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ABSTRACT
The availability of low-cost wireless physiological sensors has al-
lowed the use of emotion recognition technologies in various appli-
cations. In this work, we describe a technique to predict emotional
states in Russell’s two-dimensional emotion space (valence and
arousal), using electroencephalography (EEG), electrocardiogra-
phy (ECG), and electromyography (EMG) signals. For each of the
two dimensions, the proposed method uses a classification scheme
based on two Hidden Markov Models (HMMs), with the first one
trained using positive samples, and the second one using nega-
tive samples. The class of new unseen samples is then decided
based on which model returns the highest score. The proposed ap-
proach was validated on a recently published dataset that contained
physiological signals recordings (EEG, ECG, EMG) acquired during
a human-horse interaction experiment. The experimental results
demonstrate that this approach achieves a better performance than
the published baseline methods, achieving an F1-score of 0.940 for
valence and 0.783 for arousal, an improvement of more than +0.12
in both cases.

CCS CONCEPTS
• Information systems → Sentiment analysis; • Mathemat-
ics of computing→ Kalman filters and hidden Markov models; •
Computing methodologies → Supervised learning by classi-
fication.
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1 INTRODUCTION
Affective computing is an emerging research field that aims to en-
dow machines with the ability to recognise human emotions and
achieve a more harmonious human-computer interaction (HCI) en-
vironment. Emotion recognition may be based on facial expressions,
body gesture and movement, physiological signals, and/or other
modalities [17, 19]; but physiological signals have the advantages
of objectivity, continuity, and real-time data acquisition. Although
special devices are generally required to obtain physiological sig-
nals, recent advancements have contributed to the development of
consumer-grade inexpensive devices that facilitate data acquisition.
Nowadays, portable devices are gradually entering human life, and
various types of smart bracelets can already detect human heart
rate, body temperature, and other data; which can be processed
in place or transferred to a cloud-based service in real-time. Ac-
cordingly, in recent years, physiological signals have been widely
used by researchers in the field of emotion recognition. Among
these, electroencephalography (EEG), electrocardiography (ECG),
and electromyography (EMG) signals, which capture the electrical
activity of the brain, heart, and muscles respectively, have been
studied extensively for this task [1, 3, 11].

Hidden Markov Models (HMMs) have been widely used to pre-
dict emotions from speech signals [20]; to model the EEG signal’s
temporal evolution for each user in biometrics tasks; and to esti-
mate concentration heart rate, breath rate, skin conductance and
skin temperature [16]. In contrast, there are not many studies that
use HMMs for emotion recognition based on physiological signals.
Despite the few works that use HMM to classify physiological sig-
nals according to emotions showing that performance is not worse
than others that use different classifiers [4, 8, 10], most works use
other machine learning methods that ignore the temporal evolu-
tion of the signal, such as SVM or k-NN [1, 11, 18] or use deep
learning methods which generally require large amounts of data
for training [2].

In this work, we evaluate the effectiveness of HMM at detect-
ing emotions from physiological signals, in comparison to other
classification methods used in the literature. We use the dataset
from [1], which contains EEG, ECG, and EMG signals recorded
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from subjects in a human-horse interaction experiment, in the con-
text of equine assisted therapy (EAT). This dataset was selected
because it was collected in a challenging outdoors environment,
in contrast to most other datasets, which were captured in a more
typical controlled laboratory setting. To conduct a fair comparison,
we use the same feature extraction mechanisms as in the original
publication [1], but use a novel method based on HMM to locate the
physiological signals in Russell’s two-dimensional emotion space
model. The proposed approach relies on the creation of two HMM
models for each of the valence and arousal dimensions, one trained
with positive samples and one with negative ones. The class of
a new unknown sample is then based on the probability that it
belongs to each of the two models. Results show that the proposed
technique outperforms the baseline approaches proposed in the
original publication.

2 DATASET
The work in [1] demonstrated the effectiveness of using supervised
classification methods to predict self-reported emotional states
of human subjects in terms of valence and arousal, using EEG,
ECG, and EMG signals captured outdoors to evaluate the emotional
response of humans when interacting with horses. For the purpose
of this research, we have used the same dataset and performed a
fair evaluation to determine the performance of HMM as compared
to the multiple classification mechanisms used in [1], namely k-
Nearest Neighbours (k-NN) for k = 1, 3, 5, Linear Support Vector
Machines (LSVM), SVM using a Radial Basis Function kernel (SVM-
RBF), Decision Trees (DT), and Linear Discriminant Analysis (LDA).

The authors of [1] designed a collection experiment to acquire hu-
man physiological signals while they were interacting with horses
within a sand arena, under three different emotional stimulus con-
ditions, namely:

(1) Looking. The subjects stayed with the horse in the same
place, for a time period of 4 minutes. The subjects were sat
on a chair while the horse could move freely.

(2) Grooming. The subjects used a brush to groom the horse’s
hair for 2 minutes.

(3) Leading. The subjects led the horse to walk on a predeter-
mined route on the sand arena for 4 minutes.

Two horses of ages 8 and 12 were used in this experiment, and
each participant had to perform the three activities mentioned
above with both horses. During the human-horse interaction, ECG,
EEG, and EMG signals of the subjects were simultaneously recorded.
Researchers used SHIMMERTM v2 [7] wireless sensors to capture
ECG and EMG signals. ECG signals were captured by using 4 stan-
dard electrodes placed on the two ribs and the clavicle. EMG signals
were captured by using 3 standard electrodes placed on the trapez-
ius muscle. An Emotiv EPOC+ wireless headset [5] was used for
capturing 14-channel EEG signals (AF3, F7, F3, FC5, T7, P7, O1, O2,
P8, T8, FC6, F4, F8, AF4). All physiological signals were captured at
256 Hz, and were recorded along with timestamps with millisecond
precision.

A total of 19 subjects participated in the experiment, 12 male and
7 female. Their age ranged from 19 to 64 years, with an average of
38.05 and a standard deviation of 13.14. 8 of the subjects did not have
any prior experiencewith horses, 5 had prior experiencewith horses

Table 1: Number of features per modality

Modality No. of features
ECG 84
EMG 21

EEG-PSDavg 70
EEG-Spectral 280

EEG-MFCC [4-40] 168
EEG-MFCC [0.5-40] 168
EEG-MFCC [4-30] 168
EEG-MFCC [0.5-30] 168

but were unfamiliar with the horses used in the experiment, and
the remaining 6 subjects had prior experience with horses and have
had contact with the horses used in the experiment. All subjects
were required to fill a questionnaire regarding the emotions they
felt before, during and after each activity, marking the emotional
label for the corresponding physiological signals. This emotional
label was transformed into a tuple (valence, arousal) according
to Russell’s circumplex model of affect [15]. As a result, 70.2% of
the samples were associated with high arousal (HA), 29.8% with
low arousal (LA), 87.7% with positive valence (PV), and 12.3% with
negative valence (NV).

3 METHODOLOGY
3.1 Data pre-processing
To allow for a fair comparison of the results and ensure that dif-
ferences in performance can be attributed to the proposed classifi-
cation scheme, we followed the same pre-processing approach as
in [1].

To this end, ECG signals were first filtered using a median filter
with a window of 200 ms to remove the noise of the baseline wander
from the collected raw ECG signal. Then, a median filter with a win-
dow of 600 ms was applied and the raw signal was subtracted from
the filtered one to obtain the denoised result. Finally, a bandpass
filter between 0.7-20 Hz was applied to reduce noise.

The pre-processing of the EMG signal consisted of first cutting
the peaks with values within 3% of the lowest or highest values,
then using a third-order Butterworth FIR low-pass filter with a
cut-off frequency of 0.4 Hz, and finally normalising the results in
the range [0, 1].

The pre-processing of the EEG signals consisted of first the
application of a Butterworth bandpass filter between 0.4 and 65 Hz
and then the application of the PREP pre-processing pipeline [6]
using the EEGLAB toolbox [9].

3.2 Feature extraction
After pre-processing, 5 different feature sets were extracted from the
resulting signals. These features are described below. Similar to the
pre-processing step, the same feature extraction approach as in [1]
was followed, in order to ensure a fair performance comparison.
Table 1 provides a summary of the number of features computed for
each modality. However, the smaller frame used in our case (20 s)
avoided the computation of some of the features in this extensive
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list. This happened for a total of 39 features, which were discarded
for all samples. The concrete features used are as follows:

• ECG-based features. Among the ECG signals, the heart rate
and heart rate variability features are the most commonly
used. The QRS complexes and R-peaks of ECG signals were
detected through the Pan-TompkinsQRS detection algorithm.
Then, the Augsburg Biosignal Toolbox (AUBT) [21] was used
to extract features from each part of the PQRST complexes.
A total of 84 statistical features were extracted, consisting of
the maxima, minima, mean, median, standard deviation and
range from the raw signal and the derivative of PQ, QS and
ST complexes, the number of intervals with latency greater
than 50 ms from HRV, the Power Spectral Density (PSD)
from HRV between the intervals [0 , 0.2], [0.2 , 0.4], [0.4 ,
0.6] and [0.6 , 0.8], and the maxima, minima, mean, median,
standard deviation and range from the HRV histogram.

• EMG-based features. Using AUBT [21], 21 statistical fea-
tures were extracted from the available EMG signals. The
computed features consisted of the mean, median, standard
deviation, minima, maxima, and the number of times per
time unit that the signal reached the minima and the maxima.
These features were extracted from the raw EMG signal, its
first derivative, and its second derivative.

• EEG-based average PSD features. In this case, the loga-
rithm of the average PSD was computed from each of the
4-8 Hz (theta - 𝜃 ), 8-10 Hz (low alpha - 𝛼), 8-13 Hz (alpha -
𝛼), 13-30 Hz (beta - 𝛽), and 30-60 Hz (gamma - 𝛾 ) frequency
bands from each of the 14 channels of EEG signals. They
were computed using Welch’s estimate of spectral power by
averaging across the components belonging to the frequency
band, resulting to a total of 70 features (5 frequency bands’
PSDs × 14 channels).

• EEG-based Spectral features. The methods described by
Monge-Álvarez et al. [13] were applied to extract the fol-
lowing five spectral features: the Spectral Bandwidth (SB),
the Spectral Crest Factor (SCF), the Spectral Flatness (SF),
the Spectral Rolloff (SRO), and the Ratio f50 vs f90 (R5090),
which were computed for each of the 𝜃 , 𝛼 , 𝛽 , and 𝛾 bands
of each of the 14 channels of the EEG signals, resulting to
a total of 280 features (5 features × 4 frequency bands × 14
channels).

• EEG-based MFCC features. Mel Frequency Cepstral Coef-
ficients (MFCCs) were computed for each channel of the EEG
signal using 18 filterbanks, leading to 12 cepstral coefficients
per channel, as proposed by Piciucco et al. [14]. This yielded
168 features (12 cepstral coefficients × 14 channels).

3.3 Classification using Hidden Markov Models
In the original publication [1], for each classification algorithm
tested, one model was trained for valence and another for arousal,
by extracting the feature vectors described in section 3.2 from last
30 s of each signal and using the available positive/negative labels.
In this work, the feature vectors were converted into time series,
according to the following procedure: We first applied the same
pre-processing described in section 3.1. Then, we split the signal
using a moving frame of 20 s, with a 10 s overlap. Finally, we built

a time series by computing a predefined set of features F for each
time frame, with F a subset of the features presented in section
3.2. This yielded a time series for each signal whose dimension was
𝑓 × 𝑡 , with 𝑓 the number of features in F and 𝑡 the number of time
frames.

Once the original signals were converted into time series, arousal
and valence were used as the target emotion labels and two HMM
models were trained for each modality (two for arousal and two for
valence). The first one was trained with all time series correspond-
ing to samples labeled as positive, whereas all time series associated
with negative samples were used to build the second model. It must
be noted that in the case of arousal, positive samples refer to high
arousal and negative samples to low arousal. To classify an unseen
unlabeled sample, we first translated it into a time series represen-
tation, using the same method as for the training data, and then
we computed the probability that the time series belonged to each
of the two trained models (positive and negative) for each label
(valence and arousal). The model providing the highest probability
value determined the class returned as the classification result.

Results strongly depend on the set of features F , which needs
to be sufficiently small so that the classification problem can be
computationally handled. Reported results in section 4 correspond
to the best combination of features obtained by using the Sequential
Forward Selection (SFS) algorithm [12, 22]. Starting from an empty
set of features F , the yet unused feature that yielded the best results
was iteratively added to F until performance started decreasing,
according to the F1-score of a leave-one-out classification scheme on
the whole 114 samples set reported in [1] (19 subjects × 2 horses ×
3 activities). This means that feature selection has used all available
data and hence results reported for the HMM models should be
considered as an upper limit on this dataset. It is also worth noting
that a relatively small number of tests (below 3% of the total samples)
had to be discarded because of numerical stability problems when
building the HMM models.

When using other classifiers, such as the ones used in [1], the
time variations of the signals were taken into account by using
frequency-based features. One major expected advantage of HMMs,
compared to those approaches, is their inherent ability to seamlessly
learn the meaning of changes in the input signal along the time
axis. Given that the same features as in the original work were
used and that some of these were frequency based, the proposed
HMMmodels are expected to be able to naturally capture frequency
variations of the signals and boost their accuracy.

HMMs have a strong statistical foundation and are able to seam-
lessly handle variable length signals. In our case, the use of HMM
models is supported by the assumption that the probability of a
feature vector depends on the valence and arousal values. If this is
the case, the construction of independent models for positive and
negative arousal and valence should facilitate the identification of
the arousal or valence state in terms of what model fits the sequence
of samples better.

4 EXPERIMENTAL RESULTS
To assess the performance of the proposed method, the experiment
described above was repeated for each of the feature sets in Ta-
ble 1. As the problem is highly unbalanced (for valence, 87.7% of
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the samples were positive and only 12.3% were negative, whereas
for arousal the distribution was 70.2% and 29.8% respectively), both
classification accuracy and the F1-score were used to assess the
predictive power of our alternative classification mechanism, as
the accuracy metric can be biased towards the majority class. Clas-
sification accuracy is defined as the number of correct predictions
divided by the total number of predictions; and the F1-score is de-
fined as the harmonic mean between precision and recall, which
can be mathematically expressed as:

F1-score = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(1)

In this formula, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the number of correct positive pre-
dictions divided by the total number of positive predictions; and
𝑅𝑒𝑐𝑎𝑙𝑙 is the number of correct positive predictions divided by the
number of positive samples in the test data.

A summary of the experimental results of the proposed approach
(HMM) in terms of accuracy and F1-score is provided in Tables
2 and 3 for valence and arousal, respectively, in comparison to
the ones reported in [1] for a series of classification algorithms,
namely k-Nearest Neighbour (kNN) for k = 1, 3, 5, Linear Support
Vector Machines (LSVM), Support Vector Machines using a Radial
Basis Function kernel (SVM-RBF), Decision Trees (DT), and Linear
Discriminant Analysis (LDA).

For each feature set of physiological signals, the best HMM
results are shown in the first 3 numeric columns of Tables 2 and 3.
These columns include the accuracy, the F1-score, and the number
of features finally used according to the SFS algorithm. In addition,
the last three columns correspond to the best results reported in [1],
and the classifier that led to them.

Results for the proposed HMM approach are consistent with
those reported in [1] on the single modality case, with regard to
the features that offer the highest prediction power. The features
that provide the best performance are EEG-based features and,
among them, the EEG-based MFCC features offer the best results.
For the prediction of valence, the MFCC features extracted from the
frequency band [4-40 Hz] offered the highest recognition rate, with
an accuracy as high as 0.987 and a F1-score of 0.940. For arousal,
the recognition rate obtained with MFCC features extracted from
the frequency band [4-30 Hz] was the highest, with an accuracy of
0.818 and a F1-score as high as 0.783.

The use of the proposed HMM approach led to consistent im-
provements in the arousal and valence dimensions for MFCC fea-
tures across all four different frequency bands that were examined.
Considerable gains were obtained in all these cases, as it can be
observed in the last 4 rows of Tables 2 and 3. Nevertheless, perfor-
mance decreased for the prediction of valence when using ECG,
EEG-based spectral or PSD features, whereas results for arousal
showed improvements in all features except for EEG-based spectral
features. Nevertheless, the F1-score obtained for all cases other than
the MFCC features was quite poor, always below 0.62, with the
proposed approach achieving a considerably higher overall best
performance compared to [1], increasing the highest F1-score for
valence to 0.940 from 0.782, and for arousal to 0.783 from 0.654, as
shown in Tables 2 and 3.

The consistency of the SFS algorithm for feature selection was
also analysed by studying the performance variations in terms of

the F1-score as the number of features is increased. Figures 1 and 2
depict a plot for the best performing cases (EEG-MFCC features
for different frequency bands), for valence and arousal respectively.
As expected, the performance initially grows as more features are
added, but at some point the effect of the curse of dimensionality
interferes with the amount of information added by the new feature
and the performance starts to decrease. It is important to note that,
even if the number of features was the same, the set of actual
features selected was different for valence and arousal.

During the experimental evaluation, the number of hidden states
in the HMM models was also varied in order to choose the one that
yielded the best results. However, the experimental results showed
that the highest F1-score was always obtained for a single state
model. This was expected, as the activity performed was constant
across any given sample and there was no apparent reason that
justified a different signal evolution at different periods of time.

To summarise, the proposed HMM models have significantly
boosted the performance of the models when using EEG-based
MFCC features and this improvement holds across both the valence
and arousal dimensions, as well as the four examined frequency
bands.

Figure 1: F1-score as a function of the number of features
used to build the valence model.

5 CONCLUSION
The main aim of this work was to evaluate the effectiveness of
HMMs based on physiological signals for emotion recognition. To
this end, we used the physiological signals and the associated emo-
tion labels obtained through a data collection experiment performed
outdoors [1], based on human-horse interaction. The raw data in-
cluded ECG, EEG, and EMG signals, and authors also provided the
results of some initial experiments at predicting valence and arousal
as a performance baseline.

In this work, we aimed to improve their baseline results, not
only by using a different classification scheme, but also by selecting
some specific features. In our approach, we used HMM models to
generate twomodels for each of the valence and arousal dimensions.
The first one was trained with samples with positive labels, and the
second by using samples with negative labels. During validation,
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Table 2: Classification performance for valence, in term of accuracy and F1-score, for each set of features

Features HMM results Results from [1]
# features Accuracy F1-score Accuracy F1-score Classifier

ECG 1 0.674 0.508 0.842 0.580 LSVM
EMG 1 0.863 0.587 0.868 0.523 LDA
EEG-PSDavg 5 0.798 0.658 0.903 0.782 1NN
EEG-Spectral 1 0.948 0.653 0.877 0.715 1NN
EEG-MFCC [4-40] 3 0.987 0.940 0.868 0.684 DT
EEG-MFCC [0.5-40] 3 0.948 0.786 0.868 0.684 LSVM
EEG-MFCC [4-30] 4 0.961 0.822 0.807 0.552 LSVM
EEG-MFCC [0.5-30] 2 0.974 0.893 0.850 0.682 DT

Table 3: Classification performance for arousal, in term of accuracy and F1-score, for each set of features

Features HMM results Results from [1]
# features Accuracy F1-score Accuracy F1-score Classifier

ECG 1 0.639 0.593 0.561 0.446 1NN
EMG 2 0.579 0.554 0.657 0.507 5NN
EEG-PSDavg 4 0.623 0.619 0.631 0.567 DT
EEG-Spectral 1 0.558 0.558 0.701 0.643 DT
EEG-MFCC [4-40] 4 0.805 0.770 0.701 0.637 LSVM
EEG-MFCC [0.5-40] 4 0.779 0.745 0.701 0.654 LDA
EEG-MFCC [4-30] 4 0.818 0.783 0.605 0.558 LDA
EEG-MFCC [0.5-30] 3 0.779 0.759 0.666 0.619 LDA

Figure 2: F1-score as a function of the number of features
used to build the arousal model.

previously unseen samples were fed into both models, and the
predicted class was the one leading to the highest score.

Experimental results showed that using the HMMs for emotion
recognition of physiological signals can significantly improve recog-
nition rates. Using a leave-one-out cross-validation procedure we
have demonstrated the high accuracy of the proposed approach,

especially when using EEG-based MFCC features. An F1-score of
0.941 was reached for valence using MFCC features on the [4-40
Hz] frequency band, whereas an F1-score of 0.783 was reached for
arousal using the [4-30 Hz] frequency band. This is in contrast
to the lower F1-scores of 0.782 and 0.654 reported in the original
publication for valence and arousal, respectively. Consequently, it
is evident that the proposed approach has significantly boosted
the performance of the models when using the EEG-based MFCC
features.

The results reported are in support of using the two-model HMM
scheme to predict valence and arousal based on physiological sig-
nals. However, we shall also point out some limitations that need
to be further explored. The first one relates to the statistical signifi-
cance of the results that has not been tested in this work. Classifi-
cation results obtained in [1] have been extracted from the original
paper, and a significance analysis would imply a series of repeated
experiments involving all methods compared. The second one con-
cerns the feature selection process and the generalisation of the
results when the set of best performing features is applied to new
unseen samples. Whether these features remain constant along
different datasets is a key aspect that should be further studied.

In reference to possible improvements, we have only used a sin-
gle modality in all cases. However, we believe the results achieved
can be enhanced by simultaneously considering features coming
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from different modalities and hence it is our intention to explore
multi-modality fusion approaches in the context of this problem.
Another line of improvement consists of validating our conclusions
by replicating the experiments on other existing datasets and try-
ing other classifiers that are not based on the analysis of the time
sequence, to determine whether our achievements are related to
the classifier or to the features we have used.

ACKNOWLEDGMENTS
We thank reviewers for their helpful comments and suggestions.
This paper is part of projects PGC2018-096463-B-I00, financed
by MCIN/AEI/10.13039/501100011033 and FEDER Una manera de
hacer Europa; andAICO/2021/019, fromValencian Regional Govern-
ment (Spain). Yuyan Wu’s research is also funded by the Valencian
Regional Government through grant ACIF/2021/439.

REFERENCES
[1] Turke Althobaiti, Stamos Katsigiannis, Daune West, and Naeem Ramzan. 2019.

Examining human-horse interaction by means of affect recognition via physio-
logical signals. IEEE Access 7 (2019), 77857–77867.

[2] Pablo Arnau-González, Stamos Katsigiannis, Naeem Ramzan, Debbie Tolson,
and Miguel Arevalillo-Herráez. 2017. ES1D: A Deep Network for EEG-Based
Subject Identification. In 17th IEEE International Conference on Bioinformatics
and Bioengineering, BIBE 2017, Washington, DC, USA, October 23-25, 2017. IEEE
Computer Society, 81–85. https://doi.org/10.1109/BIBE.2017.00-74

[3] Pablo Arnau-González, Miguel Arevalillo-Herráez, and Naeem Ramzan. 2017.
Fusing highly dimensional energy and connectivity features to identify affective
states from EEG signals. Neurocomputing 244 (2017), 81–89. https://doi.org/10.
1016/j.neucom.2017.03.027

[4] Pablo Arnau-González, Stamos Katsigiannis, Miguel Arevalillo-Herráez, and
Naeem Ramzan. 2021. BED: A New Data Set for EEG-Based Biometrics. IEEE
Internet of Things Journal 8, 15 (2021), 12219–12230. https://doi.org/10.1109/JIOT.
2021.3061727

[5] Badcock, Nicholas A and Mousikou, Petroula and Mahajan, Yatin and De Lissa,
Peter and Thie, Johnson and McArthur, Genevieve. 2013. Validation of the Emotiv
EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ
1 (2013), e38.

[6] Nima Bigdely-Shamlo, Tim Mullen, Christian Kothe, Kyung-Min Su, and Kay A
Robbins. 2015. The PREP pipeline: standardized preprocessing for large-scale
EEG analysis. Frontiers in Neuroinformatics 9 (2015), 16.

[7] Burns, Adrian and Greene, Barry R and McGrath, Michael J and O’Shea, Terrance
J and Kuris, Benjamin and Ayer, Steven M and Stroiescu, Florin and Cionca,
Victor. 2010. SHIMMER™–Awireless sensor platform for noninvasive biomedical
research. IEEE Sensors Journal 10, 9 (2010), 1527–1534.

[8] Chaurasiya, Rahul Kumar and Shukla, Shourya and Sahu, Tirath Prasad. 2019. A
Sequential Study of Emotions through EEG usingHMM. In 2019 IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 104–109.

[9] Arnaud Delorme and Scott Makeig. 2004. EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component analysis.
Journal of Neuroscience Methods 134, 1 (2004), 9–21.

[10] J. Healey and R. Picard. 1998. Digital processing of affective signals. In Proceedings
of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP ’98 (Cat. No.98CH36181), Vol. 6. 3749–3752.

[11] Katsigiannis, Stamos and Ramzan, Naeem. 2018. DREAMER: A database for
emotion recognition through EEG and ECG signals from wireless low-cost off-
the-shelf devices. IEEE Journal of Biomedical and Health Informatics 22, 1 (2018),
98–107.

[12] Pat Langley and Stephanie Sage. 1994. Induction of selective Bayesian classifiers.
In Uncertainty Proceedings 1994. Elsevier, 399–406.

[13] Monge-Álvarez, Jesús and Hoyos-Barceló, Carlos and San-José-Revuelta, Luis
Miguel and Casaseca-de-la-Higuera, Pablo. 2018. A machine hearing system for
robust cough detection based on a high-level representation of band-specific
audio features. IEEE Transactions on Biomedical Engineering 66, 8 (2018), 2319–
2330.

[14] Piciucco, Emanuela and Maiorana, Emanuele and Falzon, Owen and Camilleri,
Kenneth P and Campisi, Patrizio. 2017. Steady-state visual evoked potentials
for EEG-based biometric identification. In 2017 International Conference of the
Biometrics Special Interest Group (BIOSIG). IEEE, 1–5.

[15] Russell, James A. 1980. A circumplex model of affect. Journal of Personality and
Social Psychology 39, 6 (1980), 1161.

[16] Ana Serrano-Mamolar, Miguel Arevalillo-Herráez, Guillermo Chicote-Huete, and
Jesus G. Boticario. 2021. An Intra-Subject Approach Based on the Application
of HMM to Predict Concentration in Educational Contexts from Nonintrusive
Physiological Signals in Real-World Situations. Sensors 21, 5 (2021). https:
//doi.org/10.3390/s21051777

[17] Shu, Lin and Xie, Jinyan and Yang, Mingyue and Li, Ziyi and Li, Zhenqi and Liao,
Dan and Xu, Xiangmin and Yang, Xinyi. 2018. A review of emotion recognition
using physiological signals. Sensors 18, 7 (2018), 2074.

[18] Soleymani, Mohammad and Lichtenauer, Jeroen and Pun, Thierry and Pantic,
Maja. 2011. A multimodal database for affect recognition and implicit tagging.
IEEE Transactions on Affective Computing 3, 1 (2011), 42–55.

[19] Tao, Jianhua and Tan, Tieniu. 2005. Affective computing: A review. In Interna-
tional Conference on Affective Computing and Intelligent Interaction. Springer,
981–995.

[20] Torres-Valencia, Cristian A and Garcia-Arias, Hernan F and Lopez, Mauricio A
Alvarez andOrozco-Gutiérrez, Alvaro A. 2014. Comparative analysis of physiolog-
ical signals and electroencephalogram (EEG) for multimodal emotion recognition
using generative models. In 2014 XIX Symposium on Image, Signal Processing and
Artificial Vision. IEEE, 1–5.

[21] Wagner, Johannes. 2005. Augsburg Biosignal Toolbox (AUBT). University of
Augsburg (2005).

[22] Cen Wan. 2019. Feature selection paradigms. In Hierarchical Feature Selection for
Knowledge Discovery. Springer, 17–23.

https://doi.org/10.1109/BIBE.2017.00-74
https://doi.org/10.1016/j.neucom.2017.03.027
https://doi.org/10.1016/j.neucom.2017.03.027
https://doi.org/10.1109/JIOT.2021.3061727
https://doi.org/10.1109/JIOT.2021.3061727
https://doi.org/10.3390/s21051777
https://doi.org/10.3390/s21051777

	Abstract
	1 Introduction
	2 Dataset
	3 Methodology
	3.1 Data pre-processing
	3.2 Feature extraction
	3.3 Classification using Hidden Markov Models

	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

