
Evaluating Gaussian Grasp Maps for Generative Grasping Models

William Prew∗†, Toby P. Breckon∗, Magnus Bordewich∗, Ulrik Beierholm†,

Abstract— Generalising robotic grasping to previously un-
seen objects is a key task in general robotic manipulation.
The current method for training many antipodal generative
grasping models rely on a binary ground truth grasp map
generated from the centre thirds of correctly labelled grasp
rectangles. However, these binary maps do not accurately reflect
the positions in which a robotic arm can correctly grasp a given
object. We propose a continuous Gaussian representation of
annotated grasps to generate ground truth training data which
achieves a higher success rate on a simulated robotic grasping
benchmark. Three modern generative grasping networks are
trained with either binary or Gaussian grasp maps, along with
recent advancements from the robotic grasping literature, such
as discretisation of grasp angles into bins and an attentional
loss function. Despite negligible difference according to the
standard rectangle metric, Gaussian maps better reproduce the
training data and therefore improve success rates when tested
on the same simulated robot arm by avoiding collisions with
the object: achieving 87.94% accuracy. Furthermore, the best
performing model is shown to operate with a high success rate
when transferred to a real robotic arm, at high inference speeds,
without the need for transfer learning. The system is then shown
to be capable of performing grasps on an antagonistic physical
object dataset benchmark.

I. INTRODUCTION

In recent years, machine learning has played a key role in
determining robotic grasp plan policies for both known and
unknown objects [1], [2]. Broadly speaking, these empirical,
or data-driven, implementations of deep neural networks for
grasping can be classified into two distinct methods: whether
the grasp configurations are sampled and ranked by the
network (discriminative models), or directly generated as the
output (generative models) [3].

Discriminative models rank grasps during execution time
and then choose the grasp with the highest score. This
can result in carefully evaluated grasps since many grasp
poses can be evaluated. However, this can result in higher
operational costs due to higher inference times because
they require multiple forward passes through the network to
consider all available grasps [4], [5], [6]. Generative models
on the other hand directly output a grasp for a whole scene
whilst only requiring one forward pass. This allows for rapid
closed-loop real time grasp detection, which can be updated
more frequently than their discriminative counterparts and
can generate multiple grasps per image [7], [8].

Several exemplars of these generative grasping models
rely on the production of simplified planar representations
in order to produce a grasp at every point in a scene.
By restricting a gripper to move only in two dimensions
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Fig. 1. Current generative models for robotic grasping assume a binary
representation of grasp labelling. Models are trained to recognise that any
grasp centred on a pixel that falls within the centre third (blue) of a correct
grasp rectangle (green) are suitable. However, grasps centred on the pixels
closer to the edge of the rectangle are less reliable and result in collisions
due to incorrect labelling (shown in red).

(x, y), with a corresponding rotation for the gripper around
the z axis (Θ), it is possible to significantly improve the
operating speed and training time [9], [10]. These networks
are therefore analogous to object detection tasks in computer
vision with an added term for gripper orientation [11].

The initial generative grasp convolutional neural network
(GG-CNN) by Morrison et al. [12] introduced the idea of
representing network outputs in the form of grasp maps.
These outputs decompose a grasp into pixel-wise represen-
tations which can be reconstructed at test time, constituting
an estimated grasp quality, rotation, and gripper width, to
allow for faster training. From the grasp map, the best grasp
can be extracted in post-processing in form of the common
rectangle representation [9], [10].

Subsequent generative models such as the generative resid-
ual network (GR-ConvNet) [8] or orientation attentive grasp
synthesis framework (ORANGE) [13] have built on these
grasp maps to achieve state-of-the-art performance on com-
mon large-scale grasp datasets. However, these examples rely
on the same binary ground truth generation during training
which implements a heuristic that assumes any grasp centred
within the middle third (and approximately close angle) of
an annotated successful grasp is valid. This is incorrect:
as Fig. 1 shows how grasps centred on pixels towards the
edge of a grasp rectangle can lead to gripper collisions
when applied to a robotic arm. Despite high performance
according to the commonly accepted intersection over union
(IoU) threshold, this likely ignores scenarios which would
lead to unsuccessful grasp real world grasp attempts.

In order to address this, we present a modified ground truth
to train common generative grasping networks and argue that



this approach more closely resembles that of the training
data. This is more likely to generate successful grasps plans
which better capture the geometrical properties of the grasp
pose and avoid potential collisions between the gripper and
the grasped object. Therefore, this paper makes the following
contributions:

• A series of common generative grasping models are
trained and compared using a binary and a Gaussian
ground truth map. When using the Gaussian ground
truth, we demonstrate the network better generalises to
unseen objects on the Jacquard grasping dataset [14];

• Grasping success determined using the offline rectangle
metric [9] is compared with simulated grasp trials (SGT)
to show that these offline heuristics, often presented as
the measure of model success, are insufficient on their
own to predict real-world grasp performance;

• We demonstrate that the model trained on simulated
data is capable of direct deployment to a physical
robotic arm. When tested on a previously unseen phys-
ical object dataset, without any transfer learning, we
achieve a high grasp success rate with an inference time
of 12-14ms using our lightweight model and 25-28ms
with our best performing model.

II. RELATED WORK

One of the first examples for generative image-based grasp-
ing networks included Lenz et al. [10]. They showed that
generative models could be used for real-world robotic
grasping tasks after being trained on the Cornell grasping
dataset (CGD) [9], [10], a small dataset containing 885
images annotated with 8019 correct grasps. This work used
a two stage process, one for generation the other for ranking
of grasps. This process was rather slow as it had to rank
all the grasps for one image using multiple forward passes
through the model. The work defined a grasp using a five
dimensional representation which outputs a grasp in the
form of a rectangle with a position, orientation, and size
(x, y, θ, h, w). It was also noteworthy as it normalised the
rectangle metric, which accepts grasps that overlap suf-
ficiently with annotated grasps, that is generally used to
measure grasping model performance on the CGD. Later
work from Redmon and Angelova [11] improved the speed
in which grasps were proposed using another generative
system called SingleGrasp. This introduced a single-stage
regression-based neural network for robotic grasping which
achieved 88% accuracy on the CGD.

More recently, neural networks perform near perfectly on
the CGD with Park et al. [15] achieving 98.6% accuracy
using a single multi-task neural network that uses relation-
ship reasoning among objects. However, it is difficult to
generalise results beyond the CGD on such a small sample of
objects, and therefore results are typically provided alongside
robotic arm data, either simulated [16] or with a real robot
arm [17]. However, it is common for each study to set their
own benchmark for reporting results with variations between
robotic arms and lists of standardised objects.

Larger datasets have since been developed to train and
help models to generalise to unknown objects, including the
Jacquard grasping dataset (JGD) [14] that features a set of
54k images and 1.1M annotated correct grasps. One major
advantage of this dataset is that a simulated robot arm is
provided on-line that allows performance to be tested in
the same conditions as the data was generated for a more
standardised benchmark, known as the simulated grasp trial
(SGT) score. Despite this, for speed and convenience most
authors continue to use the rectangle metric to evaluate
performance.

Using the larger datasets for training, further improve-
ments to the regression-based neural networks were devel-
oped. These include the Generative Grasping Convolutional
Neural Network (GG-CNN) by Morrison et al. [12] that
showed how multiple grasps could be generated simultane-
ously from a scene by outputting a grasp in the form of
grasp maps: a pixel-wise image-based representation of a
grasp consisting of, for each pixel, a grasp quality score,
angle, and gripper width. They obtained a 78% accuracy on
the Jacquard test set, and later 84% with the slightly larger
GG-CNN2 network [7]. Performance was further increased
by models such as the Generative-Residual convolutional
network (GR-ConvNet) [8] which used a larger network with
residual layers to achieve 94.6% accuracy on the JGD.

Models that train using these grasp maps do not use raw
data to train but instead generate a ground truth that works
with multiple outputs. Despite the possibility of multiple
annotated correct grasps centred at a given pixel, the grasp
map ground truth used in training only contains one angle
and width value. Depending on the order the labels are used,
there may exist discontinuities in angle and width parameters,
which makes task learning more difficult. Chalvatzaki et al.
[13] showed that the order in which the grasps overlapped
when the ground truth grasp maps were generated affected
the model performance. They proposed a change to the
output whereby the GG-CNN and widely used UNet model
[18] had their outputs modified to identify multiple discrete
grasp orientations.

Adding an attention mechanism to such generative mod-
els further improves performance [13], [19]. By reducing
the emphasis of learning angle and width values in the
background of a given image using an attentional loss
function, accuracy according to the IoU measure increases
substantially, speeding up training time without impacting
inference time [19].

Furthermore, these approaches use the same binary ground
truth quality maps containing the issues illustrated in Fig. 1,
with the exception of ORANGE [13] which applied a soft
quality map that slightly reduced the ground truth values
away from the centre of grasps. Here, we explore the
effect of applying a full Gaussian filter to the quality map,
further focusing attention on the best grasp positions. We
obtain a substantial improvement in performance in SGT
score, i.e. within the simulated physics environment and also
demonstrate that the IoU measure of performance does not
correlate well with simulated performance.



III. GRASPING PROBLEM

The grasping problem we aim to address is that of [8], [7],
[13]. The challenge is to take an input image, in our case an
RGB-D input I = R4×h×w, with height h and width w of
320× 320 pixels, and find an optimal grasp configuration:

Gi = (x, y,Θi,Wi) (1)

where (x, y) is the centre of the proposed grasp in image
pixels, Θi the rotation of the proposed grasp, and Wi is the
required gripper width, represented in the image frame of
reference i.

This 2D grasp can then be converted to a 3D grasp in real-
world coordinates. To execute a grasp proposal in the real
world from a grasp rectangle given in image coordinates, the
grasp must undergo a series of known transforms:

Gr = tRC(tCI(Gi)) (2)

where tCI is the transform from the 2D image coordinates
into the 3D camera frame using known camera intrinsics, and
tRC is the transform from the camera frame to the world or
robot frame. The grasp pose in the robot frame of reference
is then represented as follows:

Gr = (P,Θr,Wr) (3)

with P = (x, y, z) being the centre of the parallel gripper
jaws, Θr is the angle of the parallel gripper around the z-
axis, and Wr is the required width of the tool in mm.

IV. METHODOLOGY

In this section, we outline the training methodology for
our experiments. In Subsection IV-A: we summarise the
Jacquard dataset which was used for training and testing; in
Subsection IV-B we describe the generative grasping models
that are used for training; Subsection IV-C describes our
novel contribution in which we alter the ground truth from
the Jacquard dataset for training the models using a Gaussian
map; and finally Subsection IV-D describes the methods and
the loss functions used to train the model.

A. Jacquard Grasping Dataset

All models are trained on the Jacquard grasping dataset [14],
a simulated 2D planar dataset containing 54,485 images of
over 11,000 different 3D objects on uniform white back-
grounds. Grasps are attempted at many positions, angles, and
widths in a simulated physics environment. The images are
annotated with over 1.1 million successful grasps, including
successful grasps at multiple angles and jaw sizes centred
on a given pixel. Unsuccessful grasps are not recorded and
highly similar grasps are filtered out so are therefore also
not included in the dataset. Every object in the dataset has
at least four viewing angles and each viewpoint consists of a
single RGB image as well as a perfect depth image recorded
from the simulated data and a generated stereo depth image.
Only the true simulated depth image was used to train these
models.

Performance on the Jacquard dataset can be measured
using one of two methods: the intersection over union (IoU),

also known as the rectangle metric, and simulated grasp trials
(SGT) using the Jacquard server1 featuring a simulated arm.
Using the rectangle metric, a grasp was considered to be
correct if:
• the predicted grasp rectangle and a corresponding

ground truth grasp rectangle share an intersection over
union (IoU) score of greater than 25%, and

• the offset of the predicted grasp rectangle aligns within
30◦ with the corresponding ground truth grasp rectan-
gle.

Based on Jiang et al. [9], Lenz et al. [10] reduced the
threshold for a grasp to be considered successful from 50%
to 25%, arguing “since a ground truth rectangle can define a
large space of graspable rectangles (e.g. covering the entire
length of a pen), we consider a prediction to be correct if it
scores at least 25% by this metric”. The threshold of 25%
has been used to report performance in subsequent studies.

The IoU (rectangle) method is a fast offline method for
assessing model performance as it can be evaluated locally.
However, this can lead to inaccuracies as a proposed grasp
can meet the criteria for the rectangle metric, but could cause
a gripper to collide with or miss an object [20]. The red
rectangles shown in Fig. 1 represent grasps that fail to pick
up the objects in simulation, but have IoU scores of over
25% so would be reported as correct in most studies.

The SGT measure of performance is a more robust metric,
conducted on the Jacquard simulation server that performs
the proposed grasp in the same simulated environment with
the same arm as the data was collected [14]. However, this
is more costly in time and computation than the IoU metric.
Therefore, we have identified the best performing models,
according to the IoU metric, and submitted them to the
Jacquard on-line server in order to obtain a more accurate
comparison between models using SGT as this is designed
to be a more accurate benchmark for evaluating robotic
grasping performance.

B. Generative Grasping Networks

The approaches considered in this study are regarded as
generative grasping models in that they only require a single
pass to generate a grasp proposal. Each network outputs four
grasp maps which contain a value for each pixel representing
different grasping rectangle components: Q,Θcos,Θsin, and
W (see Fig. 2).

The value Q for each pixel represents the probability of
a successful grasp being made centred at the location of the
given pixel, and a grasp rectangle can be constructed by
taking the corresponding pixel value in the appropriate grasp
map with a gripper at angle Θ and width W , providing the
overall image frame of reference output:

G = (Q,Θcos,Θsin,W)h×w (4)

• Q ∈ Rh×w represents a quality map where each pixel
is a scalar in the range of 0 to 1, with values nearer to
1 predicting a higher chance of a successful grasp.

1Available at: https://jacquard.liris.cnrs.fr/

https://jacquard.liris.cnrs.fr/


Fig. 2. Given an RGB-D (4×320×320) image, each generative grasping
model outputs four grasp maps: Q, cos, sin, and W which are the same
size as the input N × 320 × 320 with N representing the number of
output bins. Θ is calculated during post processing from cos and sin to
form the proposed 2-D grasp rectangle. This is formed by taking the max
grasp quality pixel score from Q to form the grasp centre (x, y) and the
corresponding pixel values from the angle Θ and width W bin to create a
grasp rectangle of (x, y,Θ,W ).

• Θ ∈ Rh×w is the corresponding angle of the gripper
required around the z-axis to grasp an object in the
scene and is a value in the range of [−π2 ,

π
2 ] for each

pixel. The angle Θ may be inferred from the network
outputs: Θcos and Θsin which are the two decomposed
unit vectors of Θ. Θsin is in the range of [0, 1] and Θcos

in the range of [−1, 1]. This removes any discontinuities
where the angle wraps around ±π2 , and provides unique
values within Θ ∈ [−π2 ,

π
2 ] [12], [21]. The angle of the

proposed grasp can be calculated pixel-wise in post-
processing by Θ = arctan( sin(2Θsin)

cos(2Θcos) )/2.
• W ∈ Rh×w is the width of the gripper in pixels in the

range of [0,Wmax] which can be converted into real
world units using known measurements. Wmax is the
maximum width of the parallel gripper.

The output is therefore a grasp proposal for every pixel,
along with a quality estimate. To extract a grasp proposal, we
take the centre of the rectangle as the pixel position giving
maximum Q value and use the corresponding angle Θ and
width W from the same pixel position.

This study trains a variety of generative grasping deep
neural network architectures such as the Generative Grasping
CNN (GG-CNN2) [22], Generative Residual ConvNet (GR-
ConvNet) [8], and the image detection model UNet [18]
according to [13]. All models are trained using 320×320 4-
channel RGB-D images. Input data is cropped, resized, and
normalised before being processed by the network to match
the training data used and depth data is inpainted [12], [23].

Typically when these models are trained, the correspond-
ing ground truth Θcos, Θsin, and W grasp maps contain
pixel values where the angle and width are equivalent to
those of a corresponding successful grasp centred at the pixel
position in grasp map Q. However, due to the structure of the
Jacquard dataset, an image contains multiple grasps centred
on the same pixel where a variety of gripper angles and
widths for a given centred grasp are valid. When using a
single grasp map, an arbitrary selection of which angle and
width to use at such pixels must be made. The way this

choice is made has been shown to affect model performance
[13]. In order to reduce overlapping labelled grasps we
employ a technique from the orientation attentive grasp
synthesis model (ORANGE) [13] that separates the grasp
angles into N bins with each bin containing a range of
180/N degrees. The network then outputs grasp maps for
each bin, which allows the network to learn N grasps at
each pixel. The output of the network therefore becomes:

G = (Q,Θcos,Θsin,W)N×h×w (5)

where each of the N dimensions gives the grasp maps
restricted to that bin of angles. We compare the models that
output grasps as a single bin and when split into 3-bins. In
this instance, to reconstruct a grasping rectangle for testing,
the maximum Q value across all three bins is taken as the
(x, y) grasp centre, with the corresponding Θsin, Θcos, and
W pixel values from the corresponding bin make up the
final components of the grasping rectangle. For remaining
overlaps, the grasp with the smallest width was used to
generate the ground truth, in the same way as [13].

One benefit of these generative networks is that a corre-
sponding grasp score is generated at each pixel of an image.
In this work, whilst we only consider scenes with single
objects, when deployed in scenes with multiple objects, grasp
proposals for all objects are generated in a single pass [8].

C. Gaussian Ground Truth Grasp Maps

An ideal ground truth would be generated by using a physics
engine to simulate a grasp at each possible angle at each pixel
location, assigning the value 1 if there is a successful grasp
at some angle at that location. However this would require
tens of millions of simulations per input and is therefore
computationally infeasible on large datasets.

We must use some method to infer grasp quality values
at points that have not been directly simulated. Previous
versions of generative grasping networks such as GGCNN2
[22] and GR-ConvNet [8] have trained networks using grasp
maps where ground truth values for Q are represented as
a binary image mask (see Fig. 3). The traditional binary Q
grasp map assumes that all pixels within the centre third of
a grasp rectangle are correct grasps and assigns a ground
truth Q̂ (whereˆrepresents the associated ground truth grasp
map) value of 1 if a pixel falls within this section of any
grasping rectangle and 0 otherwise. As previously discussed,
this heuristic for generating ground truth values results in
inaccuracies such as quality scores that are centred away
from the object, as illustrated in Fig 1.

Therefore, we propose a Gaussian heuristic for generat-
ing ground truths and perform experiments comparing this
against the binary heuristic. Only the centre pixel of a
successful simulated grasp is assigned a quality score Q̂
value of 1, and the assigned Q̂ value gradually decays to near
zero according to a Gaussian distribution. The strength of the
Gaussian was selected using the hyperparameter σ, which
alters the how sharply the Q̂ value reduces away from the
centre. A smaller σ value represents a smaller standard devi-
ation focuses attention on the centres of successful simulated



Fig. 3. Annotated grasps from the dataset are transformed into ground
truth quality maps. All the given grasps for an object are transformed into
an image for training. If each picel in the centre third is identified as a
suitable grasp centre then the output is as given in the top left. With a
Gaussian representation, the ground truth becomes more nuanced, which
narrows down the appropriate grasp centres so an end-effector collision is
less likely. This ground truth is then separated into 3 buckets so the network
is trained to predict the grasp quality score for an associated range of grasp
angles.

grasps, whereas a large σ allows the network to generalise
successful grasps to similar areas in the surrounding pixels.

We apply this Gaussian filter in one of two ways against
the binary quality map: Firstly, the soft quality map, as
described alongside the ORANGE model [13], and our
strong quality map. For the soft quality map, a Gaussian filter
is applied, however, there remains a minimum floor value on
the centre third of the grasping rectangle. The centre of the
grasping rectangle has a Q̂ value of 1, and decays towards
a minimum value (0.9) according to the equation:

Q̂(x, y) = max
g

{
min

{
N (d, σ2)

N (0, σ2)
δ, 0.9δ

}}
(6)

where the Q̂ maximum is generated over all annotated grasps
g. d = d((x, y), g) is the distance of the pixel (x, y) from
the centre of the grasp g. δ = δ((x, y), g) is an indicator
function taking value 1 if (x, y) is in the centre third of the
grasping rectangle of g and value 0 otherwise, and σ is the
hyperparameter determining the strength of the Gaussian. In
this case σ = 2 according to the ORANGE model (Fig. 3).
This ensures that the network is taught to recognise the
centre of the grasping rectangle as a better location for grasp
approximation, although, this still considers all the centre
third to be valid and therefore results in the same problems
as the binary map.

We present an alternative to this method, which is referred
to as the strong quality map: this removes the minimum filter
from the soft quality map, and is defined in the following
equation:

Q̂(x, y) = max
g

{
N (d, σ2)

N (0, σ2)
× δ

}
. (7)

σ is varied as an extra hyperparameter to find the optimal
distribution of grasp centres. By removing the minimum
floor, the aim is to better train the network to recognise
appropriate grasps by further distinguishing grasp centres
between 0-1.

D. Training Method

For training and testing, the dataset is split 90/10% into each
set respectively according to the same methods used by [8],
[13], with no data augmentation applied during either stage.
This leaves a total of 5449 grasping scenes from the dataset
to form the test set. We use the same test set to evaluate
both the traditional Intersection over Union (IoU) metric and
simulated grasp trial-based (SGT) criterion.

Colour pixel values are normalised to the range of [0, 1]
before subtraction of the image mean to zero-centre the
image data. Depth data is also normalised to the range
of [−1, 1] before a zero-centre via mean subtraction and
subsequent clamping of values within this range. All models
are trained using the ADAM optimser [24] and early stopping
is used once the learning rate plateaus after a number of
epochs.

Models are trained with their original loss function as
well as the positional loss function from [19]. This new
loss provides a lightweight attention mechanism to gener-
ative grasping models and is performed by multiplying loss
contribution from angle and width values by the Q̂ value at
that pixel. This does not penalise the network for angle and
width errors away from positions of where a successful grasp
can occur, focusing attention on errors at successful grasp
positions. This means that the GG-CNN2 and UNet models
are trained using an MSE loss function and the GR-ConvNet
model is trained using smooth L1 loss. Following [13], the
losses are also scaled by multiplying them with the number
of discretised angle bins N and thus making the overall loss
for the network equal to:

L = N ×
(
L(Q) + L(Θcos) + L(Θsin) + L(W )

)
(8)

with L representing the loss for the given network and L
representing the individual MSE or smooth L1 loss for the
given network. The positional loss LP function is then given
by:

LP = N×
(
L(Q) + Q̂(L(Θcos) + L(Θsin) + L(W ))

)
(9)

In generating the ground truth, for situations where mul-
tiple grasps centred on the same pixel values existed with
different corresponding angles and widths: the smallest sized
grasp is used [13]. Similarly, a half jaw size is adopted during
testing [25]. Results from testing are first reported using the
IoU (rectangle) metric to establish a quick offline evaluation



Fig. 4. The setup of the WidowX robot arm used in the physical
experiments, with the camera positioned above the scene.

and the best performing models for each network architecture
are sent to the Jacquard server for a robust comparison.

E. Physical Experiments

In addition to the simulated grasp trial data presented,
experiments utilising a WidowX robot arm are implemented
to show that the model can easily transfer to a physical real-
world setup. The setup takes an image from above using
an Intel RealSense SR300 RGB-D camera, in the same
orientation of that used in the JGD, and generates the given
grasp proposal from the model for the given object. The robot
arm used in this work is a 6 degrees of freedom (6DoF)
WidowX arm from Interbotix Labs: a 1DoF rotating base,
three 1DoF joints, a 1DoF rotating wrist, and a 1DoF parallel
plate gripper with minimum 1cm and maximum 3cm width.
The setup is shown in Fig. 4 and is the same low-cost arm
as used in REPLAB [26]. Grasp plan motions are created
using ROS inverse kinematics and planned with the MoveIt
package.

Using Equation 2, the 2D output from the model is
transformed into the robots frame of reference by taking
the maximum pixel coordinate (x, y) from the grasp quality
score, and using the corresponding depth coordinate from an
RGB-D camera to the depth point in 3D space z to form a
3D grasp location (x, y, z).

Nowadays, single object grasping in uncluttered scenes is
highly accurate. Therefore, to show the model is capable
of transferring knowledge to completely unrelated objects,
a standardised set of 3D printed objects is used for testing
called the evolved grasping analysis dataset (EGAD)2 [7].
This features a diverse range of objects of varying difficulty
and complexity, including simple and antagonistic examples.
The dataset ranges from A0 to G6. Increasing lettering
represents more difficult to grasp objects but should represent
the similar grasp difficulty whereas increased numbering
corresponds to increased complexity.

2Available at https://dougsm.github.io/egad/

TABLE I
PERFORMANCE ON THE TEST PORTION OF THE JACQUARD GRASPING

DATASET ACCORDING TO THE IOU METRIC AT THE 25% THRESHOLD

Model Loss Bins
Binary Soft Strong
σ 2 2 1 0.5 0.25

GG [22]
MSE

1 87.87 87.69 86.79 87.50 86.86 85.74
3 88.00 88.73 87.83 87.65 86.93 86.02

Pos
1 91.21 91.99 88.13 90.18 90.18 89.96
3 93.98 88.59 91.39 92.90 90.93 92.42

GR[8]
SL1

1 90.86 90.82 90.16 90.77 89.74 89.10
3 91.65 92.05 91.98 92.40 91.41 92.40

Pos
1 92.27 91.89 91.76 91.47 91.98 92.35
3 93.69 91.82 93.47 90.99 93.21 92.40

UN [13]
MSE

1 90.55 89.52 90.48 89.94 89.94 89.91
3 91.78 91.14 90.51 89.21 89.67 89.89

Pos
1 93.61 93.30 92.62 91.69 92.48 92.18
3 94.66 93.45 93.98 94.35 93.83 92.59

Data is presented using the model as trained with the
simulated Jacquard data with no transfer learning involved.
This is to show ease of transferability to other settings and
that the model can easily generalise to similar settings. To
this effect, the same grasping methodology as used in the
original EGAD study [7] is repeated. Each object is thrown
randomly into the arena and a grasp is attempted 20 times
for each object. The grasp is considered successful if the
object is lifted and stable above the arena once the gripper
has closed. The object is then dropped back randomly into
the arena for the next attempt. If the object is unsuccessfully
grasped then it is manually reset by throwing it back into the
arena randomly, to ensure the network is not continuously
attempting incorrect grasps.

V. RESULTS AND DISCUSSION

In this work, a series of generative grasping models includ-
ing: the generative grasping convolutional neural network
(GG-CNN2) [22]; generative residual convolutional network
(GR-ConvNet) [8]; and UNet architectures [13], [18], are
trained on the Jacquard grasping dataset [14]. The results
from both the intersection over union (IoU) metric [9], [10]
and simulated grasp trials (SGT) are reported for the same
unseen data. The IoU metric is used as a quick offline metric
for evaluating performance of all models and then the best
performing models are tested using the simulated physics
environment on the Jacquard test server [14], as this is a
more robust evaluation of performance.

Each model is trained using the traditional binary ground
truth grasp map introduced in [12], the soft quality map
from [13], and the strong quality map, as described in
Subsection IV-C. The strength of the Gaussian filter σ is
varied to find the optimal spread of trainable parameters
for the dataset. The best performing model is then applied
in a real world setting, to show the model is capable of
generalising to completely unseen objects using a low-cost
robot arm.

https://dougsm.github.io/egad/


A. Offline versus Simulated Performance

The overall performance of each model when measured using
the typical IoU threshold of 25% is reported in Table I.
Firstly, this data shows that models trained with three output
angle bins perform better than those limited to one angle
bin, as previously shown in [13], [25]. Similarly, models
trained with the positional loss function outperform the same
model when trained with each respective base loss function,
as previously shown in [19]. As far as we are aware, this is
the first work to combine both these methods concurrently.
This approach achieves the best reported IoU metric for
each model, showing these two improvements complement
one other, which has not been previously demonstrated.
Therefore, all models compared in the SGT results in Table
II feature models trained with both methods in unison.

From the IoU measure of 25%, the conclusion would
be that there is little difference when comparing the same
models on different ground truth maps. The best reported
value overall is achieved by the UNet model with a generated
binary ground truth (94.66%), which slightly outperforms
the same model when trained with the strong (94.35%)
Gaussian maps followed by the soft quality ground truth map
(93.45%). This conclusion, however, does not hold when we
consider the more robust SGT results below.

In Table II, when we analyse performance at higher IoU
thresholds, the difference between the binary and Gaussian
methods becomes more apparent. Despite close results at the
traditional 25% threshold, the grasping performance of the
models separates at higher thresholds. An increased grasp
success at larger IoU thresholds demonstrate grasps that
highly resemble that of the test set. For example, there is a
broader separation between the models at the 75% threshold,
showing that models are not learning how to best recreate
the training data. In each case, at higher thresholds, the soft
Gaussian map shows the greatest decrease in grasp success
across all models, whereas the strong Gaussian method re-
mains the most consistent. This shows an inherent issue with
the IoU metric as it results in saturated grasp performance,
particularly at low threshold values. The average IoU is also
included to display performance across all thresholds.

Since the evaluation of these models in simulation takes
significantly longer to produce than the typical offline eval-
uation, only the highest performing models were evaluated
in this manner. This was according to both the fast rectangle
metric and the average (IoU-Avg) score. Whilst the effects
of altering the hyperparameter σ while using strong Gaus-
sian maps are considered, there is no clear optimal value.
Generally performance benefits from a moderate value in
which the Gaussian map does not include the edges of the
grasping rectangle but maintains a large enough collection
of high quality grasp centres to learn from. We note that
the optimal Gaussian scaling is likely tied to the density of
labelled grasps in the dataset for a given object and a given
model. As the JGD contains a high density of grasp labels, it
is likely that the optimal scaling factor is smaller than for a
dataset with more sparsely sampled grasp labels, such as the

TABLE II
PERFORMANCE OF MODELS TRAINED WITH THREE OUTPUT BINS AND

POSITIONAL LOSS FUNCTION ON THE JACQUARD GRASPING DATASET.

Model Map
IoU SGT

25% 30% 50% 75% Avg %

GG [22]
Binary 93.98 92.33 79.61 30.21 62.46 85.41

Soft 88.59 85.15 69.41 25.49 57.40 85.43
Strong 92.90 91.14 80.29 39.20 64.13 86.58

GR [8]
Binary 93.69 91.83 83.01 39.37 65.57 85.36

Soft 91.15 88.81 79.52 23.47 61.16 83.06
Strong 93.21 90.95 82.44 49.62 66.98 85.89

UN [13]
Binary 94.66 93.25 84.42 43.11 66.61 85.69

Soft 93.45 91.43 82.27 40.03 65.05 85.78
Strong 93.98 92.31 83.87 50.71 67.69 87.94

CGD [9], [10], and requires fine tuning with other datasets.
Together, these results suggest that models trained with the

strong Gaussian map learn to predict grasp rectangles closer
to the original simulated grasps, which have previously con-
firmed a successful grasp on the object. This is represented
by the higher IoU-Avg score of proposed grasps as well as
confirmation on SGT results, which show predicted grasps
are less likely to result in gripper collisions during imple-
mentation. Therefore, this difference in SGT performance
highlights the inherent problem with only reporting the
traditional IoU metric for predicting real-world performance.
Here, the strong Gaussian map also achieves the highest
accuracy on the more robust measure of performance as this
also considers grasps not included in the dataset. The best
performing UNet model reports a total of 87.94% successful
grasps on the same 5449 object scenes as used to measure the
IoU compared to only 85.69% using the binary grasp map.
This is also over a 2% performance increase over the highest
reported result for the SGT metric so far [20]. We suggest
in future work that if a fast, offline estimate of performance
is presented: the average IoU (IoU-Avg) score of proposed
grasps should be reported, alongside the commonly used
IoU metric at multiple thresholds, as a predictor of robotic
arm/SGT success.

B. EGAD Results

In addition to the SGT results, which show that the trained
model is capable of producing grasps in the environment
native to the training procedure, the model was also applied
to a standard low-cost WidowX robotic arm. The arm is
tasked with picking up each object from the EGAD [7]
evaluation set 20 times for a total of 980 grasp trials. A
grasp is considered successful if a correct plan is made to
attempt an object grasp and the arm is able to lift the object
above the arena after closure of the gripper. We apply an
open-loop grasping method where a grasp plan is made in
the same way as the SGT. The camera is placed above the
scene to mimic that of the JGD but otherwise no transfer
learning took place. The results of these tests, are shown in
Fig. 5.
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Fig. 5. Average grasp success rate for each object in the EGAD [7]
evaluation dataset. Outer cells show the mean for that row and column.

The applied model performs relatively well overall despite
only being trained on simulated data. The model maintains
reasonable consistency across all object complexities, and
generally decreases in performance as object difficulty in-
creases. The model performs best when grasping the easiest
objects (A) and slightly dropping in performance towards the
most difficult objects (G). In some trials, the robot is even
able to achieve perfect or near perfect results. In all trials,
the robot made an accurate attempt to grasp the object in
the scene, which shows that the model is able to be applied
with high accuracy without transfer learning. This results in
an overall mean accuracy of 77% over all grasps attempted
which, while not directly comparable due to the difference
in arm setup, is higher than the 58% accuracy achieved by
only the base GG-CNN model in the original study [7].

Whilst this robotic implementation requires an external
depth camera, very few examples are failures as a result of
an incorrect gripper depth. Most failure cases observed are
due to designed object difficulty, such as grasping parts of
the object with angled sides or raised edges, see Fig. 6 for
examples. Other cases where grasp success is low, such as
object B3 or D4, resulted from a lack of knowledge about
the gripper. The model would predict grasps that resulted in
object collisions with the gripper plates by grasping along an
unfriendly axis relative to the robot end-effector, cases which
would otherwise be fine using a narrower pinch gripper.
These could be improved by further training with knowledge
of the specific end-effector but the JGD is primarily designed
for parallel-jaw grippers like the one used here.

Without transferring to the new scene the model still
achieves a relatively high success rate. However, it is noted

✘

✘

✓

✓

Fig. 6. Example grasps on using a low-cost robotic arm with a parallel
plate gripper. Most objects are grasped by reaching across the principal axis
of the object (top left), however the model is also capable of plan grasps
that only reached across parts of the object (bottom left). The most common
failure cases are due to object difficulty where the model suggested grasps
unsuitable for the type of gripper used (right images).

TABLE III
INFERENCE TIME FOR A SINGLE GRASP ON GRASPING MODELS.

Model Model Parameters Inference Time (ms)

Google Grasp [27] 1M 200-500
GQ-CNN [4] 18M 800
FC-GQ-CNN [6] - 625

GGCNN2 [22] 72k 12-14
GR-ConvNet [8] 1.9M 38-40
UNet [18] 14.7M 25-28

that this is a simple task with only one object per scene.
While other networks in more recent studies can achieve
high success rate by gripping in a 3-D space (e.g. [6]), these
lightweight generative models balance high accuracy with
much faster grasp detection speed. As a result, they can
operate at greater speed than other discriminative models, as
shown in Table. III. The inference times for our models are
collected using GPU-acceleration on a NVidia GTX 1080Ti
graphics card in PyTorch 1.3 with CUDA 11, taking the
minimum and maximum inference speeds over the test set.

Future generative grasping models may benefit from an
inherent depth module to directly predict (x, y, z) grasps
without the need for the external transformation. Perfor-
mance would likely be improved using more accurate robotic
grippers and transfer to specific scenes or grippers, e.g. [28].
However, this work intends to minimise extensive retraining
to reinforce the generalisability of the model.



VI. CONCLUSION

We evaluate the effect of training common generative robotic
grasping models using an applied Gaussian filter on a mod-
ified ground truth representation. These results show that
using both the attentional positional loss function, in addition
to discrete orientation-specific outputs, together improves
grasping performance with little to no overhead.

Furthermore, the traditional rectangle metric, is insuffi-
cient for predicting grasp success on robotic arms. These ex-
periments show that models trained using a Gaussian ground
truth, whilst showing negligible performance difference on
the rectangle metric, were better able to propose appropriate
grasps when testing on a simulated robot arm. Our best
model achieves 87.94% grasp success according to the SGT,
which is > 2% performance increase over the previous state
of the art on this benchmark [20]. Therefore, we suggest
the addition of the IoU-Avg score as an offline metric for
predicting real-world model performance.

This data is further supplemented with real-world data to
show the model is capable of transferring to a previously
unseen physical object dataset. The trained model achieves
high performance even on complex and difficult to grasp ob-
jects. Therefore, we reinforce the need for testing of models
on physical benchmarks in addition to offline measures.
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