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Abstract
A graph is temporally connected if there exists a strict temporal path, i.e., a path whose edges have
strictly increasing labels, from every vertex u to every other vertex v. In this paper we study temporal
design problems for undirected temporally connected graphs. The basic setting of these optimization
problems is as follows: given a connected undirected graph G, what is the smallest number |λ| of
time-labels that we need to add to the edges of G such that the resulting temporal graph (G, λ) is
temporally connected? As it turns out, this basic problem, called Minimum Labeling (ML), can
be optimally solved in polynomial time. However, exploiting the temporal dimension, the problem
becomes more interesting and meaningful in its following variations, which we investigate in this
paper. First we consider the problem Min. Aged Labeling (MAL) of temporally connecting the
graph when we are given an upper-bound on the allowed age (i.e., maximum label) of the obtained
temporal graph (G, λ). Second we consider the problem Min. Steiner Labeling (MSL), where
the aim is now to have a temporal path between any pair of “important” vertices which lie in a
subset R ⊆ V , which we call the terminals. This relaxed problem resembles the problem Steiner
Tree in static (i.e., non-temporal) graphs. However, due to the requirement of strictly increasing
labels in a temporal path, Steiner Tree is not a special case of MSL. Finally we consider the
age-restricted version of MSL, namely Min. Aged Steiner Labeling (MASL). Our main results
are threefold: we prove that (i) MAL becomes NP-complete on undirected graphs, while (ii) MASL
becomes W[1]-hard with respect to the number |R| of terminals. On the other hand we prove that
(iii) although the age-unrestricted problem MSL remains NP-hard, it is in FPT with respect to the
number |R| of terminals. That is, adding the age restriction, makes the above problems strictly
harder (unless P=NP or W[1]=FPT).
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1 Introduction

A temporal (or dynamic) graph is a graph whose underlying topology is subject to discrete
changes over time. This paradigm reflects the structure and operation of a great variety of
modern networks; social networks, wired or wireless networks whose links change dynamically,
transportation networks, and several physical systems are only a few examples of networks
that change over time [23,33,35]. Inspired by the foundational work of Kempe et al. [25], we
adopt here a simple model for temporal graphs, in which the vertex set remains unchanged
while each edge is equipped with a set of integer time-labels.

▶ Definition 1 (temporal graph [25]). A temporal graph is a pair (G, λ), where G = (V, E)
is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a set of discrete time-labels.

Here, whenever t ∈ λ(e), we say that the edge e is active or available at time t. Throughout
the paper we may refer to “time-labels” simply as “labels” for brevity. Furthermore, the age
(or lifetime) α(G, λ) of the temporal graph (G, λ) is the largest time-label used in it, i.e.,
α(G, λ) = max{t ∈ λ(e) : e ∈ E}. One of the most central notions in temporal graphs is
that of a temporal path (or time-respecting path) which is motivated by the fact that, due to
causality, entities and information in temporal graphs can “flow” only along sequences of
edges whose time-labels are strictly increasing, or at least non-decreasing.

▶ Definition 2 (temporal path). Let (G, λ) be a temporal graph, where G = (V, E) is the
underlying static graph. A temporal path in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk),
where (e1, e2, . . . , ek) is a path in G, ti ∈ λ(ei) for every i = 1, 2, . . . , k, and t1 < t2 < . . . < tk.

A vertex v is temporally reachable (or reachable) from vertex u in (G, λ) if there exists
a temporal path from u to v. If every vertex v is reachable by every other vertex u in
(G, λ), then (G, λ) is called temporally connected. Note that, for every temporally connected
temporal graph (G, λ), we have that its age is at least as large as the diameter dG of the
underlying graph G. Indeed, the largest label used in any temporal path between two
anti-diametrical vertices cannot be smaller than dG. Temporal paths have been introduced
by Kempe et al. [25] for temporal graphs which have only one label per edge, i.e., |λ(e)| = 1
for every edge e ∈ E, and this notion has later been extended by Mertzios et al. [28] to
temporal graphs with multiple labels per edge. Furthermore, depending on the particular
application, both variations of temporal paths with non-decreasing [6,25,26] and with strictly
increasing [15,28] labels have been studied. In this paper we focus on temporal paths with
strictly increasing labels. Due to the very natural use of temporal paths in various contexts,
several path-related notions, such as temporal analogues of distance, diameter, reachability,
exploration, and centrality have also been studied [1–3,6,8,10,11,13,15–18,20,26,28,32,34,36].

Furthermore, some non-path temporal graph problems have been recently introduced
too, including for example temporal variations of maximal cliques [7, 37], vertex cover [4, 21],
vertex coloring [31], matching [29], and transitive orientation [30]. Motivated by the need of
restricting the spread of epidemic, Enright et al. [15] studied the problem of removing the
smallest number of time-labels from a given temporal graph such that every vertex can only
temporally reach a limited number of other vertices. Deligkas et al. [12] studied the problem
of accelerating the spread of information for a set of sources to all vertices in a temporal
graph, by only using delaying operations, i.e., by shifting specific time-labels to a later time
slot. The problems studied in [12] are related but orthogonal to our temporal connectivity
problems. Various other temporal graph modification problems have been also studied, see
for example [6, 11,13,16,34].
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The time-labels of an edge e in a temporal graph indicate the discrete units of time (e.g.,
days, hours, or even seconds) in which e is active. However, in many real dynamic systems,
e.g., in synchronous mobile distributed systems that operate in discrete rounds, or in unstable
chemical or physical structures, maintaining an edge over time requires energy and thus
comes at a cost. One natural way to define the cost of the whole temporal graph (G, λ) is
the total number of time-labels used in it, i.e., the total cost of (G, λ) is |λ| =

∑
e∈E |λe|.

In this paper we study temporal design problems of undirected temporally connected
graphs. The basic setting of these optimization problems is as follows: given an undirected
graph G, what is the smallest number |λ| of time-labels that we need to add to the edges
of G such that (G, λ) is temporally connected? As it turns out, this basic problem can be
optimally solved in polynomial time, thus answering to a conjecture made in [2]. However,
exploiting the temporal dimension, the problem becomes more interesting and meaningful in
its following variations, which we investigate in this paper. First we consider the problem
variation where we are given along with the input also an upper bound of the allowed age
(i.e., maximum label) of the obtained temporal graph (G, λ). This age restriction is sensible
in more pragmatic cases, where delaying the latest arrival time of any temporal path incurs
further costs, e.g., when we demand that all agents in a safety-critical distributed network are
synchronized as quickly as possible, and with the smallest possible number of communications
among them. Second we consider problem variations where the aim is to have a temporal
path between any pair of “important” vertices which lie in a subset R ⊆ V , which we call
the terminals. For a detailed definition of our problems we refer to Section 2.

Here it is worth noting that the latter relaxation of temporal connectivity resembles the
problem Steiner Tree in static (i.e., non-temporal) graphs. Given a connected graph
G = (V, E) and a set R ⊆ V of terminals, Steiner Tree asks for a smallest-sized subgraph
of G which connects all terminals in R. Clearly, the smallest subgraph sought by Steiner
Tree is a tree. As it turns out, this property does not carry over to the temporal case.
Consider for example an arbitrary graph G and a terminal set R = {a, b, c, d} such that G

contains an induced cycle on four vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da

but not the edges ac or bd. Then, it is not hard to check that only way to add the smallest
number of time-labels such that all vertices of R are temporally connected is to assign one
label to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.
The main underlying reason for this difference with the static problem Steiner Tree is that
temporal connectivity is not transitive and not symmetric: if there exists temporal paths
from u to v, and from v to w, it is not a priori guaranteed that a temporal path from v to u,
or from u to w exists.

Temporal network design problems have already been considered in previous works.
Mertzios et al. [28] proved that it is APX-hard to compute a minimum-cost labeling for
temporally connecting an input directed graph G, where the age of the graph is upper-
bounded by the diameter of G. This hardness reduction was strongly facilitated by the
careful placement of the edge directions in the constructed instance, in which every vertex
was reachable in the static graph by only constantly many vertices. Unfortunately this
cannot happen in an undirected connected graph, where every vertex is reachable by all
other vertices. Later, Akrida et al. [2] proved that it is also APX-hard to remove the largest
number of time-labels from a given temporally connected (undirected) graph (G, λ), while still
maintaining temporal connectivity. In this case, although there are no edge directions, the
hardness reduction was strongly facilitated by the careful placement of the initial time-labels
of λ in the input temporal graph, in which every pair of vertices could be connected by only
a few different temporal paths, among which the solution had to choose. Unfortunately
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this cannot happen when the goal is to add time-labels to an undirected connected graph,
where there are potentially multiple ways to temporally connect a pair of vertices (even if we
upper-bound the largest time-label by the diameter).

Summarizing, the above technical difficulties seem to be the reason why the problem of
adding the minimum number of time-labels with an age-restriction to an undirected graph to
achieve temporal connectivity remained open until now for the last decade. In this paper we
overcome these difficulties by developing a hardness reduction from a variation of the problem
Max XOR SAT (see Theorem 12 in Section 3) where we manage to add the appropriate
(undirected) edges among the variable-gadgets such that simultaneously (i) the distance
between any two vertices from different variable gadgets remains small (constant) and (ii)
there is no shortest path between two vertices of the same variable gadget that leaves this
gadget.

Our contribution and road-map. In the first part of our paper, in Section 3, we present
our results on Min. Aged Labeling (MAL). This problem is the same as ML, with the
additional restriction that we are given along with the input an upper bound on the allowed
age of the resulting temporal graph (G, λ). Using a technically involved reduction from a
variation of Max XOR SAT, we prove that MAL is NP-complete on undirected graphs,
even when the required maximum age is equal to the diameter dG of the input static graph G.

In the second part of our paper, in Section 4, we present our results on the Steiner-tree
versions of the problem, namely on Min. Steiner Labeling (MSL) and Min. Aged
Steiner Labeling (MASL). The difference of MSL from ML is that, here, the goal is to
have a temporal path between any pair of “important” vertices which lie in a given subset
R ⊆ V (the terminals). In Section 4.1 we prove that MSL is NP-complete by a reduction
from Vertex Cover, the correctness of which requires showing structural properties of
MSL. Here it is worth recalling that, as explained above, the classical problem Steiner
Tree on static graphs is not a special case of MSL, due to the requirement of strictly
increasing labels in a temporal path. Furthermore, we would like to emphasize here that, as
temporal connectivity is neither transitive nor symmetric, a straightforward NP-hardness
reduction from Steiner Tree to MSL does not seem to exist. For example, as explained
above, in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner
tree is sub-optimal for MSL.

In Section 4.2 we provide a fixed-parameter tractable (FPT) algorithm for MSL with
respect to the number |R| of terminal vertices, by providing a parameterized reduction to
Steiner Tree. The proof of correctness of our reduction, which is technically quite involved,
is of independent interest, as it proves crucial graph-theoretical properties of minimum
temporal Steiner labelings. In particular, for our algorithm we prove (see Lemma 14)
that, for any undirected graph G with a set R of terminals, there always exists at least one
minimum temporal Steiner labeling (G, λ) which labels edges either from (i) a tree or from
(ii) a tree with one extra edge that builds a C4.

In Section 4.3 we prove that MASL is W[1]-hard with respect to the number |R| of
terminals. Our results actually imply the stronger statement that MASL is W[1]-hard even
with respect to the number of time-labels of the solution (which is a larger parameter than
the number |R| of terminals).

Finally, we complete the picture by providing some auxiliary results in our preliminary
Section 2. More specifically, in Section 2.1 we prove that ML can be solved in polynomial
time, and in Section 2.2 we prove that the analogue minimization versions of ML and MAL
on directed acyclic graphs are solvable in polynomial time.
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Due to space constraints, proofs of results marked with ⋆ are (partially) deferred to a full
version on arXiv [27].

2 Preliminaries and notation

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V

is denoted by uv, and in this case the vertices u, v are said to be adjacent in G. If the
graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to denote the oriented
edge from u to v (resp. from v to u). The age of a temporal graph (G, λ) is denoted by
α(G, λ) = max{t ∈ λ(e) : e ∈ E}. A temporal path (e1, t1), (e2, t2), . . . , (ek, tk) from vertex
u to vertex v is called foremost, if it has the smallest arrival time tk among all temporal
paths from u to v. Note that there might be another temporal path from u to v that uses
fewer edges than a foremost path. A temporal graph (G, λ) is temporally connected if, for
every pair of vertices u, v ∈ V , there exists a temporal path (see Definition 2) P1 from u

to v and a temporal path P2 from v to u. Furthermore, given a set of terminals R ⊆ V ,
the temporal graph (G, λ) is R-temporally connected if, for every pair of vertices u, v ∈ R,
there exists a temporal path from u to v and a temporal path from v to u; note that P1 and
P2 can also contain vertices from V \ R. Now we provide our formal definitions of our four
decision problems.

Min. Labeling (ML)

Input: A static graph G = (V, E) and
a k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Labeling (MAL)

Input: A static graph G = (V, E)
and two integers a, k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

Min. Steiner Labeling (MSL)

Input: A static graph G = (V, E),
a subset R ⊆ V and a k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Steiner Labeling (MASL)

Input: A static graph G = (V, E),
a subset R ⊆ V , and two integers a, k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

Note that, for both problems MAL and MASL, whenever the input age bound a is
strictly smaller than the diameter d of G, the answer is always NO. Thus, we always assume
in the remainder of the paper that a ≥ d, where d is the diameter of the input graph G. For
simplicity of the presentation, we denote next by κ(G, d) the smallest number k for which
(G, k, d) is a YES instance for MAL.

▶ Observation 3 (⋆). For every graph G with n vertices and diameter d, we have that
κ(G, d) ≤ n(n − 1).

The next lemma shows that the upper bound of Observation 3 is asymptotically tight as,
for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).

▶ Lemma 4 (⋆). Let Cn be a cycle on n vertices, where n ̸= 4, and let d be its diameter.
Then

κ(Cn, d) =
{

d2, when n = 2d

2d2 + d, when n = 2d + 1.

MFCS 2022
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2.1 A polynomial-time algorithm for ML
As a first warm-up, we study the problem ML, where no restriction is imposed on the
maximum allowed age of the output temporal graph. It is already known by Akrida et al. [2]
that any undirected graph can be made temporally connected by adding at most 2n − 3
time-labels, while for trees 2n − 3 labels are also necessary. Moreover, it was conjectured
that every graph needs at least 2n − 4 time-labels [2]. Here we prove their conjecture true
by proving that, if G contains (resp. does not contain) the cycle C4 on four vertices as a
subgraph, then (G, k) is a YES instance of ML if and only if k ≥ 2n − 4 (resp. k ≥ 2n − 3).
The proof is done via a reduction to the gossip problem [9] (for a survey on gossiping see
also [22]).

The related problem of achieving temporal connectivity by assigning to every edge of the
graph at most one time-label, has been studied by Göbel et al. [19], where the relationship
with the gossip problem has also been drawn. Contrary to ML, this problem is NP-hard [19].
That is, the possibility of assigning two or more labels to an edge makes the problem
computationally much easier. Indeed, in a C4-free graph with n vertices, an optimal solution
to ML consists in assigning in total 2n − 3 time-labels to the n − 1 edges of a spanning
tree. In such a solution, one of these n − 1 edges receives one time-label, while each of the
remaining n − 2 edges receives two time-labels. Similarly, when the graph contains a C4, it
suffices to span the graph with four trees tooted at the vertices of the C4, where each of the
edges of the C4 receives one time-label and each edge of the four trees receives two labels.
That is, a graph containing a C4 can be temporally connected using 2n − 4 time-labels.

In the gossip problem we have n agents from a set A. At the beginning, every agent
x ∈ A holds its own secret. The goal is that each agent eventually learns the secret of every
other agent. This is done by producing a sequence of unordered pairs (x, y), where x, y ∈ A

and each such pair represents one phone call between the agents involved, during which the
two agents exchange all the secrets they currently know.

The above gossip problem is naturally connected to ML. The only difference between the
two problems is that, in gossip, all calls are non-concurrent, while in ML we allow concurrent
temporal edges, i.e., two or more edges can appear at the same time slot t. Therefore, in
order to transfer the known results from gossip to ML, it suffices to prove that in ML we
can equivalently consider solutions with non-concurrent edges.

▶ Theorem 5 (⋆). Let G = (V, E) be a connected graph. Then the smallest k ∈ N for which
(G, k) is a YES instance of ML is:

k =
{

2n − 4, if G contains C4 as a subgraph,
2n − 3, otherwise.

2.2 A polynomial-time algorithm for directed acyclic graphs
As a second warm-up, we show that the minimization analogues of ML and MAL on
directed acyclic graphs (DAGs) are solvable in polynomial time. More specifically, for the
minimization analogue of ML we provide an algorithm which, given a DAG G = (V, A) with
diameter dG, computes a temporal labeling function λ which assigns the smallest possible
number of time-labels on the arcs of G with the following property: for every two vertices
u, v ∈ V , there exists a directed temporal path from u to v in (G, λ) if and only if there
exists a directed path from u to v in G. Moreover, the age α(G, λ) of the resulting temporal
graph is equal to dG. Therefore, this immediately implies a polynomial-time algorithm
for the minimization analogue of MAL on DAGs. For notation uniformity, we call these
minimization problems MLdirected and MALdirected, respectively.
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▶ Theorem 6 (⋆). Let G = (V, E) be a DAG with n vertices and m arcs. Then MLdirected(G)
and MALdirected(G) can be both computed in O(n(n + m)) time.

3 MAL is NP-complete

In this section we prove that it is NP-hard to determine the number of labels in an optimal
labeling of a static, undirected graph G, where the age, i.e., the maximum label used, is not
larger than the diameter of the input graph.

To prove this we provide a reduction from the NP-hard problem Monotone Max
XOR(3) (or MonMaxXOR(3) for short). This is a special case of the classical Boolean
satisfiability problem, where the input formula ϕ consists of the conjunction of monotone
XOR clauses of the form (xi ⊕ xj), i.e., variables xi, xj are non-negated. If each variable
appears in exactly r clauses, then ϕ is called a monotone Max XOR(r) formula. A clause
(xi ⊕ xj) is XOR-satisfied (or simply satisfied) if and only if xi ̸= xj . In Monotone Max
XOR(r) we are trying to find a truth assignment τ of ϕ which satisfies the maximum number
of clauses. As it can be easily checked, MonMaxXOR(3) encodes the problem Max-Cut
on cubic graphs, which is known to be NP-hard [5]. Therefore we conclude the following.

▶ Theorem 7 ([5]). MonMaxXOR(3) is NP-hard.

Now we explain our reduction from MonMaxXOR(3) to the problem Minimum Aged
Labeling (MAL), where the input static graph G is undirected and the desired age of the
output temporal graph is the diameter d of G . Let ϕ be a monotone Max XOR(3) formula
with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Note that m = 3

2 n, since each
variable appears in exactly 3 clauses. From ϕ we construct a static undirected graph Gϕ with
diameter d = 10, and prove that there exists a truth assignment τ which satisfies at least
k clauses in ϕ, if and only if there exists a labeling λϕ of Gϕ, with |λϕ| ≤ 13

2 n2 + 99
2 n − 8k

labels and with age α(G, λ) ≤ 10.

High-level construction

For each variable xi, 1 ≤ i ≤ n, we construct a variable gadget Xi that consists of a “starting”
vertex si and three “ending” vertices tℓ

i (for ℓ ∈ {1, 2, 3}); these ending vertices correspond
to the appearances of xi in three clauses of ϕ. In an optimum labeling λ(ϕ), in each variable
gadget there are exactly two labelings that temporally connect starting and ending vertices,
which correspond to the True or False truth assignment of the variable in the input formula
ϕ. For every clause (xi ⊕ xj) we identifying corresponding ending vertices of Xi and Xj

(as well as some other auxiliary vertices and edges). Whenever (xi ⊕ xj) is satisfied by a
truth assignment of ϕ, the labels of the common edges of Xi and Xj in an optimum labeling
coincide (thus using few labels); otherwise we need additional labels for the common edges
of Xi and Xj .

Detailed construction of Gϕ

For each variable xi from ϕ we create a variable gadget Xi, that consists of a base BXi on 11
vertices, BXi = {si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F 2Xi, F 3Xi, each
on 9 vertices, F ℓXi = {tℓ

i , f ℓ
i , gℓ

i , hℓ
i , mℓ

i , fi
ℓ
, gi

ℓ, hi
ℓ
, mi

ℓ}, where ℓ ∈ {1, 2, 3}. Vertices in the
base BXi are connected in the following way: there are two paths of length 5: siaibicidiei

and siaibicidiei, and 5 extra edges of form yiyi, where y ∈ {a, b, c, d, e}. Vertices in each fork
F ℓXi (where ℓ ∈ {1, 2, 3}) are connected in the following way: there are two paths of length

MFCS 2022
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4: tℓ
im

ℓ
ih

ℓ
ig

ℓ
i f ℓ

i and tℓ
imi

ℓhi
ℓ
gi

ℓfi
ℓ, and 4 extra edges of form yiyi

ℓ, where y ∈ {m, h, g, f}.
The base BXi of the variable gadget Xi is connected to each of the three forks F ℓXi via two
edges eif

ℓ
i and eifi

ℓ, where ℓ ∈ {1, 2, 3}. For an illustration see Figure 1.
For an easier analysis we fix the following notation. The vertex si ∈ BXi is called

a start vertex of Xi, vertices tℓ
i (ℓ ∈ {1, 2, 3}) are called ending vertices of Xi, a path

connecting si, tℓ
i that passes through vertices aibicidieif

ℓ
i gℓ

i hℓ
im

ℓ
i (resp. aibi . . . mi

ℓ) is called
the left (resp. right) si, tℓ

i -path. The left (resp. right) si, tℓ
i -path is a disjoint union of the left

(resp. right) path on vertices of the base BXi of Xi, an edge of form eif
ℓ
i (resp. eifi

ℓ) called
the left (resp. right) bridge edge and the left (resp. right) path on vertices of the ℓ-th fork
F ℓXi of Xi. The edges yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ, hℓ, mℓ}, ℓ ∈ {1, 2, 3}, are called
connecting edges.

Figure 1 An example of a variable gadget Xi in Gϕ, corresponding to the variable xi from ϕ.

Connecting variable gadgets

There are two ways in which we connect two variable gadgets, depending whether they
appear in the same clause in ϕ or not.
1. Two variables xi, xj do not appear in any clause together. In this case we add the following

edges between the variable gadgets Xi and Xj :

from ei (resp. ei) to f ℓ′

j and fj
ℓ′

, where ℓ′ ∈ {1, 2, 3},

from ej (resp. ej) to f ℓ
i and fi

ℓ, where ℓ ∈ {1, 2, 3},
from di (resp. di) to dj and dj .

We call these edges the variable edges. For an illustration see Figure 2.
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Figure 2 An example of two non-intersecting variable gadgets and variable edges among them.

2. Let C = (xi ⊕ xj) be a clause of ϕ, that contains the r-th appearance of the variable xi

and r′-th appearance of the variable xj . In this case we identify the r-th fork F rXi of
Xi with the r′-th fork F r′

Xj of Xj in the following way:
tr
i = tr′

j ,

{fr
i , gr

i , hr
i , mr

i } = {fj
r′

, gj
r′

, hj
r′

, mj
r′

} respectively, and
{fi

r
, gi

r, hi
r
, mi

r} = {fr′

j , gr′

j , hr′

j , mr′

j } respectively.
Besides that we add the following edges between the variable gadgets Xi and Xj :

from ei (resp. ei) to f ℓ′

j and fj
ℓ′

, where ℓ′ ∈ {1, 2, 3} \ {r′},
from ej (resp. ej) to f ℓ

i and fi
ℓ, where ℓ ∈ {1, 2, 3} \ {r},

from di (resp. di) to dj and dj .
For an illustration see Figure 3.

This finishes the construction of Gϕ. Before continuing with the reduction, we prove the
following structural property of Gϕ.

▶ Lemma 8 (⋆). The diameter dϕ of Gϕ is 10.

▶ Theorem 9 (⋆). If OPTMonMaxXOR(3)(ϕ) ≥ k then OPTMAL(Gϕ, dϕ) ≤ 13
2 n2 + 99

2 n − 8k,
where n is the number of variables in the formula ϕ.

Before proving the statement in the other direction, we have to show some structural
properties. Let us fix the following notation. If a labeling λϕ labels all left (resp. right)
paths of the variable gadget Xi (i.e., both bottom-up from si to t1

i , t2
i , t3

i and top-down from
t1
i , t2

i , t3
i to si with labels 1, 2 . . . , 10 in this order), then we say that the variable gadget Xi

is left-aligned (resp. right-aligned) in the labeling λϕ. Note, if at least one edge on any of
these left (resp. right) paths of Xi is not labeled with the appropriate label between 1 and
10, then the variable gadget is not left-aligned (resp. not right-aligned). Every temporal
path from si to tℓ

i (resp. from tℓ
i to si) of length 10 in Xi is called an upward path (resp. a

downward path) in Xi. Any part of an upward (resp. downward) path is called a partial
upward (resp. downward) path. Note that, for any ℓ, ℓ′ ∈ {1, 2, 3}, ℓ ̸= ℓ′, a temporal path
from tℓ

i to tℓ′

i of length 10 is the union of a partial downward path on the fork F ℓ
i and a

partial upward path on F ℓ′

i . Moreover, note that these two partial downward/upward paths

MFCS 2022
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Figure 3 An example of two intersecting variable gadgets Xi, Xj corresponding to variables
xi, xj , that appear together in some clause in ϕ, where it is the third appearance of xi and the first
appearance of xj .

must be either both parts of a left temporal path or both parts of a right temporal path
between si and tℓ

i , tℓ′

i . The following technical lemma will allow us to prove the correctness
of our reduction.

▶ Lemma 10 (⋆). Let λϕ be a minimum labeling of Gϕ. Then λϕ can be modified in
polynomial time to a minimum labeling of Gϕ in which each variable gadget Xi is either
left-aligned or right-aligned.

▶ Theorem 11 (⋆). If OPTMAL(Gϕ, dϕ) ≤ 13
2 n2 + 99

2 n − 8k then OPTMonMaxXOR(3)(ϕ) ≥ k,
where n is the number of variables in the formula ϕ.

Since MAL is clearly in NP, the next theorem follows directly by Theorems 7, 9, and 11.

▶ Theorem 12. MAL is NP-complete on undirected graphs, even when the required maximum
age is equal to the diameter of the input graph.

4 The Steiner-Tree variations of the problem

In this section we investigate the computational complexity of the Steiner-Tree variations
of the problem, namely MSL and MASL. First, we prove in Section 4.1 that the age-
unrestricted problem MSL remains NP-hard, using a reduction from Vertex Cover. In
Section 4.2 we prove that this problem is in FPT, when parameterized by the number |R| of
terminals. Finally, using a parameterized reduction from Multicolored Clique, we prove
in Section 4.3 that the age-restricted version MASL is W[1]-hard with respect to |R|, even if
the maximum allowed age is a constant.

4.1 MSL is NP-complete
▶ Theorem 13 (⋆). MSL is NP-complete.

Proof sketch. MSL is clearly contained in NP. To prove that the MSL is NP-hard we
provide a polynomial-time reduction from the NP-complete Vertex Cover problem [24].
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Figure 4 An example of construction of the input graph for MSL.

Vertex Cover
Input: A static graph G = (V, E), a positive integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and ∀e ∈ E, e∩S ̸= ∅.

Let (G, k) be an input of the Vertex Cover problem and denote |V (G)| = n, |E(G)| = m.
We assume w.l.o.g. that G does not admit a vertex cover of size k − 1. We construct
(G∗, R∗, k∗), the input of MSL using the following procedure. The vertex set V (G∗) consists
of the following vertices:

two starting vertices N = {n0, n1},
a “vertex-vertex” corresponding to every vertex of G: UV = {uv|v ∈ V (G)},
an “edge-vertex” corresponding to every edge of G: UE = {ue|e ∈ E(G)},
2n + 12m · k “dummy” vertices.

The edge set E(G∗) consists of the following edges:
an edge between starting vertices, i.e., n0n1,
a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV using 2
dummy vertices, and
for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue with the
vertex-vertices uv and uw, each with a path of length 6k + 1 using 6k dummy vertices.

We set R∗ = {n0}∪UE and k∗ = 6k +2m(6k +1)+1. This finishes the construction. It is not
hard to see that this construction can be performed in polynomial time. For an illustration
see Figure 4. Note that any two paths in G∗ can intersect only in vertices from N ∪ UV ∪ UE

and not in any of the dummy vertices. At the end G∗ is a graph with 3n + m(12k + 1) + 2
vertices and 1 + 3n + 2m(6k + 1) edges.

In the full proof we prove that (G, k) is a YES instance of the Vertex Cover if and
only if (G∗, R∗, k∗) is a YES instance of the MSL. ◀

4.2 An FPT-algorithm for MSL with respect to the number of terminals
In this section we provide an FPT-algorithm for MSL, parameterized by the number |R| of
terminals. The algorithm is based on a crucial structural property of minimum solutions for
MSL: there always exists a minimum labeling λ that labels the edges of a subtree of the
input graph (where every leaf is a terminal vertex), and potentially one further edge that
forms a C4 with three edges of the subtree.

MFCS 2022
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Intuitively speaking, we can use an FPT-algorithm for Steiner Tree parameterized by
the number of terminals [14] to reveal a subgraph of the MSL instance that we can optimally
label using Theorem 5. Since the number of terminals in the created Steiner Tree instance
is larger than the number of terminals in the MSL instance by at most a constant, we obtain
an FPT-algorithm for MSL parameterized by the number of terminals.

▶ Lemma 14 (⋆). Let G = (V, E) be a graph, R ⊆ V a set of terminals, and k be an integer
such that (G, R, k) is a YES instance of MSL and (G, R, k − 1) is a NO instance of MSL.

If k is odd, then there is a labeling λ of size k for G such that the edges labeled by λ form
a tree, and every leaf of this tree is a vertex in R.
If k is even, then there is a labeling λ of size k for G such that the edges labeled by λ

form a graph that is a tree with one additional edge that forms a C4, and every leaf of
the tree is a vertex in R.

The main idea for the proof of Lemma 14 is as follows. Given a solution labeling λ, we
fix one terminal r∗ and then (i) we consider the minimum subtree in which r∗ can reach all
other terminal vertices and (ii) we consider the minimum subtree in which all other terminal
vertices can reach r∗. Intuitively speaking, we want to label the smaller one of those subtrees
using Theorem 5 and potentially adding an extra edge to form a C4; we then argue that the
obtained labeling does not use more labels than λ. To do that, and to detect whether it is
possible to add an edge to create a C4, we make a number of modifications to the trees until
we reach a point where we can show that our solution is correct.

Having Lemma 14, we can now give our algorithm for MSL. As mentioned before, it uses
an FPT-algorithm for Steiner Tree parameterized by the number of terminals [14] as a
subroutine.

▶ Theorem 15 (⋆). MSL is in FPT when parameterized by the number of terminals.

4.3 Parameterized Hardness of MASL

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL is already
implied by both Theorems 12 and 13. In this section, we prove that MASL is W[1]-hard
when parameterized by the number |R| of the terminals, even if the restriction a on the
age is a constant. To this end, we provide a parameterized reduction from Multicolored
Clique. This, together with Theorem 15, implies that MASL is strictly harder than MSL
(parameterized by the number |R| of terminals), unless FPT=W[1].

▶ Theorem 16 (⋆). MASL is W[1]-hard when parameterized by the number |R| of the
terminals, even if the restriction a on the age is a constant.

Note here that, in the constructed instance of MASL in the proof of Theorem 16, the
number of labels is also upper-bounded by a function of the number of colors in the instance
of Multicolored Clique. Therefore the proof of Theorem 16 implies also the next
result, which is even stronger (since in every solution of MASL the number of time-labels is
lower-bounded by a function of the number |R| of terminals).

▶ Corollary 17. MASL is W[1]-hard when parameterized by the number k of time-labels,
even if the restriction a on the age is a constant.
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5 Concluding remarks

Several open questions arise from our results. As we pointed out in Lemma 4, κ(Cn, d) =
Θ(n2), while κ(G, d) = O(n2) for every graph G by Observation 3. For which graph classes
G do we have κ(G, d) = o(n2) (resp. κ(G, d) = O(n)) for every G ∈ G?

As we proved in Theorem 12, MAL is NP-complete when the upper age bound is equal to
the diameter d of the input graph G. In other words, it is NP-hard to compute κ(G, d). On
the other hand, κ(G, 2r) can be easily computed in polynomial time, where r is the radius of
G. Indeed, using the results of Section 2.1, it easily follows that, if G contains (resp. does
not contain) a C4 then κ(G, 2r) = 2n − 4 (resp. κ(G, 2r) = 2n − 3). For which values of an
upper age bound a, where d ≤ a ≤ 2r, can κ(G, a) computed efficiently? In particular, can
κ(G, d + 1) or κ(G, 2r − 1) be computed in polynomial time for every undirected graph G?

With respect to parameterized algorithmics, is MAL FPT with respect to the number k

of time-labels?
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