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Abstract
Given a hypergraph with uncertain node weights following known probability distributions, we
study the problem of querying as few nodes as possible until the identity of a node with minimum
weight can be determined for each hyperedge. Querying a node has a cost and reveals the precise
weight of the node, drawn from the given probability distribution. Using competitive analysis, we
compare the expected query cost of an algorithm with the expected cost of an optimal query set
for the given instance. For the general case, we give a polynomial-time f(α)-competitive algorithm,
where f(α) ∈ [1.618 + ϵ, 2] depends on the approximation ratio α for an underlying vertex cover
problem. We also show that no algorithm using a similar approach can be better than 1.5-competitive.
Furthermore, we give polynomial-time 4/3-competitive algorithms for bipartite graphs with arbitrary
query costs and for hypergraphs with a single hyperedge and uniform query costs, with matching
lower bounds.
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1 Introduction

The research area of explorable uncertainty is concerned with scenarios where parts of the
input are initially uncertain, but the precise weight (or value) of an input item can be
obtained via a query. For example, an uncertain weight may be represented as an interval
that is guaranteed to contain the precise weight, but only a query can reveal the precise
weight. Adaptive algorithms make queries one by one until they have gathered sufficient
information to solve the given problem. The goal is to make as few queries as possible.
In most of the previous work on explorable uncertainty, an adversarial model has been
studied where an adversary determines the precise weights of the uncertain elements in such
a way that the performance of the algorithm, compared to the optimal query set, is as bad
as possible. While this model provides worst-case guarantees that hold for every possible
instance, it is also very pessimistic because the adversary is free to choose the precise weights
arbitrarily. In realistic scenarios, one may often have some information about where in the
given interval the precise weight of an uncertain element is likely to lie. This information
can be represented as a probability distribution and exploited in order to achieve better
performance guarantees.

In this paper, we study the following problem under stochastic uncertainty: Given a family
of (not necessarily disjoint) subsets of a set of uncertain elements, determine the element
with minimum precise weight in each set, using queries of minimum total cost. Note that we
do not necessarily need to obtain the precise minimum weight. We phrase the problem in
the language of hypergraphs, where each uncertain element corresponds to a node and each
set corresponds to a hyperedge. We call this the hypergraph orientation problem, as we can
think of orienting each hyperedge towards its minimum-weight vertex. Each node v ∈ V of
a hypergraph H = (V, E) is associated with a known continuous probability distribution1

dv over an interval Iv = (ℓv, rv) and has query cost cv. The precise weight of v is drawn
independently from dv and denoted by wv. We assume that Iv is the minimal interval that
contains the support of dv, i.e., ℓv is the largest value satisfying P[wv ≤ ℓv] = 0 and rv is
the smallest value satisfying P[wv ≥ rv] = 0. For S ⊆ V , we define c(S) =

∑
v∈S cv. An

algorithm can sequentially make queries to vertices to learn their weights, until it has enough
information to identify the minimum-weight vertex of each hyperedge. A query of v reveals
its precise weight wv, which is drawn independently from dv. If all vertices have the same
query cost, we say that the query costs are uniform and assume w.l.o.g. that cv = 1 for all
v ∈ V . Otherwise, we speak of arbitrary query costs. The objective of an algorithm is to
minimize the expected cost of the queries it makes.

We also consider the special case where we are given a graph G = (V, E) instead of a
hypergraph H = (V, E), called the graph orientation problem.

As an example consider a multi-national medical company that needs a certain product
(say, chemical ingredient, medicine or vaccine) for its operation in each country. The particular
products that are available in each country are different due to different approval mechanisms.
The task is to find the best product for each country, that is, the best among the approved
ones. The quality itself is independent of the country and can be determined by extensive
tests in a lab (queries). The set of products available in one country corresponds to a
hyperedge, and the problem of identifying the best product in each country is the hypergraph

1 We assume the distribution is given in such a way that P[wv ∈ (a, b)] can be computed in polynomial
time for every v ∈ V, a, b ∈ R. For all our algorithms it suffices to be given a probability matrix: rows
correspond to vertices v, columns to elementary intervals (ti, ti+1), and entries to P[wv ∈ (ti, ti+1)],
where t1, . . . , t2|V | represent the sorted elements of {ℓv, rv|v ∈ V }.
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orientation problem.

Our contribution. Our main result (Section 3) is an algorithm for the graph orientation
problem with competitive ratio 1

2 (α+
√

8 − α(4 − α)), assuming we have an α-approximation
for the vertex cover problem (which we need to solve on an induced subgraph of the given
graph). This factor is always between ϕ ≈ 1.618 (for α = 1), and 2 (for α = 2). We show that,
for the special cases of directing O(log |V |) hyperedges and sorting O(1) sets, the algorithm
can be applied with α = 1 in polynomial running time. The algorithm has a preprocessing
phase in two steps. First, we compute the probability that a vertex is mandatory, i.e., that
it is part of any feasible solution, and we query all vertices with probability over a certain
threshold. The second step uses a LP relaxation of the vertex cover problem to select some
further vertices to query. Next, we compute an α-approximation of the vertex cover on a
subgraph induced by the preprocessing, and we query the vertices in the given solution. The
algorithm finishes with a postprocessing that only queries mandatory intervals. For the
analysis, we show two main facts: (1) the expected optimal solution can be bounded by the
expected optimal solutions for the subproblems induced by a partition of the vertices; (2) for
the subproblem on which we compute a vertex cover, the expected optimal solution can be
bounded by applying the Kőnig-Egerváry theorem [52] on a particular bipartite graph, in
case of uniform costs. When given arbitrary query costs, we show in the full version [6] that
we can utilize a technique of splitting the vertices in order to obtain a collection of disjoint
stars with obvious vertex covers that imply a bound on the expected optimum.

We further show how to generalize the algorithm to hypergraphs. Unfortunately in this
case it is #P-hard to compute the probability of a vertex being mandatory, but we can
approximate it by sampling. This yields a randomized algorithm that attains, with high
probability, a competitive ratio arbitrarily close to the expression given above for graphs.
Here, we need to solve the vertex cover problem on an induced subgraph of an auxiliary
graph that contains, for each hyperedge of the given hypergraph, all edges between the node
with the leftmost interval and the nodes whose intervals intersect that interval.

We also consider a natural alternative algorithm (Section 4) that starts with a particular
vertex cover solution followed by adaptively querying remaining vertices. We prove a
competitive ratio of 4/3 on special cases, namely, for bipartite graphs with arbitrary cost and
for a single hyperedge with uniform costs, and complement this by matching lower bounds.

Related work. Graph orientation problems are fundamental in the area of graph theory
and combinatorial optimization. In general, graph orientation refers to the task of giving
an orientation to edges in an undirected graph such that some given requirement is met.
Different types of requirements have been investigated. While Robbins [50] initiated research
on connectivity and reachability requirements already in the 1930s, most work is concerned
with degree-constraints; cf. overviews given by Schrijver [52, Chap. 61] and Frank [29, Chap. 9].

Our requirement, orienting each edge towards its node with minimum weight, becomes
challenging when there is uncertainty in the node weights. While there are different ways of
modeling uncertainty in the input data, the model of explorable uncertainty was introduced
by Kahan [40]. He considers the task of identifying the minimum element in a set of
uncertainty intervals, which is equivalent to orienting a single hyperedge. Unlike in our
model, no distributional information is known, and an adversary can choose weights in a
worst-case manner from the intervals. Kahan [40] shows that querying the intervals in order
of non-decreasing left endpoints requires at most one more query than the optimal query
set, thus giving a competitive ratio of 2. Further, he shows that this is best possible in the

ESA 2021
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adversarial model.
Subsequent work addresses finding the k-th smallest value in a set of uncertainty inter-

vals [27,37], caching problems [49], computing a function value [41], and classical combinatorial
optimization problems, such as shortest path [26], knapsack [31], scheduling problems [2,3,21],
minimum spanning tree and matroids [22,25,28,45,46]. Recent work on sorting elements of a
single or multiple non-disjoint sets is particularly relevant as it is a special case of the graph
orientation problem [24,38]. For sorting a single set in the adversarial explorable uncertainty
model, there is a 2-competitive algorithm and it is best possible, even for arbitrary query
costs [38]. The competitive ratio can be improved to 1.5 for uniform query cost by using
randomization [38]. Algorithms with limited adaptivity have been proposed in [23].

Although the adversarial model is arguably pessimistic and real-world applications often
come with some distributional information, surprisingly little is known on stochastic variants
of explorable uncertainty. The only previous work we are aware of is by Chaplick et al. [16], in
which they studied stochastic uncertainty for the problem of sorting a given set of uncertain
elements, and for the problem of determining the minimum element in a given set of uncertain
elements. They showed that the optimal decision tree (i.e., an algorithm that minimizes the
expected query cost among all algorithms) for a given instance of the sorting problem can be
computed in polynomial time. For the minimum problem, they leave open whether an optimal
decision tree can be determined in polynomial time, but give a 1.5-competitive algorithm
and an algorithm that guarantees a bound slightly smaller than 1.5 on the expectation of
the ratio between the query cost of the algorithm and the optimal query cost. The problem
of scheduling with testing [42] is also in the spirit of stochastic explorable uncertainty but
less relevant here.

There are many other stochastic problems that take exploration cost into account. Some
of the earliest work has studied multi-armed bandits [15,30,54] and Weitzman’s Pandora’s
box problem [55], which are prime examples for analyzing the tradeoff between the cost for
exploration and the benefit from exploiting gained information. More recently, query-variants
of combinatorial optimization problems received some attention, in general [33,53], and for
specific problems such as stochastic knapsack [20, 43], orienteering [8, 34], matching [5, 7,
12, 13, 17], and probing problems [1, 35, 36]. Typically such work employs a query-commit
model, meaning that queried elements must be part of the solution, or solution elements are
required to be queried. These are quite strong requirements that lead to a different flavor of
the cost-benefit tradeoff.

Research involving queries to identify particular graph structures or elements, or queries
to verify certain properties, can be found in various flavors. A well-studied problem class
is property testing [32], and there are many more, see e.g., [4, 11, 18, 44, 48, 51]. Without
describing such problems in detail, we emphasize a fundamental difference to our work.
Typically, in these query models, the bounds on the number of queries made by an algorithm
are absolute numbers, i.e., given as a function of the input size, but independent of the input
graph itself and without any comparison to the minimum number of queries needed for the
given graph.

2 Definitions and Preliminary Results

The hypergraph orientation problem and the graph orientation problem have already been
defined in Section 1. In this section we first give additional definitions and discuss how we
measure the performance of an algorithm. Then we introduce the concept of mandatory
vertices and show how the probability for a vertex to be mandatory can be computed or
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at least approximated efficiently. We also give a lower bound showing that no algorithm
can achieve competitive ratio better than 4

3 . Next, based on the concept of witness sets, we
define the vertex cover instance associated with an instance of our problem and define a class
of vertex cover-based algorithms, which includes all the algorithms we propose in this paper.
Finally, we characterize the optimal query set for each realization and give lower bounds on
the expected optimal query cost, which we will use later in the analysis of our algorithms.

Definitions. To measure the performance of an algorithm, we compare the expected cost
of the queries it makes to the expected optimal query cost. Formally, given a realization
of the values, we call feasible query set a set of vertices to be queried that permits one to
identify the minimum-weight vertex in every hyperedge. Note that a query set is feasible
if, for each hyperedge, it either queries the node v with minimum weight wv and all other
nodes whose intervals contain wv, or it does not query the node v with minimum weight but
queries all nodes whose intervals overlap Iv, and in addition the precise weights of all those
intervals lie to the right of Iv. An optimal query set is a feasible query set of minimum query
cost. We denote by E[OPT] the expected query cost of an optimal query set. Similarly, we
denote by E[A] the expected query cost of the query set queried by an algorithm A. The
supremum of E[A]/E[OPT], over all instances of the problem, is called the competitive ratio
of A. Alternatively, one could compare E[A] against the cost E[A∗] of an optimal adaptive
algorithm A∗. However, in explorable uncertainty, it is standard to compare against the
optimal query set, and, since E[OPT ] is a lower bound on E[A∗], all our algorithmic results
translate to this alternative setting.

Let F ∈ E be a hyperedge consisting of vertices v1, . . . , vk, indexed in order of non-
decreasing left endpoints of the intervals, i.e., ℓv1 ≤ . . . ≤ ℓvk

. We call v1 the leftmost vertex
of F . We can assume that Iv1 ∩ Ivi

≠ ∅ for all 2 ≤ i ≤ k, because otherwise the vertex vi

could be removed from the hyperedge F . For the special case of graphs, this means that we
assume Iv ∩ Iu ̸= ∅ for each {u, v} ∈ E, since otherwise we could simply remove the edge.

Mandatory vertices, probability to be mandatory. A vertex v is called mandatory if it
belongs to every feasible query set for the given realization. For example, if for some edge
{u, v}, vertex u has already been queried and its value wu belongs to the interval Iv, then v

is known to be mandatory. The following lemma was shown in [24] and fully characterizes
mandatory vertices.

▶ Lemma 2.1. A vertex v ∈ V is mandatory if and only if there is a hyperedge F ∈ E

with v ∈ F such that either (i) v is a minimum-weight vertex of F and wu ∈ Iv for
some u ∈ F \ {v}, or (ii) v is not a minimum-weight vertex of F and wu ∈ Iv for the
minimum-weight vertex u of F .

For a hyperedge F = {v1, . . . , vk}, where the vertices are again indexed by non-decreasing
left endpoints, it was shown in [16, Section 3] that, if Ivi

⊆ Iv1 for some 2 ≤ i ≤ k, then
v1 is mandatory for every realization. Thus, every algorithm can iteratively query all such
elements in a preprocessing step, without worsening the competitive ratio. In the remainder
of the paper, we assume w.l.o.g. that the instance under consideration is already preprocessed.

Similarly, if a hyperedge contains vertices u, v such that v has not been queried yet and
is the leftmost vertex, while a query of u has revealed that wu ∈ Iv, then it follows from
Lemma 2.1 that v is mandatory for every realization of the unqueried vertices. The final
stage of our algorithms will consist of querying mandatory vertices that are identified by this
criterion, until the instance is solved.

ESA 2021
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Figure 1 Instance and mandatory probabilities used in the proof of Theorem 2.3.

We denote by pv the probability that a vertex v is mandatory. Querying vertices v ∈ V

that have a high probability pv is a key element of our algorithms. For graphs, pv is easy
to compute as, by Lemma 2.1, v is mandatory iff wu ∈ Iv for some neighbor vertex u.
Hence, pv = 1 −

∏
u:{u,v}∈E P[wu ̸∈ Iv]. For hypergraphs, however, we can show that the

computation of pv is #P-hard, even if all hyperedges have size 3. Luckily it is not difficult to
get a good estimate of the probabilities to be mandatory for hypergraphs using sampling.

▶ Lemma 2.2. There is a polynomial-time randomized algorithm that, given a hypergraph
H = (V, E), a vertex v ∈ V , and parameters ϵ, δ ∈ (0, 1), produces a value y such that
|y − pv| ≥ ϵ with probability at most δ. Its time complexity is O(|V | ln(1/δ)/ϵ2).

General lower bound. We have the following lower bound.

▶ Theorem 2.3. Every algorithm for the graph orientation problem has competitive ratio at
least 4

3 , even for uniform query costs and even if no restriction on the running time of the
algorithm is imposed.

Proof. Consider three vertices x, y, z, with Ix = (0, 2) and Iy = Iz = (1, 3), and uniform
query costs cx = cy = cz = 1. The only edges are {x, y} and {x, z}. The probabilities are
such that P[wx ∈ (1, 2)] = 1

2 and P[wy ∈ (1, 2)] = P[wz ∈ (1, 2)] = ϵ, for some 0 < ϵ ≪ 1
2 ;

see Figure 1. If wx ∈ (0, 1], which happens with probability 1
2 , querying x is enough. If

wx ∈ (1, 2) and wy, wz ∈ [2, 3), which happens with probability 1
2 (1 − ϵ)2, querying y and z

is enough. Otherwise, all three vertices must be queried. We have

E[OPT] = 1
2 · 1 + 1

2(1 − ϵ)2 · 2 + 1
2

(
1 − (1 − ϵ)2

)
· 3 = 2 − (1 − ϵ)2

2 ,

which tends to 3
2 as ϵ approaches 0. Since y and z are identical and we can assume that an

algorithm always queries first a vertex that it knows to be mandatory (if there is one), we
only have three possible decision trees to consider:
1. First query x; if wx ∈ (1, 2), then query y and z. The expected query cost is 2.
2. First query y. If wy ∈ (1, 2), then query x, and query z if wx ∈ (1, 2). If wy ∈ [2, 3), then

query z, and query x if wz ∈ (1, 2). The expected query cost is 1 + 3
2 ϵ + (1 − ϵ)(1 + ϵ),

which tends to 2 as ϵ approaches 0.
3. First query y. Whatever happens, query x, then query z if wx ∈ (1, 2). The expected

query cost is 5
2 , so this is never better than the previous options.

With either choice (even randomized), the competitive ratio tends to at least 4
3 as ϵ → 0. ◀

This lower bound can be adapted for a single hyperedge {x, y, z}. For arbitrary query
costs, it works even for a single edge {x, y}, by taking cx = 1 and cy = 2.

Witness sets, vertex cover instance, vertex cover-based algorithms. Another key concept
of our algorithms is to exploit witness sets [14, 25]. A subset W ⊆ V is a witness set if
W ∩ Q ̸= ∅ for all feasible query sets Q. The following lemma was shown in [40].
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▶ Lemma 2.4. Let F = {v1, . . . , vk} be a hyperedge, and let v1 be the leftmost vertex of F .
Then {v1, vi} is a witness set for each 2 ≤ i ≤ k.

The lemma implies that one can obtain a 2-competitive algorithm in the adversarial model
for the hyperedge orientation problem: For uniform query costs, it suffices to repeatedly query
witness sets of size 2 until the instance is solved, by a standard witness set argument [25].
For arbitrary query costs, this approach can be combined with the local ratio technique [9] to
obtain the same competitive ratio (in a similar way as done in [38] for the sorting problem).
Our goal is to achieve better competitive ratios in the stochastic setting. Motivated by
Lemma 2.4, we can now define the vertex cover instance.

▶ Definition 2.5. Given a hypergraph H = (V, E), the vertex cover instance of H is the
graph Ḡ = (V, Ē) with {v, u} ∈ Ē if and only if there is a hyperedge F ∈ E such that v, u ∈ F ,
v is leftmost in F and Iv ∩ Iu ̸= ∅. For the special case of a graph G instead of a hypergraph
H, it holds that Ḡ = G.

Since each edge of the vertex cover instance Ḡ is a witness set by Lemma 2.4, we can
observe that each feasible query set Q is a vertex cover of Ḡ. Using the vertex cover instance,
we can define a class of algorithms for the hypergraph orientation problem as follows: An
algorithm is vertex cover-based if it implements the following pattern:
1. Non-adaptively query a vertex cover V C of Ḡ;
2. Iteratively query mandatory vertices until the minimum-weight vertex of each hyperedge

is known: For each hyperedge F ∈ E for which the minimum weight is still unknown,
query the vertices in order of left endpoints until the minimum weight is found.

By definition of the second step, each vertex cover-based algorithm clearly orients each
hyperedge. Furthermore, Lemma 2.1 implies that each vertex queried in the last step is
indeed mandatory for all realizations that are consistent with the currently known information,
i.e., the weights of the previously queried vertices. For graphs, this is easy to see, and for
hypergraphs, this can be shown as follows: For a hyperedge F that isn’t solved after the
first step and has leftmost vertex v initially, the vertex cover V C has queried v or all other
vertices of F . In the latter case, v is the only unqueried vertex of F and Iv must contain the
precise weight of one of the other vertices, hence v is mandatory. In the former case, the
remaining candidates for being the minimum-weight vertex are (1) the vertex with leftmost
precise weight among those queried in the first step, and (2) the unqueried vertices whose
intervals contain that precise weight. It is then clear that the leftmost vertex is mandatory,
and querying it either solves the hyperedge or yields a situation of the same type.

All the algorithms we propose in this paper are vertex cover-based. We have the following
lower bounds for vertex cover-based algorithms.

▶ Theorem 2.6. No vertex cover-based algorithm has competitive ratio better than 3
2 for the

hypergraph orientation problem. This result holds even in the following special cases:
1. The graph has only a single hyperedge but the query costs are not uniform.
2. The query costs are uniform and the vertex cover instance Ḡ is bipartite.
3. The instance is a non-bipartite graph orientation instance with uniform query costs.

We remark that the second step of vertex cover-based algorithms must be adaptive: In
the full version we show that any algorithm consisting of two non-adaptive stages cannot
have competitive ratio o(log n), even for a single hyperedge with n vertices and uniform
query costs.

ESA 2021
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Bounds on E[OPT]. Let R be the set of all possible realizations and let OPT(R) for R ∈ R
be the optimal query cost for realization R. As each feasible query set Q must include a
vertex cover of Ḡ, the minimum weight of a vertex cover of Ḡ (using the query costs as
weights) is a lower bound on the optimal query cost for each realization and, thus, on E[OPT].
This observation in combination with Lemma 2.1 also gives us a way to identify an optimal
query set for a fixed realization, by using the knowledge of the exact vertex weights.

▶ Observation 2.7. For a fixed realization R of an instance of the hypergraph orientation
problem, let M be the set of vertices that are mandatory (cf. Lemma 2.1), and let V CM be
a minimum-weight vertex cover of Ḡ[V \ M ]. Then M ∪ V CM is an optimal query set for
realization R.

Computing OPT(R) for a fixed and known realization R is NP-hard [24]. This extends
to the hypergraph orientation problem and the computation of E[OPT]: We can reduce from
the problem of computing OPT(R) by concentrating the probability mass of all intervals
onto the weights in realization R. The reduction of [24] in combination with [19] also implies
APX-hardness.

To analyze the performance of our algorithms, we compare the expected cost of the
algorithms to the expected cost of the optimal solution. By Observation 2.7, c(M) + c(V CM )
is the minimum query cost for a fixed realization R, where M ⊆ V is the set of mandatory
elements in the realization and V CM is a minimum-weight vertex cover for the subgraph
Ḡ[V \ M ] of the vertex cover instance Ḡ = (V, Ē) induced by V \ M . Thus, the optimal
solution for a fixed realization is completely characterized by the set of mandatory elements
in the realization. Using this, we can characterize E[OPT] as E[OPT] =

∑
M⊆V p(M) ·

c(M) +
∑

M⊆V p(M) · c(V CM ), where p(M) denotes the probability that M is the set of
mandatory elements. It follows that

∑
M⊆V p(M) · c(M) =

∑
v∈V pv · c(v), since both terms

describe the expected cost for querying mandatory elements, which leads to the following
characterization of E[OPT]:

E[OPT] =
∑
v∈V

pv · cv +
∑

M⊆V

p(M) · c(V CM ).

A key technique for our analysis is lower bounding E[OPT] by partitioning the op-
timal solution into subproblems and discarding dependencies between elements in different
subproblems.

▶ Definition 2.8. For a realization R and any subset S ⊆ V , let OPTS = minQ∈Q c(Q ∩ S),
where Q is the set of all feasible query sets for realization R.

▶ Lemma 2.9. Let S1, . . . , Sk be a partition of V . Then E[OPT] ≥
∑k

i=1 E[OPTSi ].

Proof. We start the proof by characterizing E[OPTSi ] for each i ∈ {1, . . . , k}. Let R ∈ R be
a realization in which M is the set of mandatory elements. Then OPTSi

needs to contain all
mandatory elements of Si, and resolve all remaining dependencies between vertices of Si, i.e.,
query a minimum-weight vertex cover V CSi

M for the subgraph Ḡ[Si \ M ]. Thus, it follows

E[OPTSi ] =
∑
v∈Si

pv · cv +
∑

M⊆V

p(M) · c(V CSi

M ). (1)
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By summing Equation (1) over all i ∈ {1, . . . , k}, we obtain the lemma:

k∑
i=1

E[OPTSi
] =

k∑
i=1

 ∑
v∈Si

pv · cv +
∑

M⊆V

p(M) · c(V CSi

M )


=

∑
v∈V

pv · cv +
∑

M⊆V

p(M) ·

 k∑
i=1

c(V CSi

M )


≤

∑
v∈V

pv · cv +
∑

M⊆V

p(M) · c(V CM ) = E[OPT],

where the second equality follows from S1, . . . , Sk being a partition. The inequality follows
from

∑k
i=1 c(V CSi

M ) being the cost of a minimum weighted vertex cover for a subgraph of
G[V \ M ], while c(V CM ) is the minimum cost for a vertex cover of the whole graph. ◀

For the case of arbitrary query costs, we will sometimes need to partition V in such a
way that a vertex v can be split into fractions that are in different parts of the partition. We
view each fraction as a copy of v, and the split is done in such a way that the query costs of
all copies of v add up to cv. Further, the probability distribution for being mandatory in the
resulting instance is such that either all copies of v are mandatory or none of them is, and
the former happens with probability pv. (A detailed discussion of this process can be found
in the full version.) We refer to the application of this operation to a vertex as a vertex split
and note that it can be applied repeatedly.

▶ Observation 2.10. Let OPT′ be the optimal solution for an instance that is created by
iteratively executing vertex splits. Then, E[OPT′] = E[OPT]. Furthermore, Lemma 2.9 also
applies to E[OPT′] and the modified instance.

3 A Threshold Algorithm for Orienting Hypergraphs

We present an algorithm for orienting graphs and its generalization to hypergraphs.

3.1 Orienting Graphs
We consider the graph orientation problem. As a subproblem, we solve a vertex cover problem.
This problem is NP-hard and 2-approximation algorithms are known [56]. For several special
graph classes, there are improved algorithms [39]. Using an α-approximation as a black box,
we give a competitive ratio between ϕ ≈ 1.618 (α = 1) and 2 (α = 2) as a function depending
on α.

Algorithm 1 Threshold

Input: Instance G = (V, E), pv for each v ∈ V , parameter d ∈ [0, 1],
and an α-approximation black box for the vertex cover problem

1 Let M = {v ∈ V | pv ≥ d};
2 Solve (LP) for G[V \ M ] and let x∗ be an optimal basic feasible solution;
3 Let V1 = {v ∈ V | x∗

v = 1} and similarly V1/2, V0 ;
4 Use the α-approximation black box to approximate a vertex cover V C ′ for G[V1/2];
5 Query Q = M ∪ V1 ∪ V C ′; /* Q is a vertex cover of G */
6 Query the mandatory elements of V \ Q ;
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Algorithm 1 is parameterized by a threshold d ∈ [0, 1], which is optimized depending on
the approximation ratio α of the chosen vertex cover procedure. The algorithm executes a
preprocessing of the vertex cover instance by using the following classical LP relaxation, for
which each optimal basic feasible solution is half-integral [47]:

min
∑

v∈V cv · xv

s.t. xv + xu ≥ 1 ∀{u, v} ∈ E

xv ≥ 0 ∀v ∈ V

(LP)

▶ Theorem 3.1. Given an α-approximation with 1 ≤ α ≤ 2 for the vertex cover problem
(on the induced subgraph G[V1/2], see Line 4), Threshold with parameter d achieves a
competitive ratio of max{ 1

d , α + (2 − α) · d} for the graph orientation problem. Optimizing d

yields a competitive ratio of 1
2 (α +

√
8 − α(4 − α)).

Proof. Here, we show the result for uniform query costs. The generalization to arbitrary
query costs requires an additional technical step involving vertex splitting and is discussed
in the full version. Since Q is a vertex cover for G, querying it in Line 5 and resolving all
remaining dependencies in Line 6 clearly solves the graph orientation problem. Note that
V \ Q is an independent set in G, and thus the nodes in V \ Q can only be made mandatory
by the results of the queries to Q. Hence, it is known after Line 5 which nodes in V \ Q are
mandatory, and they can be queried in Line 6 in arbitrary order (or in parallel).

We continue by showing the competitive ratio of max{ 1
d , α + (2 − α) · d}. Algebraic trans-

formations show that the optimal choice for the threshold is d(α) = 2/(α +
√

8 − α(4 − α)).
The desired competitive ratio for Threshold with d = d(α) follows.

The algorithm queries set Q and all other vertices only if they are mandatory, hence

E[ALG] = |Q| +
∑

v∈V \Q

pv = |M | + |V1| + |V C ′| +
∑
v∈V0

pv +
∑

v∈V1/2\V C′

pv. (2)

The expected optimal cost can be lower bounded by partitioning and Lemma 2.9:

E[OPT] ≥ E[OPTM ] + E[OPTV1∪V0 ] + E[OPTV1/2 ]. (3)

In the remainder we compare E[ALG] with E[OPT] component-wise.
We can lower bound E[OPTM ] by

∑
v∈M pv using Equation (1). By definition of M , it

holds that E[OPTM ] ≥
∑

v∈M pv ≥ d · |M |. Thus,

|M | ≤ 1
d

· E[OPTM ]. (4)

Next, we compare |V1| +
∑

v∈V0
pv with E[OPTV1∪V0 ]. For this purpose, let G[V1 ∪ V0]

be the subgraph of G induced by V1 ∪ V0, and let G′[V1 ∪ V0] be the bipartite graph that
is created by removing all edges between elements of V1 from G[V1 ∪ V0]. It follows from
similar arguments as in [47, Theorem 2] that V1 is a minimum vertex cover of G′[V1 ∪ V0].
This allows us to apply the famous Kőnig-Egerváry theorem [52]. By the latter there is
a matching h mapping each v ∈ V1 to a distinct h(v) ∈ V0 with {v, h(v)} ∈ E. Denoting
S = {h(v) | v ∈ V1}, we can infer E[OPTV1∪V0 ] ≥ E[OPTV1∪S ] + E[OPTV0\S ].

Any feasible solution must query at least one endpoint of all edges of the form {v, h(v)}.
This implies E[OPTV1∪S ] ≥ |V1|. Since additionally ph(v) ≤ d for each h(v) ∈ S, we get∑

v∈V1

(
1 + ph(v)

)
≤ (1 + d) · |V1| ≤ (1 + d) · E[OPTV1∪S ]. (5)
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By lower bounding E[OPTV0\S ] with
∑

v∈V0\S pv and using (5), we get

|V1| +
∑
v∈V0

pv =
∑
v∈V1

(
1 + ph(v)

)
+

∑
v∈V0\S

pv (6)

≤ (1 + d) · E[OPTV1∪S ] + E[OPTV0\S ] ≤ (1 + d) · E[OPTV1∪V0 ].

Finally, consider the term |V C ′| +
∑

v∈V1/2\V C′ pv. Let V C∗ be a minimum cardinality
vertex cover for G[V1/2]. Then, it holds |V C∗| ≥ 1

2 · |V1/2|. This is, because in the optimal
basic feasible solution to the LP relaxation x∗, each vertex in V1/2 has a value of 1

2 . A vertex
cover with |V C∗| < 1

2 · |V1/2| would contradict the optimality of x∗. The following part of the
analysis crucially relies on |V C∗| ≥ 1

2 · |V1/2|, which is the reason why Threshold executes
the LP relaxation-based preprocessing before applying the α-approximation.

Now, the expected cost of the algorithm for the subgraph G[V1/2] is |V C ′| +
∑

v∈I′ pv ≤
|V C ′| + d · |I ′| with I ′ = V1/2 \ V C ′. Since |V C ′| ≥ |V C∗| ≥ 1

2 · |V1/2|, there is a tradeoff
between the quality of |V C ′| and the additional cost of d · |I ′|. If |V C ′| is close to 1

2 · |V1/2|,
then it is close to |V C∗| but, on the other hand, |I ′| then is close to 1

2 · |V1/2|, which means
that the additional cost d · |I ′| is high. Vice versa, if the cost for |V C ′| is high because it
is larger than 1

2 · |V1/2|, then |I ′| is close to zero and the additional cost d · |I ′| is low. We
exploit this tradeoff and upper bound |V C′|+d·|I′|

|V C∗| in terms of the approximation factor α

of the vertex cover approximation. Assume that the approximation factor α is tight, i.e.,
|V C ′| = α·|V C∗|. Since d ≤ 1, this is the worst case for the ratio |V C′|+d·|I′|

|V C∗| . (In other words,
if the approximation factor was not tight, we could replace α by the approximation factor
that is actually achieved and carry out the following calculations with that smaller value of
α instead, yielding an even better bound.) Using |V C ′| = α · |V C∗| and |V C∗| ≥ 1

2 · |V1/2|,
we can derive

|I ′| = |V1/2| − |V C ′| = |V1/2| − α · |V C∗| ≤ (2 − α) · |V C∗|.

For the cost of the algorithm for subgraph G[V1/2] we get

|V C ′| + d · |I ′| ≤ α · |V C∗| + d · (2 − α) · |V C∗| = (α + (2 − α) · d) · |V C∗|.

Since |V C∗| ≤ E[OPTV1/2 ], we get

|V C ′| + d · |I ′| ≤ (α + (2 − α) · d) · E[OPTV1/2 ]. (7)

Combining Equations (2), (4), (6) and (7), we can upper bound the cost of the algorithm:

E[ALG] = |M | + |V1| +
∑
v∈V0

pv + |V C ′| +
∑

v∈V1/2\V C′

pv.

≤ 1
d

· E[OPTM ] + (1 + d) · E[OPTV1∪V0 ] + (α + (2 − α) · d) · E[OPTV1/2 ]

≤ max
{

1
d

, (1 + d), (α + (2 − α) · d)
}

· E[OPT],

where the last inequality follows from the lower bound on OPT in (3). Observe that for
any d ∈ [0, 1] and α ∈ [1, 2], it holds that (α + (2 − α) · d) ≥ (1 + d). We conclude with
E[ALG] ≤ max{ 1

d , (α + (2 − α) · d)} · E[OPT], which implies the theorem. ◀

In the full version of the paper, we show that the analysis of Threshold is tight. To
benefit from a better approximation factor than α = 2 for solving the minimum vertex cover
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problem, we would need to know in advance the specialized graph class on which we want
to solve this subproblem. In some cases, we can benefit from optimal or approximation
algorithms, e.g., using Threshold with the PTAS for planar graphs [10] allows us to achieve
a competitive ratio of at most 1.618 + ϵ, for any ϵ > 0, if the input graph is planar.

3.2 Orienting Hypergraphs
▶ Theorem 3.2. Given an α-approximation with 1 ≤ α ≤ 2 for the vertex cover
problem (on the induced subgraph Ḡ[V1/2] of the vertex cover instance given by Defin-
ition 2.5, cf. Line 4), a modified version of the Threshold algorithm solves the hy-
pergraph orientation problem with arbitrary query costs with competitive ratio R =
1
2

(
α +

√
α2 + 4(2 − α)(1 + αϵ + (2 − α)ϵ2) + (4 − 2α)ϵ

)
with probability at least 1 − δ. Its

running time is upper bounded by the complexity of the sampling procedure and the vertex
cover black box procedure.

Proof. The modified algorithm works with the vertex cover instance Ḡ instead of the given
hypergraph H, following Definition 2.5. In Line 1, we use d(α) = 1/R + ϵ. In Line 6, we
iteratively query mandatory vertices until the instance is solved. In addition, we use a random
estimation Yv of pv, instead of the precise probability, using the procedure described in
Lemma 2.2 with parameters ϵ and δ′ such that 1 − δ = (1 − δ′)n. As a result, with probability
at least 1 − δ we have that for every vertex v, the estimation Yv has absolute error at most ϵ.
In case of this event we obtain the following bound on the cost (which is optimized for the
chosen value of d), namely E[ALG] ≤ max{ 1

d−ϵ , (1+d+ ϵ), (α+(2−α)(d+ ϵ))} ·E[OPT]. ◀

Sorting a set of elements is equivalent to determining, for each pair of elements, which of
the two has smaller weight. Hence, the problem of sorting multiple sets of elements with
uncertain weights is a special case of the graph orientation problem: For each set to be
sorted, the edge set of a complete graph on its elements is added to a graph, and the resulting
instance of the graph orientation problem is then equivalent to the given instance of the
sorting problem. We can show the following theorem.

▶ Theorem 3.3. For the special cases of orienting O(log |V |) hyperedges and sorting O(1)
sets, Threshold can be applied with α = 1 in polynomial running time.

4 Vertex Cover-Based Algorithms: Improved Results for Special Cases

Consider an arbitrary vertex cover-based algorithm ALG. It queries a vertex cover V C in
the first stage, and continues with elements of V \ V C if they are mandatory. Thus,

E[ALG] = c(V C) +
∑

v∈V \V C

pv · cv =
∑

v∈V C

(
pv · cv + (1 − pv) · cv

)
+

∑
v∈V \V C

pv · cv

=
∑
v∈V

pv · cv +
∑

v∈V C

(1 − pv) · cv.

Since the first term is independent of V C, ALG is the best possible vertex cover-based
algorithm if it minimizes

∑
v∈V C(1 − pv) · cv. We refer to this algorithm as BestVC.

To implement BestVC, we need the exact value pv, for all v ∈ V , and an optimal
algorithm for computing a weighted vertex cover. As mentioned in Section 2, the first
problem is #P-hard in hypergraphs, but it can be solved exactly in polynomial time for
graphs. The weighted vertex cover problem can be solved optimally in polynomial time for
bipartite graphs.
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In general, BestVC has competitive ratio at least 1.5 (Theorem 2.6). However, we show
in the following that it is 4/3-competitive for two special cases. It remains open whether
BestVC still outperforms Threshold if the vertex cover is only approximated with a factor
α > 1.

4.1 A Best Possible Algorithm for Orienting Bipartite Graphs
▶ Theorem 4.1. BestVC is 4

3 -competitive for the bipartite graph orientation problem.

Proof. In the full version of the paper, we show that BestVC is 4
3 -competitive for the

problem of orienting stars if both vertex cover-based algorithms (either querying the leaves
or the center first) have the same expected cost. In this proof, we divide the instance
into subproblems that fulfill these requirements, and use the result for stars to infer 4

3 -
competitiveness for bipartite graphs.

Let V C be a minimum-weight vertex cover (with weights cv · (1 − pv)) as computed by
BestVC in the first phase. By the Kőnig-Egerváry theorem (e.g., [52]), there is a function
π : E → R with

∑
{u,v}∈E π(u, v) ≤ cv · (1 − pv) for each v ∈ V . By duality theory, the

constraint is tight for each v ∈ V C, and π(u, v) = 0 holds if both u and v are in V C. Thus,
we can interpret π as a function that distributes the weight of each v ∈ V C to its neighbors
outside of V C.

For each v ∈ V C and u ∈ V \ V C, let λu,v := π(u,v)
(1−pu)·cu

denote the fraction of the
weight of u that is used by π to cover the weight of v. Moreover, for u ∈ V \ V C, let
τu := 1 −

∑
{u,v}∈E λu,v be the fraction of the weight of u that is not used by π to cover the

weight of any v ∈ V C. Then, we can write the expected cost of BestVC as follows:

E[BestVC] =
∑

v∈V C

(
cv +

∑
u∈V \V C

pu · λu,v · cu

)
+

∑
u∈V \V C

pu · τu · cu. (8)

Using Observation 2.10, we compare E[BestVC] with the expected optimum E[OPT′] for
an instance G′ = (V ′, E′, c′) that is created by splitting vertices. We modify the mandatory
distribution as in Section 2, which implies E[OPT] = E[OPT′]. We add the following copies:
1. For each v ∈ V C, we add a copy v′ of v to V ′ with c′

v′ = cv.
2. For all u ∈ V \ V C and v ∈ V C with λu,v > 0, we add a copy u′

v of u to V ′ with
c′

u′
v

= λu,v · cu.
3. For each u ∈ V \ V C with τu > 0, we add a copy u′ of u to V ′ with c′

u′ = τu · cu.
Let p′

v denote the probability of v being mandatory for instance G′. By definition of the
vertex split operation, we have pv = p′

u for each v ∈ V and each copy u ∈ V ′ of v. Further,
for each v ∈ V C, define H ′

v = {u′
v | u ∈ V with λu,v > 0}. By definition of H ′

v and G′, all
H ′

v are pairwise disjoint. Let H′ =
⋃

v∈V C

(
H ′

v ∪ {v′}
)
; then we can express E[BestVC] as

follows:

E[BestVC] =
∑

v∈V C

(
cv +

∑
u∈V \V C

pu · λu,v · cu

)
+

∑
u∈V \V C

pu · τu · cu

=
∑

v∈V C

(
c′

v′ +
∑

u∈H′
v

p′
u · c′

u

)
+

∑
u∈V ′\H′

p′
u · c′

u.

Similarly, we can lower bound E[OPT′] using Lemma 2.9:

E[OPT′] ≥
∑

v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

E[OPT′
{u}] ≥

∑
v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

p′
u · c′

u.

(9)
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Since the term
∑

u∈V ′\H′ p′
u · c′

u shows up in both inequalities, it remains, for each v ∈ V C,
to bound c′

v′ +
∑

u∈H′
v

p′
u · c′

u in terms of E[OPT′
H′

v∪{v′}]. By definition of H ′
v, we have

(1 − p′
v′) · c′

v′ =
∑

u∈H′
v
(1 − p′

u) · c′
u, which implies

c′
v′ +

∑
u∈H′

v

p′
u · c′

u = p′
v′ · c′

v′ +
∑

u∈H′
v

c′
u. (10)

The value E[OPT′
H′

v∪{v′}] corresponds to the expected optimum for the subproblem which
considers the subgraph induced by H ′

v ∪ {v′} (which is a star), uses p′
u as the mandatory

probability for each u ∈ H ′
v ∪ {v′}, and uses c′

u as the query cost of each u ∈ H ′
v ∪ {v′}. For

this subproblem, c′
v′ +

∑
u∈H′

v
p′

u ·c′
u corresponds to the expected cost of the vertex cover-based

algorithm that queries vertex cover {v′} in the first stage. Furthermore, p′
v′ · c′

v′ +
∑

u∈H′
v

c′
u

corresponds to the expected cost of the vertex-cover based algorithm that queries vertex
cover H ′

v in the first stage. In summary, we have a star orientation subproblem for which
both vertex cover-based algorithms (querying the leaves or the center first) have the same
expected cost (cf. Equation (10)). As a major technical step, we show that BestVC is
4
3 -competitive for such subproblems, which implies

c′
v′ +

∑
u∈H′

v

p′
u · c′

u ≤ 4
3 · E[OPT′

H′
v∪{v′}].

A corresponding lemma is proven in the full version. We remark that the lemma requires p′
v′

to be independent of each p′
u with u ∈ H ′

v; otherwise the subproblem does not correspond to
the star orientation problem. As the input graph is bipartite, such independence follows by
definition.

Using this inequality and Equation (9), we conclude that BestVC is 4/3-competitive.

E[BestVC] =
∑

v∈V C

(
c′

v′ +
∑

u∈H′
v

p′
u · c′

u

)
+

∑
u∈V ′\H′

p′
u · c′

u

≤ 4
3 ·

∑
v∈V C

E[OPT′
H′

v∪{v′}] +
∑

u∈V ′\H′

p′
u · c′

u ≤ 4
3 · E[OPT′] = 4

3 · E[OPT] ◀

4.2 An Almost Best Possible Algorithm for Orienting a Hyperedge
▶ Theorem 4.2. BestVC has a competitive ratio at most min{ 4

3 , n+1
n } for the hypergraph

orientation problem on a single hyperedge with n ≥ 2 vertices and uniform query costs. For a
hyperedge with only two vertices, the algorithm is 1.207-competitive.

Our analysis improves upon a (n + 1)/n-competitive algorithm by Chaplick et al. [16] in
case that the hyperedge has two or three vertices. Moreover, we show that this is near-optimal:
It is not hard to show a matching lower bound for two vertices and, due to Theorem 2.3 and
the theorem below, this is the best possible for three vertices, and in general the difference
between the upper and lower bounds is less than 4%.

▶ Theorem 4.3. Any algorithm for orienting a single hyperedge with n + 1 ≥ 2 vertices has
competitive ratio at least n2/(n2 − n + 1), even for uniform query costs.

Note that Theorem 4.2 is in contrast to the problem of orienting a hyperedge with arbitrary
query costs: In this setting, [16] showed that the algorithm is 1.5-competitive, which matches
the corresponding lower bound for vertex cover-based algorithms of Theorem 2.6.
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5 Conclusion

In this paper, we present algorithms for the (hyper)graph orientation problem under stochastic
explorable uncertainty. It remains open to determine the competitive ratio of BestVC
for the general (hyper)graph orientation problem, and to investigate how the algorithm
behaves if it has to rely on an α-approximation to solve the vertex cover subproblem. In
this context, one can consider the resulting algorithm as a standalone algorithm, or as a
subroutine for Threshold. Our analysis suggests that, to achieve a competitive ratio better
than 1.5, algorithms have to employ more adaptivity; exploiting this possibility remains an
open problem. Finally, it would be interesting to characterize the vertex cover instances
arising in our Threshold algorithm. In addition to the relevance from a combinatorial
point of view, such a characterization may allow an improved α-approximation algorithm for
those instances.
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