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Abstract

Yes - This study investigates the impact of commonplace
lossy image compression on face recognition algorithms
with regard to the racial characteristics of the subject.
We adopt a recently proposed racial phenotype-based bias
analysis methodology to measure the effect of varying lev-
els of lossy compression across racial phenotype cate-
gories. Additionally, we determine the relationship be-
tween chroma-subsampling and race-related phenotypes
for recognition performance. Prior work investigates the
impact of lossy JPEG compression algorithm on contem-
porary face recognition performance. However, there is a
gap in how this impact varies with different race-related
inter-sectional groups and the cause of this impact. Via
an extensive experimental setup, we demonstrate that com-
mon lossy image compression approaches have a more pro-
nounced negative impact on facial recognition performance
for specific racial phenotype categories such as darker skin
tones (by up to 34.55%). Furthermore, removing chroma-
subsampling during compression improves the false match-
ing rate (up to 15.95%) across all phenotype categories af-
fected by the compression, including darker skin tones, wide
noses, big lips, and monolid eye categories. In addition, we
outline the characteristics that may be attributable as the
underlying cause of such phenomenon for lossy compres-
sion algorithms such as JPEG.

1. Introduction

A growing number of studies focus on racial bias within
face recognition due to the prevalence of disparate real-
world performance on inter-sectional racial groups [!].
Such attention has forced several organisations to withdraw
their algorithms or datasets due to racial biases, and dispar-
ities [2, 3, 4]. Nevertheless, there are still many areas, such
as employment, public security, criminal justice, and credit
reporting, where face recognition applications are in use,
meaning that we need fair, trustworthy, and bias-free face
recognition [5, 6].

From image acquisition to evaluation, all phases of face
recognition are prone to bias. However, most research fo-

cuses on the latter aspects of dataset collection and model
evaluation to explore and mitigate such bias [7, 8, 9]. As
such, many datasets and annotations have been released
[10, 11], generative adversarial networks have been ex-
plored to enrich under-represented groups during training
[12, 13] and regularisation methods have been proposed to
minimise performance differences between subgroups [14].
Furthermore specific evaluation methodologies have been
devised to tackle bias collaboratively [15, 16, 17]. De-
spite this plethora of research, no studies examine the po-
tential impact of image acquisition decisions when address-
ing racial bias within face recognition. Any source of bias
at this early stage is just propagated and exacerbated within
contemporary face recognition approaches [18].

On the other hand, existing image acquisition standards
for face recognition systems such as ISO/IEC 19794-5 [19]
and ICAO 9303 [20] propose both image-based (i.e. illumi-
nation, occlusion) and subject-based (i.e. pose, expression,
accessories) quality standards to ensure facial image qual-
ity. Accordingly, facial images should also be stored us-
ing lossy image compression standards such as JPEG [21]
or JPEG2000 [22]; and identifiable for gender, eye colour,
hair colour, expression, properties (i.e. glasses), pose an-
gles (yaw, pitch, and roll), and landmark positions. How-
ever, common face recognition benchmarks do not conform
to the ISO/IEC 19794-5 and ICAO 9303 standards. More-
over, in-the-wild samples are often obtained under the vary-
ing camera and environmental conditions to challenge the
proposed solutions. Nevertheless, most facial image sam-
ples within such datasets are compressed via lossy JPEG
compression [23].

Accordingly, some limited previous work [24, 25, 26]
focuses on the impact of low-quality, blurred, noisy or dis-
torted imagery on Convolutional Neural Network (CNN)
based image recognition or classification. Dodge and
Karam [27] highlight a significant decrease in contempo-
rary neural network performance, whilst human examin-
ers remain resilient to such factors. Particularly, Torfason
[28] focuses on compression methods and bypasses the de-
coding phase of image compression. They point out that
encoded representations are more advantageous than com-



pressed/decoded images for classification and semantic seg-
mentation. Poyser [29] evaluates the impact of lossy com-
pression algorithms on various CNN architectures, in which
they measure the robustness and performance impact of
compression for various computer vision tasks. They de-
termine that, in general, CNN architectures can be resilient
to the introduction of lossy JPEG compression artefacts if
the initial training regime includes the use of compressed
images [29]. These results align with the findings of Zan-
jani [30], who considers the impact of JPEG 2000 compres-
sion [22] on CNN for cancer diagnosis systems. Indeed,
retraining the CNN architecture on lossily compressed im-
ages affords a 59% performance increase for tumour detec-
tion within compressed test imagery [30].

For face recognition approaches, the National Institute
of Standards and Technology (NIST) provides a compre-
hensive assessment of compressed image influence on fa-
cial recognition algorithms [31]. It investigates the speed
versus accuracy trade-off for early machine learning-based
face recognition algorithms. Karahan [32] indicates that im-
age blur, noise, and occlusion can cause significant degra-
dation in face recognition accuracy. Another study [33] im-
proves face detection and recognition performance on low-
quality images by introducing a fusion quality prediction
network. Moreover, Terhorst [34] shows quality assess-
ment algorithms are skewed towards the subgroups which
are also affected by face recognition bias.

Prior literature on image acquisition operations (com-
pression, quality assessment) for face recognition [35] are
limited with regard to racial bias and its race-based pheno-
typic influence, which is where this study is focused. The
most related work to ours, [36] explores the test image dis-
tortion impact on pre-trained face recognition models us-
ing binary gender G1 (Male) and G2 (Female), and race
R1 (light skin colour) and R2 (dark skin colour) subgroups.
As a result, they find that the regions of interest used in
the models shift towards less discriminatory regions in the
presence of distortions, resulting in unequal performance
degradation among subgroups.

In this study, we examine whether lossy image com-
pression adversely impacts phenotype-based racial perfor-
mance bias within face recognition during training and test-
ing. We estimate such impact on phenotype attribute cat-
egories individually. Furthermore, we also investigate dif-
fering chroma-subsampling rates to assess how this com-
mon lossy compression colour-related trait directly impacts
recognition performance across varying phenotype-based
categories. More precisely, however, we determine the re-
lationship between the level of compression and chroma-
subsampling applied and recognition performance in order
to allow us to build a better understanding.

To these ends, we adapt the recently established evaluation
methodology [17] that introduces phenotype-based racial

Attribute \ Categories

Skin Type Type 1/2/3/4/5/6
Eyelid Type Monolid / Other

Nose Shape Wide / Narrow

Lip Shape Full / Small

Hair Type Straight / Wavy / Curly / Bald

Hair Colour Red / Blonde / Brown / Black / Grey

Table 1. Adapted Facial phenotype attributes and their categorisa-
tion from [17].

bias measurement for face recognition. Furthermore, we
determine the effect of varying factors, including the com-
pression levels of lossy JPEG [2 | ] image encoding, chroma-
subsampling, and compressed versus non-compressed train-
ing on different race-based phenotype categories in order
to evaluate the racial bias across multiple face recognition
datasets. In this paper, our key contributions are as follows:

* we evaluate the impact of lossy image compression on
CNN-based facial recognition approaches across different
racial characteristics using the phenotype-based method-
ology [17], extending the earlier studies of [17, 35, 29].

* we compare several variants of training strategies, includ-
ing lossy compression, within the balanced/imbalanced
training datasets and race-related facial phenotypes.

* we experimentally demonstrate that the use of lossy
image compression during inference adversely affects
the performance of contemporary face recognition ap-
proaches [37] on a subset of race-related facial phenotype
grouping (i.e. darker skin tones, monolid eye shape) and
that its effect is present regardless of whether compressed
imagery is used for model training.

* we investigate the specific impact of chroma-subsampling
on bias performance by comparing recognition perfor-
mance with and without chroma-subsampling within
lossy compressed facial imagery.

2. Experimental Methodology

In this section, we explain the phenotype-based racial
bias evaluation methodology used (Section 2.1), the most
widespread lossy image compression process (JPEG, Sec-
tion 2.2), how we evaluate the influence of chroma subsam-
pling (Section 2.3), our compression level selection (Sec-
tion 2.4), and the training strategies used (Section 2.5) for
the generation of our results (Section 3).

2.1. Phenotype-based Bias Analysis Methodology

Previous work highlights the negative impacts of using stan-
dard geographically based racial grouping labels to evaluate
cross-race face recognition performance [38, 39]. Accord-
ingly, many studies [17, 39, 40] suggest avoiding using er-
roneous racial or binary skin tones grouping strategies or
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Figure 1. Chroma subsampling operation on different rates (4:2:0,
4:2:2, 4:4:4). Each rate differs according to how many pixels will
be the same in the block.

exposing protected demographic attributes that can cause
privacy and consent violations for individuals.

Alternatively, we adopt a racial bias analysis methodol-
ogy that uses facial phenotype attributes for face verifica-
tion (one-to-one facial matching) task [17]. The study cate-
gorises representative racial characteristics on the face and
audits these attributes: skin types, eyelid type, nose shape,
lips shape, hair colour and hair type for two different pub-
licly available face datasets: VGGFace? (test set) [41], and
RFW [42]. We show each of the predefined phenotypes
and their categories in Table 1. Moreover, this methodol-
ogy provides different pairing strategies for face verification
to draw attention to the importance of pairing for compre-
hensive evaluation. It introduces attribute-based pairings,
which contain same-attribute grouping pair combinations
to compare individual attribute performance for face veri-
fication. Additionally, the study shares cross-attribute pair-
ing combinations between each grouping to measure false
matching rates between all possible attribute category pair
combinations.

On this basis, we use the set of observable characteristics
of an individual face where race-related facial phenotype la-
bels provide a relation between the task performance for a
given face image sample under varying levels of lossy im-
age compression and its underlying racial characteristics.

2.2. Lossy Image Compression

The Joint Photographic Experts Group (JPEG), an interna-
tional image compression standard [21] for still images, op-
erates within manageable algorithmic space and time com-
plexity whilst offering good reconstruction image quality.
The JPEG standard defines four operating modes (/: Se-
quential Lossless Mode, 2: Sequential DCT-based Mode,
3: Progressive DCT-based Mode, 4: Hierarchical Mode),
formed by an encoder and decoder which follow block-
based transform coding. The image encoding strategy in-
cludes colour space transformation (from RGB to YCrCb),
chroma channel subsampling, Discrete Cosine Transform
(DCT), quantisation and entropy coding to compress the im-
age [21].

In this study, we use ImageMagick Library (version
7.0.11.13) to perform JPEG compression (via libjpeg 8).
The implementation switches the JPEG operational modes
according to the compression level specified (i.e. quality
level ¢, range: 0 - 100 for JPEG, higher = better image
quality, less information loss + larger file sizes). Similar
to the mode one operation, it does not down-sample the
chroma channels if the compression level is higher than 90
(i.e. there is no colour-based information loss for compres-
sion, ¢ = 90). It applies the baseline JPEG algorithm be-
tween compression levels 90 and 10, which is sequential
DCT-based Mode (2). For compression levels, (¢ = 90),
lossy compression is applied to both the luminance chan-
nel, Y, and the colour containing chroma channels, C'r, Cb.

2.3. Chroma Subsampling

Standard lossy compression algorithms such as JPEG con-
tain a colour space reduction step, as the human eye is less
sensitive to chromatic (i.e. colour) changes than changes in
illumination (i.e. brightness). In this step, the luminance
channel (Y) remains unchanged, but the image colour space
(Cr and Cb) is reduced. Subsequently, by default JPEG al-
gorithm employs 4:2:0 chroma subsampling to reduce the
colour information of the original image. It takes a 2-by-2-
pixel block within each block and assigns the same colour
(the colour of the top-left pixel) while the luminance com-
ponent varies. Alternatively, for less colour information re-
duction, 4:2:2 with half sampling rate horizontally takes 2
pixels in each row and assigns the same colour. In Figure
1, we illustrate the three different sampling ratios (4:2:0,
4:2:2 and 4:4:4 no subsampling) on image pixels. In this
first step of compression, chroma subsampling converts the
image to YCbCr colour space and then reduces the chroma
channels Cb, C'r information by assigning the top-left block
pixel value to other pixels in the block. Block size and how
many pixel values remain vary according to the sampling
ratio.

This evaluation investigates the effect of sampling ra-
tio on phenotype-based face recognition performance. We
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Figure 2. PSNR Scores of RFW dataset on different compression levels (CL). Relative score difference shows how much the quality

changes at each level.

compare the default 4:2:0 subsampling with the 4:4:4 no
chroma-subsampling factor, which keeps luminance and
colour information in its entirety (i.e. unchanged). The
rationale behind this evaluation is that if chroma subsam-
pling has a profound impact on recognition performance,
we can avoid this issue by recommending the use of 4:4:4
(no chroma-subsampling) with only a small impact on com-
pression performance.

2.4. Compression Level Selection

In order to ascertain the impact of lossy compression on
face recognition performance, we are interested in the re-
sulting reduction in image quality at varying levels of JPEG
compression. Consequently, we analyse uniformly dis-
tributed compression levels on the RFW benchmark face
recognition dataset [42] using PSNR; Peak signal-to-noise
ratio [43]. PSNR score is correlated with the quality of re-
construction of lossy JPEG compression. In Figure 2, we
show the relation between the PSNR score versus the JPEG
compression level, q. Firstly, we uniformly select levels
g = {5...95} in intervals of 5 and compress the whole
dataset to each of these JPEG compression levels. Sec-
ondly, we measure the PSNR score on all levels and high-
light the relative score difference. Based upon this anal-
ysis, we downselect the set of JPEG compression levels
(¢ = {5,10,15}), in which quality decrease is most appar-
ent (PSNR score decreases harshly). In addition, we select
q = 95 as it represents the case where there is no chroma

down-sampling used within the lossy compression scheme.

2.5. Training Strategies

We design different test scenarios to measure the impact of
image compression on face verification performance.
Racially Imbalanced Dataset: Firstly, we train ArcFace
[37] with ResNet101v2 [44] on the original aligned VG-
GFace2 benchmark dataset [41], containing 3.3 million
images with 8631 subjects where subject distribution is
racially imbalanced. Subsequently, we test using the RFW
benchmark dataset [42] with the original (aligned) images
and compressed images to each of the previously down-
selected JPEG compression levels. We then repeat the train-
ing on the VGGFace2 benchmark dataset [41] four times,
having first compressed the entire dataset to each of the
down-selected JPEG compression levels. This results in
four ArcFace models, each trained on image samples at a
different JPEG compression level. Subsequently, we mea-
sure the performance of each of these four trained ArcFace
models using the RFW benchmark dataset [42] that has
been compressed to the corresponding JPEG compression
level upon which each of the models was trained.

Racially Balanced Dataset: Similar to the imbalanced
train set strategy, we train ArcFace [37] with ResNet50
on the original aligned BUPT-Balanced benchmark dataset
[11] that contains 28000 face subjects containing balanced
racial distributions among four groups {African, Asian, In-
dian, Caucasian} with 7000 subjects each. Subsequently,
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Figure 3. BUPT-Balanced non-compressed, compressed RFW test imagery (q=5); FMR performance differences of cross-attribute based

pairings. Each cell depicts F'M Roriginat — F'M Ry.

we repeat the training on the BUPT-Balanced benchmark
dataset [1 1] four times, having first compressed the entire
dataset to each of the same down-selected JPEG compres-
sion levels. This way, another four ArcFace models are
trained on image samples at a different JPEG compression
level. Additionally, we replicate non-compressed and com-
pressed training at level 5 (¢ = 5) by removing chroma
subsampling (4:4:4) to measure the impact of the colour re-
duction step in lossy compression on face verification per-
formance.

3. Results and Discussion

This section provides extensive experimental results to
understand the impact of chroma subsampling and com-
pressed training imagery using two different dataset train-
ing datasets and different compression levels. Additionally,
we place extended results in Supplementary Material.

3.1. False Verification Matching Rates

In this section, we present False Matching Rate (FMR) dif-
ferences for each of the proposed training strategies in Sec-
tion 2.5 and the down-selected compression levels (Figure
2). FMR is a critical metric, such that any change in perfor-
mance may result in false facial verification and the associ-
ated consequences [5].

Figures 3, 4, 5 show the FMR changes under the varying

sampling rates of lossy image compression and how this
varies across the racial phenotype labels associated with the
dataset. Using the cross attribute pairings provided by [17],
we evaluate F'M Ropiginai — ' M Ry where M Royiginal 18
FMR of non-compressed training and test imagery. F'M R,
is the FMR of compressed or non-compressed training but
compressed test imagery at down-selected level g. Smaller
(and negative) values indicate a more considerable decline
from the original level of performance.

Compression Levels: We observe that for all down-
selected compression levels ¢ = {5,10, 15,95}, the FMR
increases when additional lossy compression is applied,
demonstrating that compression level 5 (the highest com-
pression rate) results in the most significant decrease in
FMR performance, whilst compression level 95 (the lowest
compression rate) does not result in any noticeable FMR
performance differences. We compare compression levels
95, 15, 10 and 5 with baseline results to show how FMR rise
at higher compression levels. For additional performance
results on different levels, see Supplementary Materials.

Chroma subsampling vs No-chroma subsampling We
compress all the imagery in the BUPT-Balanced training
dataset under two different sampling rates, 4:2:0 (JPEG de-
fault) and 4:4:4 on compression level 5 (¢ = 5). The
FMR cross-attribute category results are compared in Fig-
ures 3, 4, 5. For non-compressed and compressed training,
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None-Compressed Training Set

Compressed Training Set

Attribute Name 95 15 10 5 95 15 10 5 Original
Curly Hair 93.10 8237 7580 5953 | 9277 8720 8290 7327 93.15
Full Lips 9337 8355 7703 6137 | 9280 8797 8362 7530 93.38
Monolid Eye 93.25 8343 7728  63.18 | 9348  87.62 8510  76.95 93.30
Type 5 9487 8598  80.17 6032 | 9453 9022  87.03 7697 94.85
Type 6 9485 8655 7935 6175 | 9443 90.02 8620  77.72 94.82
Black Hair 9370 8513 7997 6583 | 9350 8955  86.87  77.92 93.73
Wide Nose 9395 8553 7997 6315 | 9342 8957 8678 7833 93.98
Other Eye 9432 86.65  81.10 6528 | 9370  89.57 8743 7855 94.38
Type 4 9405 8772 8347 6728 | 9372  89.67 8745 7923 94.07
Type 1 9286  86.88 8472 7243 | 9419  89.87 8821  79.57 92.86
Straight Hair 9418 8670 8198 6615 | 9392 8943 8628  79.65 94.12
Narrow Nose 9435 8630  80.07 6673 | 9460  89.63 8720  79.77 94.43
Type 3 94.05  86.07  81.03 6705 | 9432 8948  86.80  79.93 93.98
Small Lips 9435  87.28 8203  67.53 | 9500  90.63 8797  81.22 94.37
Wavy Hair 9587  89.05 8463  69.53 | 9552 9217  89.33 8273 95.83
Brown Hair 95.12 8840 8333 6732 | 9523  91.85  89.03  82.80 95.15
Bald Hair 96.55 9043 8593 6762 | 9588  93.07 9037  83.3 96.55
Red Hair 9691  90.57 8497 7120 | 9633 9249  89.98  84.89 96.91
Type 2 96.27  89.98 8598 6845 | 9657 9427 9158  85.93 96.33
Gray Hair 96.53 9247 8883 7260 | 9642 9435 9193 8675 96.55
Blonde Hair 97.15 9250 8852 7155 | 97.15 9483 9340 8785 97.15
Mean Accuracy ‘ 94.74 87.31 82.20 66.47 ‘ 94.64 90.64 87.88 80.40 ‘ 94.76
STD | 131 2.76 3.58 385 | 127 2.18 2.61 381 | 131

Table 2. Verification performance on RFW test set using uncompressed (left) and compressed (right) training imagery. Attribute-based

pairings are those from the study of [17].

the 4:4:4 sampling rate decreases the FMR for all pheno-
type categories meaning that removing chroma sampling
within the image encoding strategy of the lossy compres-
sion technique improves the performance difference and re-
duces the prevalence of the bias. Accordingly, we evaluate
the average FMR for each phenotype category and calcu-
late the standard deviation across all categories. Indeed,
for both training strategies in Figure 4 and 5, using no
chroma-sampling improves FMR variation across all cat-
egories. For VGGFace2 non-compressed training (Figure
4), standard deviation drops from 3.91 to 3.28 (15.95% ),
whilst BUPT compressed training (Figure 5) standard devi-
ation drops from from 0.91 to 0.81 (10.88% ).

Non-compressed vs compressed training sets: When the
model is trained on original/non-compressed training im-
agery (Figures 3 and 4), FMR on darker skin tone (Type
5-6) increases considerably compared to other phenotypes
such as lighter skin tones (Types 2-4) with the introduction
of lossy compression at test time. At the highest level of
compression (¢ = 5), the increase in FMR is greater when
both phenotype categories in the pair are correlated with the
stereotypically African/Afro-Caribbean racial features [45].

For instance, the Full Lips <> Type 6 pair has the highest
FMR among all other pairs higher than Type 2 <> Type 6
skin tone pairings. For compressed training imagery (Fig-
ures 5 and Supplementary S3), we observe improved results
for both imbalanced and balanced dataset training. How-
ever, darker skin tone and related categories still maintain
FMR higher than the other phenotype categories.

Racially balanced vs imbalanced training sets: Using the
racially balanced dataset for training does not ameliorate
FMR differences among such pairings. For example, at the
highest level of compression (¢ = 5), the average perfor-
mance decrease of all skin tone Type 5 pairings (Type 5-
Bald, Type 5-Black Hair etc.) is 16.06% for imbalanced
dataset training (Figure 3). At the same time, it is de-
creases by 17.69% (Figure 4) from balanced dataset train-
ing. However, in racially imbalanced training, the FMR
results for pairings with monolid eyes degrade more com-
pared to racially balanced training. As there are signifi-
cantly fewer monolid eye face samples than other pheno-
types in the imbalanced VGGFace?2 dataset, we assume that
their representation degrades more than other phenotypes as
the lossy compression level increases.



3.2. Attribute-based Verification vs. Compression
Levels

We additionally present attribute-based verification accu-
racy for the down-selected compression levels applied at
training and test time for the BUPT-Balanced benchmark
dataset [11]. Moreover, we provide supporting evidence
of compressed vs. uncompressed training set face veri-
fication performance in Table 2. We use the same 6000
(3000 positive 3000 negatives) attribute-based image pair-
ings provided by [17]. For both non-compressed and com-
pressed training setups, we show that as the compression
increases, the standard deviation across all phenotype cate-
gories increases (as a measure of non-uniform performance
and bias). Similarly, accuracy decreases for all phenotype
categories. However, using uncompressed training imagery
(Table 2, left) results in a further decline in performance for
darker skin tones Type 5-6, curly hair, full lips and monolid
eye, when compared to other facial phenotypes, as the level
of lossy compression within the test set is increased. Skin
Type S attribute pairings accuracy drops from 94.87% to
60.32% (34.55% ), while Skin Type 2 attribute accuracy
drops from 96.33% to 68.45% (27.88% |). Similar to the
non-compressed training set, we do observe non-uniform
disparate changes in accuracy when the model is trained
on compressed imagery (Table 2, right). Furthermore, the
compressed training set produces a smaller standard devia-
tion in accuracy between phenotype categories.

Lastly, we summarise the relationship between all factors
(dataset distribution, compression, chroma subsampling) in
Figure 6. We evaluate attribute-based pairings accuracy
for all phenotype categories and compare different train-
ing strategies mean accuracy and standard deviations. We
change one factor during training in each strategy and pro-
vide corresponding performance results. We use a com-
pressed RFW test set in level 75 (¢ = 75) for all train-
ing strategies. Firstly, we show racially imbalanced VG-
GFace?2 datasets training performance, which is lowest in
accuracy and highest in standard deviation. A balanced
BUPT-Balance dataset provides the most significant im-
provement in accuracy and standard deviation. Further-
more, while compressed training imagery causes a minor
decrease in standard deviation, no-chroma subsampling im-
proves bias performance more significantly. Therefore, re-
moving chroma sampling during compression becomes vi-
able for reducing racial performance bias. We conclude
from the abovementioned results that while compressed im-
agery or racially balanced training data during training im-
proves the overall performance for all race-related cate-
gories, disparate results remain for specific phenotype char-
acteristics. Furthermore, we highlight that the reduced re-
tention of the chroma (colour) information affects, due to
the use of chroma subsampling in lossy JPEG compression,
on darker skin tones to a greater degree than on lighter skin
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Figure 6. Mean Accuracy and standard deviation of all attribute
categories and their comparison on different training strategies us-
ing compressed (¢ = 75) RFW test set.

tones. Furthermore, it is likely that the lossy image quanti-
sation disproportionately affects finer image details on the
facial region, such as those associated with monolid eye
characteristics. Both areas are for further future work.

4. Conclusion

This study examines the relationship between face verifica-
tion performance for a given race-related phenotypic group
under varying levels of lossy compressed sets. Overall, our
evaluation finds that using lossy compressed facial image
samples at inference time decreases performance more sig-
nificantly on specific phenotypes, including dark skin tone,
wide nose, curly hair, and monolid eye across all other phe-
notypic features. However, the use of compressed imagery
during training does make the resulting models more re-
silient and limits the performance degradation encountered:
lower performance amongst specific racially-aligned sub-
groups remains. Additionally, removing chroma subsam-
pling improves FMR for specific phenotype categories more
affected by lossy compression. Future work will explore
the impact of lossy image quantisation across various face
recognition architectures and propose corresponding results
to have fair face recognition algorithms.

Ethical Considerations: This work aims to investigate
the impact of lossy compression algorithms on phenotype-
based racial groups from [17] to provide additional insight
and understanding to guide the mitigation of bias in the de-
velopment of future face recognition algorithms and sys-
tems. We conduct our experiments on three different face
datasets publicly available for research use only. The reader
is directed to the source publication and the associated re-
search organisation for access to these datasets.
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5. FMRs on Selected Compression Levels

We provide down-selected compression levels differ- for each of the proposed training strategies using cross

ences (additional compression levels (¢ = 10, 15,95)) attribute pairings provided by [17].
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results in the most significant decrease in FMR perfor-
mance for all different training strategies. In contrast,
compression level 95 (the lowest compression rate) does
not result in any noticeable FMR performance differ-

As described in the paper, smaller (and negative) values
indicate a larger decline from the original level of perfor-
mance.The FMR increases when the lossy compression
increases. In Figure S1, S2, S3 and S4, we demonstrate
that compression level 5 (the highest compression rate) ences.
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