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Abstract

Lossy image compression strategies allow for more efficient
storage and transmission of data by encoding data to a re-
duced form. This is essential enable training with larger
datasets on less storage-equipped environments. However,
such compression can cause severe decline in performance
of deep Convolution Neural Network (CNN) architectures
even when mild compression is applied and the resulting
compressed imagery is visually identical. In this work, we
apply the lossy JPEG compression method with six discrete
levels of increasing compression {95, 75, 50, 15, 10, 5} to
infrared band (thermal) imagery. Our study quantitatively
evaluates the affect that increasing levels of lossy compres-
sion has upon the performance of characteristically diverse
object detection architectures (Cascade-RCNN, FSAF and
Deformable DETR) with respect to varying sizes of ob-
jects present in the dataset. When training and evaluating
on uncompressed data as a baseline, we achieve maximal
mean Average Precision (mAP) of 0.823 with Cascade R-
CNN across the FLIR dataset, outperforming prior work.
The impact of the lossy compression is more extreme at
higher compression levels (15, 10, 5) across all three CNN
architectures. However, re-training models on lossy com-
pressed imagery notably ameliorated performances for all
three CNN models with an average increment of ∼ 76% (at
higher compression level 5). Additionally, we demonstrate
the relative sensitivity of differing object areas {tiny, small,
medium, large} with respect to the compression level. We
show that tiny and small objects are more sensitive to com-
pression than medium and large objects. Overall, Cascade
R-CNN attains the maximal mAP across most of the object
area categories.

1. Introduction
The use of infrared-band (thermal) camera imagery (Figure
1) within the task of visual surveillance is well established
with applications within target detection, visual tracking,
behaviour analytics, home monitoring, and automotive en-
vironment perception [3, 24–26, 29, 44, 46]. The syner-
gistic nature of combining both visible-band and thermal-
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Figure 1. Exemplar infrared imagery from FLIR [16] contain-
ing different classes with varying object areas in bounding boxes:
tiny, small, medium, large [A]. Example imagery at different lossy
compression levels [B].

band imagery is advantageous when applied to a range of
computer vision applications [30, 34]. Valuable visual cues
can be provided in the infrared domain by thermal sensors
which visible-band sensors will fail to capture [22, 35]. A
major advantage of thermal imagery is that it is rarely influ-
enced by surrounding lighting changes and shadows, mean-
ing that objects-of-interest can be readily distinguished in
the dark, fog and other complex environments as opposed
to the scene illumination requirements of visible-band im-
agery.

The recent rise of Convolutional Neural Networks
(CNN) [23] have revolutionised visual tasks significantly
advancing the state-of-the-art in many applications. Within
object detection specifically, most efforts have focused on
detecting objects-of-interest in standard colour imagery by
using multi-stage [4, 20, 42], singe-stage [31, 41, 53] and
transformer-based [7, 55] detectors. These aforementioned
object detection based CNN methods rely heavily on ar-
chitectures that have been trained on large-scale colour im-
agery datasets such as ImageNet [11] PASCAL Visual Ob-
ject Classes (PASCAL-VOC) [15] or Microsoft Common



Objects in Context (MS-COCO) [32]. Introducing CNN to
object detection within thermal imagery is significantly hin-
dered by the absence of such annotated datasets of the same
scale and variety. In order to combat this challenge, meth-
ods such as transfer learning [17], generation of pseudo-
RGB equivalents [12], and domain adaptation [36] are used
to benefit an existing CNN model and raise an equivalent
level of CNN success for thermal band imagery. The work
of [17] focuses on thermal object detection by employing
a transfer learning approach. In this approach, the knowl-
edge obtained from the visible spectrum is transferred to the
thermal domain for object detection in the thermal domain.
The work of [12] implements image-to-image translation
frameworks to generate pseudo-RGB equivalents of a given
thermal image and then use a CNN architecture for object
detection in the thermal image. Recent work of [36] pro-
poses a self-supervised domain adaptation via an encoder-
decoder transformer network to develop a robust thermal
image object detector in autonomous driving.

Most of the solutions stated above have made a step to-
wards real-time processing which is vital to the application
of autonomous driving. Autonomous vehicles and other
such agents can utilise thermal-band sensors to provide a
necessary solution to accurately perceive the environment
even in differing light conditions, or night time. However,
the real-time transmission of high-resolution visible-band
and thermal-band data collected by the agent during infer-
ence can require substantial transmission overhead to pro-
cess in real-time, and large storage requirements for stor-
ing such data. Every fraction of a second of reaction time
counts for autonomous vehicles dealing with unexpected
obstructions in the path of motion, so reducing the transmis-
sion overhead is vital for improved safety. The use of com-
monplace lossy compression techniques, such as JPEG [49]
and MPEG [27] tackles such transmission and storage over-
heads by compressing the data to a reduced form; a down-
side of which is potential image quality degradation (Figure
1, B) which can affect the performance of computer vision
models. Work by [14] evaluates the affect of five types of
quality distortions and compression (blur, noise, contrast,
JPEG and JPEG2000) using CNN architectures when clas-
sifying a subset of the ImageNet dataset [11]. More recent
work by [38] thoroughly evaluates the impact of JPEG and
H.264 lossy compression on CNN architectures. They eval-
uate Faster R-CNN [42] upon the Pascal VOC dataset [15]
and find similarly to [14] that performance degrades rapidly
at high lossy compression levels.

The prior work on image compression stated above
largely focuses on the use of compression applied to visible-
domain imagery. Relatively few studies investigate the im-
pact upon CNN task performance with respect to differing
levels of compression applied to infrared-band (thermal) at
inference (deployment) time. In this work we make the fol-

lowing contributions:
– we investigate three diverse end-to-end CNN object

detection architectures, which differ in operation, i.e.,
multi-stage (Cascade R-CNN [4]), single-stage (FSAF
[53]) and transformer-based (Deformable DETR [55])
over thermal imagery.

– as thermal imagery exhibits inherently different prop-
erties from standard visible-band imagery, we examine
the impact that lossy image compression at differing
levels has upon CNN-based thermal object detection.

– furthermore, we thoroughly examine the impact of
lossy image compression with respect to in-image ob-
ject size definition, (tiny, small, medium, large) and
determine within which domains compression is most
impactful upon performance and hence where image
quality is most pertinent to deployed object detection
model performance.

2. Related Work
Object detection and classification in thermal imagery is an
active area of research [28, 37, 43]. A range of trial works
in the literature address the task of detecting people and ob-
jects in thermal imagery [12, 17, 22]. There has been a sig-
nificant amount of work on classifying and detecting people
and objects in thermal imagery using standard computer vi-
sion and machine learning models. An early method such
as a template-based approach, where Bertozzi et al, [2] im-
plements probabilistic human shape templates whilst Davis
and Keck [10] uses generalized person templates derived
from contour saliency maps for pedestrian detection un-
der thermal imagery. In [29], features decomposed by the
wavelet transform from the high brightness property of the
pedestrian pixels under thermal imagery were used as an
input to a support vector machine (SVM) classifier.

With the increasing popularity of deep CNN architec-
tures, several methods have been proposed for applying
deep learning methods to thermal imagery [12, 17, 28, 37,
43]. In most cases, this research was carried out in the field
of autonomous driving, where accurate detection of pedes-
trians and vehicles is vital. A transfer learning approach
with the YOLO [40] architecture has been carried out by
Abbot et al. [1], in which high-resolution thermal imagery
is used for training and low-resolution thermal is used for
evaluation purpose (to classify pedestrians and vehicles).
Devaguptapu et al. [12] address the data scarcity problem
in thermal imagery by utilising image-to-image translation
frameworks [54] to generate pseudo-RGB equivalents of
given thermal imagery, then employing Faster-RCNN [42]
for detecting object-of-interest. Faster-RCNN [42] has also
been trained with thermal imagery under a super-resolution
method to deal with the issue of a small number of pixels
which targets at the long-range have [51]. Chao et al. [5]
take another approach by proposing the one-stage detector
ThermalDet which utilises all the features in different levels



of the feature pyramid extracted by the backbone network,
resulting in higher detection accuracy than baseline (Faster
R-CNN) [42].

Some works propose the use of thermal imagery as a
complement of colour imagery by fusing both domains,
achieving superior results. The work of Liu et al. [33] in-
tegrates features from both colour and thermal at different
stages, resulting in better detection accuracy when com-
pared to the baseline (Faster R-CNN). A fusion method
was also explored via multi-layer fusion RPN. This was
used for integrating features in different branches, signifi-
cantly reducing the detection miss rate in several challeng-
ing datasets [9]. Later work such as [45] fuses both visi-
ble and thermal imagery via a fusion-based network for the
semantic segmentation of urban scenes. Namely the results
from RGB-Thermal Fusion Network (RTFNet) demonstrate
the superiority of the such an approach, even in challenging
lighting conditions. Similar to RTFNet, Multi-spectral Fu-
sion Networks (MFNet) architecture [19] which fuses vis-
ible and thermal imagery resulting in similar or higher ac-
curacy than state-of-the-art segmentation methods such as
SegNet.

While these efforts have shown good detection accuracy
performance under thermal imagery, implementing deep
CNN architectures requires heavy memory usage, substan-
tial storage and transmission infrastructure. There has been
substantial investigation of efficient storage and reducing
memory utilisation [14, 39, 50] but very few works have
examined the performance of these techniques applied to
thermal imagery. These limited studies open the door only
slightly on the question - what is the generalised impact of
lossy compression across a diverse set of deep neural net-
work object detection architectures with respect to varying
object size within infrared-band (thermal) imagery?

3. Proposed Approach
We outline the approach of this paper in the following sec-
tions. Our method utilises the JPEG compression method
(Section 3.2) across infrared-band (thermal) image data. We
iterate through six discrete levels of compression and com-
pare the effect that each level has on the performance of
object detection architectures (Section 3.1).

3.1. Object Detection Architectures
In this study we utilise three state-of-the-art, well-
established and characteristically diverse object detection
architectures as outlined in Table 1. These are namely: Cas-
cade R-CNN [4], Feature Selective Anchor-Free [53], and
Deformable End-to-End Detection with Transformers [55].
All architectures in this study utilise a ResNet-50 [21] back-
bone and are initialised with weights trained on COCO [32].
Cascade R-CNN (CR-CNN) [4]: Cascade Region-based
Convolutional Neural Network (Cascade R-CNN) is an
extension of R-CNN [18] which offers a solution to the

Table 1. Summary of object detection architectures.
Architecture Key Features
Cascade R-CNN [4] two-stage, anchor-based
FSAF [53] single-stage, anchor-free

Deformable DETR [55] transformer-based
single-stage, anchor-free

trade-off between low Intersection over Union (IoU) thresh-
olds inducing noisy detections and performance degrada-
tion with high IoU thresholds. It accomplishes this by train-
ing a sequence of detectors stage-by-stage with increasing
IoU thresholds to be more selective against false positives.
FSAF [53]: Feature Selective Anchor-Free (FSAF) is a
module for single-shot object detection can be added to de-
tectors with a feature pyramid structure and performs on-
line feature selection upon multi-level anchor-free branches.
This aims to address the limitations induced by heuristic-
guided feature selection and overlap-based anchor sam-
pling, leading to increased performance while introducing
negligible inference overhead.
Deformable DETR (DDETR) [55]: Detection Trans-
former (DETR) combines convolutional features with a
transformer architecture [47] which powerfully model se-
quential relations using multi-head attention. This means
that the DETR architecture does not rely on hand-crafted
components and as such can be trained fully end-to-end.
Deformable DETR is an extension to this architecture
which speeds up the convergence by having attention mod-
ules only attend to a small set of neighbouring points as well
as tackling the problem of representing objects at varying
scale.

3.2. Lossy Image Compression
For this work we use the lossy JPEG [48] compression al-
gorithm which is based on the discrete cosine transform
(DCT). The first step of JPEG is colour conversion where
the RGB data of the image is converted using the respec-
tive components of luminance (Y), blue projection (U) and
red projection (V). The resulting YUV image is then split
into 8 × 8 pixel blocks to be processed into the frequency
domain by the Discrete Cosine Transform (DCT). The next
step of quantisation is where the reduction of information
required to store the image takes place in which the resul-
tant DCT coefficient matrix is divided and rounded by the
quantisation matrix leading to a reduced form that provides
resolution amount with respect to how perceivable a given
image part is.

The quantisation is where the image quality of the re-
sulting compressed representation can be controlled by the
compression level parameter. If the value of this parameter
is 1, maximum compression will produce the lowest quality
of the data but will yield the smallest file size required to
store the data. Conversely, a value of 100 offers the least ef-
fective compression which will negligibly affect the quality



of the resultant image, producing a visually lossless image
and as such the file size will remain close to the original
image prior to compression.

3.3. Object Area Definition
The object detection dataset comprises of several object
classes with varying bounding box area size. In this work,
we further analyse each object class based on the object
area size. We adhere to the COCO [32] benchmark defini-
tions of three discrete categories of the object areas: small,
medium, large. Additionally, we introduce a new category,
tiny, where the object area is less than or equal to 202 pix-
els. The object areas (Figure 1, A) used in this work are
outlined in Table 2. In this work, we incorporate the thor-
ough study of the impact of the lossy image compression
on the four defined object areas (Table 2), and outline the
detection performance of CNN architectures (Section 3.1).

Table 2. Object area definition.
Object Area
tiny area ≤ 202

small area ≤ 322

medium 322 < area ≤ 962

large 962 < area

4. Experimental Setup
This section presents the dataset used, experimental strategy
and the implementation details of our experiments.

4.1. Dataset
The experimental setup comprises of following dataset.
FLIR [16]: The FLIR dataset provides annotated single
channel grayscale infrared imagery (Figure 1) of multiple
object classes, which are captured under clear-sky con-
ditions during both day (60%) and night (40%). Ther-
mal images are acquired with a FLIR Tau2 camera (Long
Wave Infrared Cameras - LWIR) with image resolution of
(640 × 512). In this work, we use the default training and
testing split provided in the dataset. We consider primarily
three classes, {Person, Bicycle, Car}, for our object detec-
tion task. The training and testing set consist of 7, 859 and
1, 360 images respectively. The details of the FLIR dataset
statistics are presented in Table 3. The object area-wise
(Section 3.3) statistics of each class is illustrated in Table
3.
Compressed datasets. To determine how much lossy JPEG
compression [48] is achievable within CNN object detec-
tion architectures on infrared imagery, the original uncom-
pressed FLIR [16] dataset is compressed at six different lev-
els {95, 75, 50, 15, 10, 5} to create the compressed versions
of the dataset (FLIR c), as depicted in (Figure 1, B).

4.2. Experimental Protocol
Our experiments consist of the following settings:

Table 3. FLIR [16] dataset statistics: class-wise number of in-
stances, % of {Train, Test} set.

Person Bicycle Car
Train-set 22,372 3,986 41,260
Objtiny 8923, 13.15% 993, 1.46% 10832, 15.97%
Objsmall 16304, 24.03% 2419, 3.57% 20665, 30.46%
Objmed 5590, 8.24% 1505, 2.22% 17056, 25.14%
Objlarge 478, 0.7% 62, 0.09% 3539, 5.22%

Test-set 5,779 471 5,432
Objtiny 765, 6.54% 55, 0.47% 807, 6.9%
Objsmall 2885, 24.67% 219, 1.87% 2248, 19.22%
Objmed 2575, 22.02% 230, 1.97% 2465, 21.08%
Objlarge 319, 2.73% 22, 0.19% 719, 6.15%

Images Train Test
7,859 1,360

– Firstly, the three CNN architectures (Section 3.1)
are trained and evaluated on uncompressed imagery,
(FLIR ⇒ FLIR), for benchmark purpose.

– Secondly, the CNN architectures are trained on un-
compressed imagery and evaluated on the compressed
imagery, (FLIR ⇒ FLIR c).

– Finally, each CNN architecture is re-trained with com-
pressed imagery at each of the six lossy compression
levels to determine whether resilience to compression
could be improved, and how much compression can
be achieved before a significant impact on object de-
tection performance is observed (FLIR c⇒ FLIR c).

4.3. Implementation Details

The CNN architectures (Section 3.1) are implemented using
the MMDetection framework [8]. All experiments are ini-
tialised with weights pretrained on the COCO dataset [32].
The CNN architectures (Section 3.1) are trained using a
ResNet50 [21] backbone with the following training con-
figuration:

– Cascade R-CNN [4] and FSAF [53]: backpropaga-
tion optimisation is performed via Stochastic Gradient
Descent (SGD), with initial learning rates of 1e− 2,
trained for 20 epochs.

– Deformable DETR [55]: backpropagation optimisa-
tion is performed via the Adam optimiser, with initial
learning rates of 1e− 4, trained for 50 epochs.

Standard data augmentation techniques, such as Random
Crop, Random Flip, have applied during model training
with an application probability of 0.5.

5. Results
The model performance is evaluated through MS-COCO
metrics [32], with IoU greater than 0.5, using Average Pre-
cision (AP) for class-wise, and mAP for the overall perfor-
mance measurement. Additionally, we compare model per-
formance via: Complexity (number of parameters in mil-



lions, C), the ratio between mAP and the number of param-
eters in the architecture (mAP:C), and the inference time in
milliseconds (ms) taken by the respective model to process
an individual frame. Model inference is carried out on the
NVIDIA 1080Ti GPU. The highlighted values in each table
denote the maximal performance achieved.

5.1. Benchmarking on Infrared dataset
Table 4. FLIR: Performance (class name indicates AP, mAP indi-
cates mean average precision of all classes) of CNN models.

Model Average Precision (AP) mAPPerson Bicycle Car
MMTOD-UNIT [13] 0.644 0.494 0.707 0.615
ThermalDet [6] 0.782 0.600 0.855 0.746
Pseudo-two-stage [52] 0.787 0.624 0.855 0.755
CR-CNN 0.877 0.681 0.911 0.823
FSAF 0.867 0.675 0.904 0.815
DDETR 0.863 0.659 0.913 0.812

Table 4 presents object detection performance in infrared
imagery for the first set of experiments using the CNN ar-
chitectures set out in Section 3.1. These models are ap-
plied to the FLIR [16] dataset to provide benchmark per-
formance. The best performance on FLIR (mAP: 0.823,
Table 4, lower) is obtained by Cascade R-CNN [4] achiev-
ing the highest AP on two classes (Person, Bicycle) out of
three. FSAS [53] and DDETR [55], also produce com-
parable mAP (0.815 and 0.812), where DDETR achieves
the maximal AP on the Car class. All three models sig-
nificantly outperform the prior works of [6, 13, 52] (mAP:
0.615, 0.746, 0.755, Table 4, upper). Overall, CR-CNN
marginally outperforms the one-stage and transformer-
based models in this work. This is possibly due to the ar-
chitectural design of CR-CNN, where images are sampled
with increasing IoU thresholds to tackle different training
distributions.

Table 5. FLIR: Model complexity and efficiency.
Model C mAP mAP:C ms
CR-CNN 69.16 0.823 0.011 93.20
FSAF 36.24 0.815 0.022 64.69
DDETR 40.09 0.812 0.020 104.98
Inference on: NVIDIA 1080Ti GPU

Additionally, we present the computational efficiency,
and speed, which are crucial criteria for operational and
real-world deployment perspectives in Table 5. Being the
smallest model, FSAF [53], which has ∼ 2× fewer param-
eters than Cascade R-CNN [4], obtains the maximal com-
putational efficiency (mAP:C) of 0.022 (Table 5). All three
models achieve real-time throughput with FSAF obtaining
the fastest individual frame processing speed of 64.69ms,
∼ 1.5× faster compared to Cascade R-CNN [4] and De-
formable DETR [55] which obtain 93.2ms and 104.98ms
respectively across the same metric.

5.2. Impact of Lossy Compression
Table 6 presents the results from evaluating CNN mod-
els (Section 3.1) using FLIR dataset after undergoing
JPEG lossy compression at six different quality levels:
{95, 75, 50, 15, 10, 5}. As outlined in Section 4.2, the mod-
els are first trained on the uncompressed/original dataset
(FLIR) and evaluated on the compressed variants (FLIR c).
Subsequently, the models are re-trained with the com-
pressed imagery (FLIR c) at the respective level and eval-
uated on the compressed variants (FLIR c).
Table 6. FLIR: Impact of lossy compression on object detection.

Compression
Level

FLIR ⇒ FLIR c FLIR c⇒ FLIR c
mAP mAP

CR-CNN FSAF DDETR CR-CNN FSAF DDETR
95 0.822 0.816 0.811 0.826 0.821 0.808
75 0.813 0.802 0.803 0.816 0.805 0.800
50 0.789 0.789 0.782 0.806 0.796 0.796
15 0.623 0.606 0.663 0.749 0.743 0.750
10 0.426 0.427 0.489 0.718 0.691 0.705
5 0.109 0.149 0.152 0.613 0.592 0.606

When the models are trained across the original dataset,
and evaluated on compressed variants (Table 6, left), we
observe that the models retain similar performance at the
{95} compression level, only decreasing by ∼ 1% on av-
erage at the {75} compression level. At the compression
level of {50}, the mAP is decreased only by ∼ 3.5% on av-
erage across all three models. We observe that a compres-
sion level of {15} and below has a greater impact on object
detection performance. The model performances suffer sig-
nificantly (mAP decreased by ∼ 80%), when the images
are compressed heavily, such as at {5} compression level
across all three models.

Re-training the models on lossy compressed imagery
(FLIR c) at different compression levels and subsequently
evaluating on the compressed variants (FLIR c ⇒ FLIR c)
significantly ameliorated the performance (Table 6, right)
for all three CNN models at higher compression levels.
Re-training at the compression levels of {95, 75, 50} does
not fully recover the performance compared to original
training and evaluation protocol (FLIR ⇒ FLIR c). How-
ever, the impact of lossy compression at higher compres-
sion level ({5}), is mitigated through retraining with all
models, achieving mAPs: {0.613, 0.592, 0.606} (Cascade
R-CNN, FSAF, Deformable DETR correspondingly, Ta-
ble 6, right), compared to uncompressed settings (mAP:
{0.109, 0.149, 0.152}), an increment of 82%, 74%, and
74% respectively. Amongst three models, two-stage Cas-
cade R-CNN [4] offers superior performance across most
of the compression levels, followed by transformer-based
Deformable DETR [55], whilst one-stage FSAF [53] are
more robust to higher compression levels. Similar perfor-
mance enhancement is discerned for compression levels of
{15, 10}. The benefit of re-training on compressed images
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Figure 2. Detection using varying CNN models: [A] uncompressed settings (FLIR ⇒ FLIR), [B] FLIR ⇒ FLIR c at compression level 5,
[C] re-training with compressed images at compression level 5 (FLIR c ⇒ FLIR c).
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Figure 3. FLIR: CNN models performance (mAP) against training data memory storage (Megabyte) at different compression levels.
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Figure 4. FLIR: Object area-wise AP/mAP analysis at different compression levels using Cascade R-CNN [4].

is depicted in Figure 2, C, where compressed image trained
models successfully detect the objects, contrary to the miss-
ing detection in Figure 2, B.

Overall, the re-training improves the detection perfor-
mance while affording a lossy JPEG compression rate much
higher in terms of reduced image storage requirements, as
illustrated in Figure 3. We observe that the detection perfor-
mance of the CNN models is resilient up to the compression
level of {50}, while requiring only 1/5th of training data
storage overhead memory compared to uncompressed data
storage (224 MB vs 1100 MB, Figure 3).

5.3. Object Area-wise Performance Analysis

This section reports the in-depth analysis of the detection
performance based on the discrete object area definitions
(Section 3.3) for each class in the dataset. First, we calcu-
late AP for object area-wise using the uncompressed dataset
setting (FLIR ⇒ FLIR). Subsequently, we follow the com-
pressed dataset setting (FLIR c⇒ FLIR c) to obtain the ob-
ject area-wise statistics as presented in Figures 4, 5, and 6.

The FLIR test-set comprises of ∼ 45% small and ∼ 45%
medium area category objects (Table 3) across three dif-
ferent classes. We observe that the impact of the heavy
compression is more prevalent on small object areas than
medium. The small object area mAP is reduced by ∼ 35%
on compressed imagery (at compression of 5) compared to
the uncompressed training settings across three CNN mod-
els (Figures 4, 5, and 6), with FSAF [53] suffering the most.
On the other hand, the medium area performance is de-
creased by average 19%. The impact of lossy compression
(at compression of 5) is also noticeable on the tiny cate-

gory with mAP reduced by 36% on average. Nonetheless,
the large category can withstand the maximal compression
without severely affecting the detection performance.

Amongst the three object classes of FLIR dataset, the
car class is less impacted by the compression than person,
bicycle across all object area categories. This is possibly
due to car class having a higher percentage of medium and
large area than other two classes. Bicycle was the worst
performing class and the one most sensitive to compression.
This is likely due to the reasons of: 1) The thin frames of
bicycles become harder to see under higher degrees com-
pression and 2) The rotational bias of bicycles (i.e. When
a bike is viewed from the front rather than from the side,
it appears thin and close to one-dimensional) and thus are
harder to detect. Furthermore, the performances of CNN
models are less impacted at the lower compression levels
({95, 75, 50}) across all object area categories. Overall,
Cascade R-CNN [4] achieves the maximal mAP on tiny,
small, medium object area category, whilst transformer-
based Deformable DETR [55] suited to large category for
both uncompressed and compressed train and evaluation
settings.

6. Conclusion
In this work we conduct an extensive study into the impact
that lossy JPEG compression applied at differing discrete
levels to infrared-band imagery has upon a common set
of diverse object detection architectures. We evaluate the
performance of three operationally diverse object detection
methods, each with vastly differing detection approaches
with respect to six discrete classes, {95, 75, 50, 15, 10, 5},
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Figure 5. FLIR: Object area-wise AP/mAP analysis at different compression levels using FSAF [53].
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Figure 6. FLIR: Object area-wise AP/mAP analysis at different compression levels using Deformable DETR [55].

of varying degrees of compression applied to the input data.
Multi-stage Cascade R-CNN performs slightly better than
single-stage and transformer-based architectures. However,
single-stage FSAF, which has the smallest number of pa-
rameters, achieves the fastest inference time. Within this
study, we report that significant compression between 75
and 50 will negligibly affect performance, but will reduce
the storage capacity of the data by over 50%. We show that
inferring models trained on uncompressed imagery will fail
to detect objects across compressed images, but re-training

the same models across compressed images will allow them
to detect objects with high accuracy. We also quantitatively
report on how objects of differing size are affected by com-
pression by assigning each object to a discrete class accord-
ing to the bounding box area. We hope that the results pre-
sented in this work will help future real-world applications
of object detection models applied to thermal imagery to
reduce storage and transmission overhead while obtaining
minimal performance impact.
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