is important in the observability of the smart grid under com-
munication constraints in the finite blocklength regime. We
also notice that the amount of bandwidth required increases
quite drastically when a higher requirement for observability
is needed.

V. CONCLUSION

In this paper, we consider the finite blocklength regime
and analyze the transmission process of the PMUs, so as to
ensure the observability performance of the smart grid sys-
tem. Compared to the problem under the infinite blocklength
assumption, we introduce two new elements: probability of
decoding error and transmission delay. According to the three
observability metrics of OR, OS and OP, an optimization
problem incorporating these two elements is proposed. Al-
ternating optimization and simulated annealing methods are
used to solve the optimization problem. Numerical results
verify that the assumption of infinite blocklength is indeed too
optimistic and instead, finite blocklength should be studied.
Large bandwidth saving gains of the proposed scheme are
demonstrated compared to the equal bandwidth allocation
scheme.

APPENDIX A
PROOF OF LEMMA 1

According to (9), we have that e−θkT r̃k can be expressed
as follows:

e−θkT r̃k

= e
−θkTBk log2(1+ρk)+θkTBk

√
1
m

(
1− 1

(ρk+1)2

)
Q−1(εk) log2 e

= e−θkTBk log2(1+ρk) × e
θkTBk

√
1
m

(
1− 1

(ρk+1)2

)
Q−1(εk) log2 e

= e−θkTBk log2(1+ρk)︸ ︷︷ ︸
(a)

× e
θkTBk

√
1
mQ

−1(εk) log2 e
√

1− 1

(ρk+1)2︸ ︷︷ ︸
(b)

(35)

Let wk = − θkTBkln 2 . For term (a) in (35), we have:

e−θkTBk log2(1+ρk) = (1 + ρk)
wk (36)

In the power grid system discussed in this paper, in general,
the SNR of PMU is relatively large, i.e. ρk � 1, then [15]:√

1− 1

(ρk + 1)
2 ≈ 1 (37)

Let vk = θkBkT
√

1
mQ

−1(εk) log2 e, for term (b) in (35),
using (37), we have:

e
θkTBk

√
1
mQ

−1(εk) log2 e
√

1− 1

(ρk+1)2

= e
vk

√
1− 1

(ρk+1)2

≈ evk (38)



Combining (35), (36) and (38), we have

e−θkT r̃k = (1 + ρ)
wk × evk (39)

Hence, the effective capacity of PMUk can be expressed as:

ECk = − 1

θkT
lnE

{
e−θkT r̃k

}
≈ − 1

θkT
lnE {(1 + ρk)

wk evk} (40)

Assuming that the channel is Rayleigh fading, the instanta-
neous SNR ρk obeys an exponential distribution with a mean
value of λk. Thus, we have:

ECk ≈ −
1

θkT
lnE {(1 + ρk)

wk evk}

= − 1

θkT
ln

∫ ∞
0

evk(1 + x)wk
1

λk
e
− 1
λk
x
dx

= − 1

θkT
ln

(
1

λk
evk
∫ ∞

0

(1 + x)wke
− 1
λk
x
dx

)
= − 1

θkT
ln

(
1

λk
evkU

(
1, 2 + wk,

1

λk

))
(41)

where U(·, ·, ·) is the confluent hypergeometric function. This
completes the proof of Lemma 1.
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