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—— Abstract

We study how to utilize (possibly erroneous) predictions in a model for computing under uncertainty

in which an algorithm can query unknown data. Our aim is to minimize the number of queries needed
to solve the minimum spanning tree problem, a fundamental combinatorial optimization problem
that has been central also to the research area of explorable uncertainty. For all integral v > 2, we
present algorithms that are v-robust and (1 + %)—consistent7 meaning that they use at most yOPT
queries if the predictions are arbitrarily wrong and at most (1 + %)OPT queries if the predictions are
correct, where OPT is the optimal number of queries for the given instance. Moreover, we show that
this trade-off is best possible. Furthermore, we argue that a suitably defined hop distance is a useful
measure for the amount of prediction error and design algorithms with performance guarantees that
degrade smoothly with the hop distance. We also show that the predictions are PAC-learnable in
our model. Our results demonstrate that untrusted predictions can circumvent the known lower
bound of 2, without any degradation of the worst-case ratio. To obtain our results, we provide new
structural insights for the minimum spanning tree problem that might be useful in the context of
query-based algorithms regardless of predictions. In particular, we generalize the concept of witness
sets—the key to lower-bounding the optimum—by proposing novel global witness set structures and
completely new ways of adaptively using those.
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1 Introduction

We introduce learning-augmented algorithms to the area of optimization under explorable
uncertainty and focus on the fundamental minimum spanning tree (MST) problem under
explorable uncertainty. We are given a (multi)graph G = (V, E) with unknown edge weights
we € Ry, for e € E. For each edge e, an uncertainty interval I, is known that contains w,.
A query on edge e reveals the true value w,. The task is to determine an MST, i.e., a tree
that connects all vertices of G, of minimum total weight w.r.t. the true values w.. A query
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set is called feasible if it reveals sufficient information to identify an MST (not necessarily its
exact weight). As queries are costly, the goal is to find a feasible query set of minimum size.

We study adaptive strategies that make queries sequentially and utilize the results of
previous steps to decide upon the next query. As there exist input instances that are
impossible to solve without querying all edges, we evaluate our algorithms in an instance-
dependent manner: For each input, we compare the number of queries made by an algorithm
with the best possible number of queries for that input, using competitive analysis. For a
given problem instance, let OPT denote an arbitrary optimal query set (we later give a formal
definition of OPT). An algorithm is p-competitive if it executes, for any problem instance, at
most p - |OPT| queries. While MST under explorable uncertainty is not a classical online
problem where the input is revealed passively over time, the query results are uncertain
and, to a large degree, dictate whether decisions to query certain edges were good or not.
For analyzing an algorithm, it is natural to assume that the query results are determined
by an adversary.This gives the problem a clear online flavor and prohibits the existence of
1-competitive algorithms even if we have unlimited running time and space [24]. We note
that competitive algorithms in general do not have any running time requirements, but all
our algorithm run in polynomial time.

The MST problem is among the most widely studied problems in the research area of
explorable uncertainty [35] and has been a cornerstone in the development of algorithmic
approaches and lower bound techniques [21,22,24,27,43,44]. The best known deterministic
algorithm for MST with uncertainty is 2-competitive, and no deterministic algorithm can be
better [24]. A randomized algorithm with competitive ratio 1.707 is known [43]. Further
work considers the non-adaptive problem, which has a very different flavor [44].

In this paper, we assume that an algorithm has, for each edge e, access to a prediction
w, € I, for the unknown value w,.. For example, machine learning (ML) methods could be
used to predict the value of an edge. Given the tremendous progress in artificial intelligence
and ML in recent decades, we can expect that those predictions are of good accuracy, but
there is no guarantee and the predictions might be completely wrong. This lack of provable
performance guarantees for ML often causes concerns regarding how confident one can be
that an ML algorithm will perform sufficiently well in all circumstances. We address the very
natural question whether the availability of such (ML) predictions can be exploited by query
algorithms for computing with explorable uncertainty. Ideally, an algorithm should perform
very well if predictions are accurate, but even if they are arbitrarily wrong, the algorithm
should not perform worse than an algorithm without access to predictions. To emphasize
that the predictions can be wrong, we refer to them as untrusted predictions.

We note that the availability of both uncertainty intervals and untrusted predictions is
natural in many scenarios. For example, the quality of links (measured using metrics such as
throughput and reliability) in a wireless network often fluctuates over time within a certain
interval, and ML methods can be used to predict the precise link quality based on time-series
data of previous link quality measurements [1]. The actual quality of a link can be obtained
via a new measurement. If we wish to build a minimum spanning tree using links that
currently have the highest link quality and want to minimize the additional measurements
needed, we arrive at an MST problem with uncertainty and untrusted predictions.

We study for the first time the combination of explorable uncertainty and untrusted
predictions. Our work is inspired by the vibrant recent research trend of considering untrusted
(ML) predictions in the context of online algorithms, a different uncertainty model where the
input is revealed to an algorithm incrementally. Initial work on online caching problems [40]
has initiated a vast growing line of research on caching [5, 49, 53], rent-or-buy problems
[31,48,54], scheduling [4,9,38,45,48], graph problems [19,37,39] and many more.
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We adopt the following notions introduced in [40,48]: An algorithm is a-consistent if it
is a-competitive when the predictions are correct, and it is S-robust if it is S-competitive no
matter how wrong the predictions are. Furthermore, we are interested in a smooth transition

between the case with correct predictions and the case with arbitrarily incorrect predictions.

We aim for performance guarantees that degrade gracefully with increasing prediction error.
Given predicted values for the uncertainty intervals, it is tempting to simply run an
optimal algorithm under the assumption that the predictions are correct. This is obviously
optimal with respect to consistency, but might give arbitrarily bad solutions in the case
when the predictions are faulty. Instead of blindly trusting the predictions, we need more
sophisticated strategies to be robust against prediction errors. This requires new lower
bounds on an optimal solution, new structural insights, and new algorithmic techniques.

Main results

In this work, we show that, in the setting of explorable uncertainty, it is in fact possible
to exploit ML predictions of the uncertain values and improve the performance of a query
strategy when the predictions are good, while at the same time guaranteeing a strong bound
on the worst-case performance even when the predictions are arbitrarily bad.

We give algorithms for the MST problem with uncertainty that are parameterized by a
hyperparameter v that reflects the user’s confidence in the accuracy of the predictor. For
any integral v > 2, we present a (1 + %)—consistent and y-robust algorithm, and show that
this is the best possible trade-off between consistency and robustness. In particular, for
v = 2, we obtain a 2-robust, 1.5-consistent algorithm. It is worth noting that this algorithm
achieves the improved competitive ratio of 1.5 for accurate predictions while maintaining the
worst-case ratio of 2. This is in contrast to many learning-augmented online algorithms where

the exploitation of predictions usually incurs an increase in the worst-case ratio (e.g., [6,48]).

Our main result is a second and different algorithm with a more fine-grained performance
analysis that obtains a guarantee that improves with the accuracy of the predictions. Very
natural, simple error measures such as the number of inaccurate predictions or the £;-norm
of the difference between predictions and true values turn out to prohibit any reasonable
error-dependency. Therefore, we propose an error measure, called hop distance kp, that
takes structural insights about uncertainty intervals into account and may also be useful for
other problems in computing with uncertainty and untrusted predictions. We give a precise
definition of this error measure later. We also show in the full version [20] that the predictions
are efficiently PAC-learnable with respect to k;. Our main result is a learning-augmented
algorithm with a competitive ratio with a linear error-dependency min{(1+ %) +1 g’;f%‘ ,Y+1},
for any integral v > 2. All our algorithms have polynomial running-times. We describe our

techniques and highlight their novelty in the following section.

The integrality requirement for v comes from using ~ to determine set sizes and can be
removed by randomization at the cost of a slightly worse consistency guarantee; for a proof
we refer to the full version.

Further related work

There is a long history of research on the tradeoff between exploration and exploitation when
coping with uncertainty in the input data. Often, stochastic models are assumed, e.g., in
work on multi-armed bandits [16,28, 52], Weitzman’s Pandora’s box [55], and query-variants
of combinatorial optimization problems; see, e.g., [32,41,51] and many more. In our work, we
assume no knowledge of stochastic information and aim for robust algorithms that perform
well even in a worst case.
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The line of research on explorable uncertainty has been initiated by Kahan [35] in
the context of selection problems. Subsequent work addressed finding the k-th smallest
value in a set of uncertainty intervals [26,33], caching problems [47], computing a function
value [36], sorting [34], and classical combinatorial optimization problems. Some of the major
aforementioned results on the MST problem under explorable uncertainty have been extended
to general matroids [23,43,44]. Further problems that have been studied are the shortest path
problem [25], the knapsack problem [29] and scheduling problems [2,3,7,10,18]. Although
optimization under explorable uncertainty has been studied mainly in an adversarial model,
recently first results have been obtained for stochastic variants for sorting [17] and selection
type problems (hypergraph orientation) [11].

There is a significant body of work on computing in models where information about a
hidden object can be accessed only via queries. The hidden object can, for example, be a
function, a matrix, or a graph. In the graph context, property testing [30] has been studied
extensively and there are many more works, see [8,12,13,42,46,50]. The bounds on the
number of queries made by an algorithm are typically absolute (as a function of the input)
and the resulting correctness guarantees are probabilistic. This is very different from our
work, where we aim for a comparison to the minimum number of queries needed for the
given graph.

2  Overview of techniques and definition of error measure

We assume that each uncertainty interval is either open, I, = (L, Us,), or trivial, I, = {w.},
and we refer to edge e as non-trivial or trivial, respectively; a standard assumption to avoid
a simple lower bound of |E| on the competitive ratio [24,33].

Before we give an overview of the used techniques, we formally define feasible and optimal
query sets. We say that a query set Q C F is feasible if there exists a set of edges T C E
such that T" is an MST for the true values w, of all e € @ and every possible combination of
edge weights in I, for the unqueried edges e € E'\ Q. That is, querying a feasible query set @
must give us sufficient information to identify a spanning tree T that is an MST for the true
values no matter what the true values of the unqueried edges E \ @ actually are. We call a
feasible query set @ optimal if it has minimum cardinality |Q| among all feasible query sets.
Thus, the optimal solution depends only on the true values and not on the predicted values.

As Erlebach and Hoffmann [21] give a polynomial-time algorithm that computes an
optimal query set under the assumption that all query results are known upfront, we can use
their algorithm to compute the optimal query set under the assumption that all predicted
values match the actual edge weights and query the computed set in an arbitrary order. If
the predicted values are indeed correct, this yields a 1-consistent algorithm. However, such an
algorithm may have an arbitrarily bad performance if the predictions are incorrect. Similarly,
the known deterministic 2-competitive algorithm for the MST problem with uncertainty
(without predictions) [24] is 2-robust and 2-consistent. The known lower bound of 2 rules
out any robustness factor less than 2. It builds on the following simple example with two
intersecting intervals I, I, that are candidates for the largest edge weight in a cycle. No
matter which interval a deterministic algorithm queries first, say I, the realized value could
be w, € I, N I, which requires a second query. If the adversary chooses w, ¢ I, N I,
querying just I, would have been sufficient to identify the interval with larger true value.
See also [24, Example 3.8] and [43, Section 3] for an illustration of the lower bound example.
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Algorithm overview

We aim for (14 %)—consistent and ~-robust algorithms for each integral v > 2. The algorithm
proceeds in two phases: The first phase runs as long as there are prediction mandatory edges,
i.e., edges that must be contained in every feasible query set under the assumption that the
predictions are correct; we later give a formal characterization of such edges. In this phase,
we exploit the existence of those edges and their properties to execute queries with strong
local guarantees, i.e., each feasible query set contains a large portion of our queries. For
the second phase, we observe and exploit that the absence of prediction mandatory queries
implies that the predicted optimal solution is a minimum vertex cover in a bipartite auxiliary
graph. The challenge here is that the auxiliary graph can change with each wrong prediction.
To obtain an error-dependent guarantee (our error measure kj, is discussed below) we need
to adaptively query a dynamically changing minimum vertex cover.

Novel techniques

During the first phase, we generalize the classical witness set analysis. In computing with
explorable uncertainty, the concept of witness sets is crucial for comparing the query set of
an algorithm with an optimal solution (a way of lower-bounding). A witness set [15] is a
set of elements for which we can guarantee that any feasible solution must query at least
one of these elements. Known algorithms for the MST problem without predictions [24,43]
essentially follow the algorithms of Kruskal or Prim and only identify witness sets of size 2
in the cycle or cut that is currently under consideration. Querying disjoint witness sets of
size 2 (witness pairs) ensures 2-robustness but does not lead to an improved consistency.
In our first phase, we extend this concept by considering strengthened witness sets of
three elements such that any feasible query set must contain at least two of them. Since we
cannot always find strengthened witness sets based on structural properties alone (otherwise,
there would be a 1.5-competitive algorithm for the problem without predictions), we identify
such sets under the assumption that the predictions are correct. Even after identifying such
elements, the algorithm needs to query them in a careful order: if the predictions are wrong,

we lose the guarantee on the elements, and querying all of them might violate the robustness.

In order to identify strengthened witness sets, we provide new, more global criteria to identify
additional witness sets (of size two) beyond the current cycle or cut. These new ways to
identify witness sets are a major contribution that may be of independent interest regardless
of predictions. During the first phase, we repeatedly query v — 2 prediction mandatory edges
together with a strengthened witness set, which ensures (1 + %)—consistency. We query the
elements in a carefully selected order while adjusting for errors to ensure ~y-robustness.

For the second phase, we observe that the predicted optimal solution of the remaining
instance is a minimum vertex cover VC in a bipartite auxiliary graph representing the
structure of potential witness pairs (edges of the input graph correspond to vertices of the
auxiliary graph). For instances with this property, we aim for 1-consistency and 2-robustness;
the best-possible trade-off for such instances. If the predictions are correct, each edge of the
auxiliary graph is a witness pair. However, if a prediction error is observed when a vertex
of VC' is queried, the auxiliary graph changes. This means that some edges of the original
auxiliary graph are not actually witness pairs. Indeed, the size of a minimum vertex cover
can increase and decrease and does not constitute a lower bound on |OPT|; we refer to the
full version for an example.

If we only aim for consistency and robustness, we can circumvent this problem by selecting
a distinct matching partner h(e) € VC for each e € VC applying Kénig-Egervdry’s Theorem

(duality of maximum matchings and minimum vertex covers in bipartite graphs, see e.g. [14]).

12:5

ESA 2022



12:6

Learning-Augmented Query Policies for MST with Uncertainty

By querying the elements of V'C' in a carefully chosen order until a prediction error is observed
for the first time, we can guarantee that {e, h(e)} is a witness set for each e € VC that is
already queried. In the case of an error, this allows us to extend the previously queried
elements to disjoint witness pairs to guarantee 2-robustness. Then, we can switch to an
arbitrary (prediction-oblivious) 2-competitive algorithm for the remaining queries.

If we additionally aim for an error-sensitive guarantee, however, handling the dynamic
changes to the auxiliary graph, its minimum vertex cover VC' and matching h requires
substantial additional work, and we see overcoming this challenge as our main contribution.
In particular, querying the partner h(e) of each already queried e € VC in case of an error
might be too expensive for the error-dependent guarantee. However, if we do not query
these partners, the changed instance still depends on them, and if we charge against such a
partner multiple times, we can lose the robustness. Our solution is based on an elaborate
charging/counting scheme and involves:

keeping track of matching partners of already queried elements of V' C;

updating the matching and V C using an augmenting path method to bound the number
of elements that are charged against multiple times in relation to the prediction error;
and querying the partners of previously queried edges (and their new matching partners) as
soon as they become endpoints of a newly matched edge, in order to prevent dependencies
between the (only partially queried) witness sets of previously queried edges.

The error-sensitive algorithm achieves a competitive ratio of 1 + % + ‘S’;’h, at the price

of a slightly increased robustness of «v + 1 instead of .

Hop distance as error metric

When we aim for a fine-grained performance analysis giving guarantees that depend on the
quality of predictions, we need a metric to measure the prediction error. A very natural,
simple error measure is the number of inaccurate predictions ky = |[{e € E|we # We}|.
However, we can show that even for kx = 1 the competitive ratio cannot be better than the
known bound of 2 (see Lemma 19 in the full version). The reason for the weakness of this
measure is that it completely ignores the interleaving structure of intervals. Similarly, an ¢4
error metric such as ) _p |we — W.| would not be meaningful because only the order of the
values and the interval endpoints matters for our problems.

We propose a refined error measure, which we call hop distance. It is very intuitive
even though it requires some technical care to make it precise. If we consider only a single
predicted value w, for some e € E, then, in a sense, this value predicts the relation of the true
value we to the intervals of edges ¢’ € E'\ {e}. In particular, w.r.t. a fixed ¢’ € E'\ {e}, the
value W, predicts whether w, is left of I, (W, < L), right of I,s (@, > U, ), or contained
in I (Le <We < U ). Interpreting the prediction w, in this way, the prediction is ‘wrong’
(w.r.t. a fixed ¢ € E\ {e}) if the predicted relation of the true value w, to interval I,/ is
not actually true, e.g., w, is predicted to be left of I, (W, < L.s) but the actual w, is either
contained in or right of I/ (we > L¢). Formally, we define the function k. (e) that indicates
whether the predicted relation of w, to I is true (ke (e) = 0) or not (ke (e) = 1). With the
prediction error k™ (e) for a single e € E, we want to capture the number of relations between
we and intervals I, with ¢’ € E '\ {e} that are not accurately predicted. Thus, we define
k*(e) = Xoep\ (e} ker(€). For a set of edges E' C E, we define k*(E') = 37 k™ (e).
Consequently, with the error for the complete instance we want to capture the total number
of wrongly predicted relations and, therefore, define it by k, = k*(FE). We call this error
measure kj, the hop distance; see Figure 1 for an illustration.
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I, beS 1 k™ (ea) =1
kT(es) =0 !
Iy —— o—i()=2 k=) k'(e)=5
kt(e3s) =0 B i=1
]825 v | k™ (e2) =1
~—_— — 4
i+ (a) —
L, ¢ b(GZ) 3 { k= (e1) =1 kn = Zkf(ei) =5
K (er) =2 =

Figure 1 Example of a single cycle (left) with uncertain edge weights from intersecting intervals
Ie\,Ic,, Ic,, I, (middle). Circles illustrate true values and crosses illustrate the predicted values.

Symmetrically, we can define k™ (e) = >, cp\ ¢y ke(€’) and k™ (E') = 3 cp k™ (e) for
subset B’ C E. Then k™ (E) = kj, = k= (F) follows by reordering the summations.

3  Structural results

In this section, we introduce some known concepts and prove new structural results on MST
under explorable uncertainty, which we use later to design learning-augmented algorithms.

Witness sets and mandatory queries

Witness sets are the key to the analysis of query algorithms. They allow for a comparison
of an algorithm’s query set to an optimal solution. A subset W C E is a witness set if
W NQ # 0 for all feasible query sets . An important special case are witness sets of
cardinality one, i.e., edges that are part of every feasible query set. We call such edges
mandatory. Similarly, we call edges that are mandatory under the assumption that the
predictions are correct prediction mandatory.

For an example, consider Figure 2. In the example, we see the uncertainty intervals,
predicted values and true values of four edges that form a simple cycle. We can observe that

both e; and ey are mandatory for this example. To see this, assume that e; is not mandatory.

Then, there must be a feasible query set @ with e; ¢ @ for the instance, which implies that
Q = {ea, e3,e4} must be feasible. But even after querying @ to reveal the true values of eg,
e3 and ey, it still depends on the still unknown true value of e; whether there exists an MST
T with e; € T (only if we, < we,) and/or e; € T (only if we, < we, ). Even after querying
@ there is no spanning tree T that is an MST for each possible edge weight in I, of the
unqueried edge e; and, thus, @ is not feasible. This implies that e; is mandatory, and we
can argue analogously that ey is mandatory as well.

To argue whether an edge is prediction mandatory, on the other hand, we assume that
all queries reveal the predicted values as true values. Under this assumption, a query to e;
in the example would reveal a value that is larger than all upper limits U,, with i € {2,3,4},
which implies that e; cannot be part of any MST and that T = {e2, e3,e4} is an MST no
matter what the true values of es, e3 and e4 actually are. Therefore, under the assumption
that all predicted values match the true values, Q = {e;} is a feasible query set and, thus,
eo is not prediction mandatory despite being mandatory. However, we can use a similar
argumentation as above to argue that ey is also prediction mandatory.

We continue by giving properties that allow us to identify (prediction) mandatory edges.
To that end, let the lower limit tree Tr, C E be an MST for values w’ with wé: =L,+e¢
for an infinitesimally small € > 0. Analogously, let the upper limit tree Ty be an MST for
values wY with w¥ = U, — e. This concept has been introduced in [43] to identify mandatory
queries; it is shown that every non-trivial e € Tr, \ Ty is mandatory. Thus, we may repeatedly
query edges in T, \ Ty until T;, = Ty without worsening the competitive ratio. We can
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Figure 2 Example of a single cycle (left) with uncertain edge weights from intersecting intervals
Iy, Iey, Ies, I, (right). Circles illustrate true values and crosses illustrate the predicted values. For
the example, {e1, e2} is the set of all mandatory edges and {e;} is the set of all prediction mandatory
edges.

extend this preprocessing to achieve uniqueness for 77, and Ty and, thus, may assume unique
T, =1Ty.

» Lemma 1. By querying only mandatory elements we can obtain an instance with Ty, = Ty
such that Tr, and Ty are the unique lower limit tree and upper limit tree, respectively.

Given an instance with unique 77, = Ty, we observe that each e € Ty, that is not part of
the MST for the true values is mandatory. Similarly, each e &€ Ty, that is part of the MST
for the true values is mandatory as well. A stronger version of this observation is as follows.

» Lemma 2. Let G be an instance with unique T, = Ty and let G’ be an instance with
unique T7 = T{; obtained from G by querying set Q, then e € TL AT, = (T, \T7) U (T} \T1)
implies e € Q.

Next we establish a relation between the set Fj; C F of mandatory queries, the set
Ep C FE of prediction mandatory queries, and the hop distance ky,.

» Lemma 3. Consider a given problem instance G = (V, E) with predicted values w. Fach
e € EyAEp satisfies k~(e) > 1. Consequently, ky, > |EpfAEp|.

For a formal proof, we refer to the full version. Intuitively, if e € Ep \ Ej, then it is
possible to solve the instance without querying e. Thus, the relation of the true values wes
with €’ € E '\ {e} to interval I, must be such that querying E \ {e} allows us to verify that e
is either part or not part of the MST. If the predicted relations of the true values w., with
e’ € E\ {e} to interval I, were the same, then querying E \ {e} would also allow us to verify
that e is either part or not part of the MST. Thus, the predicted relation of at least one we
to interval I, must be wrong. We can argue analogously for e € Ey; \ Ep.

Identifying witness sets

We introduce new structural properties to identify witness sets. Existing algorithms for
MST under uncertainty [24,43] essentially follow the algorithms of Kruskal or Prim, and
only identify witness sets in the cycle or cut that is currently under consideration. Let
fi,..., fi denote the edges in E'\ T, ordered by non-decreasing lower limit. Then, C; with
i €{1,...,1} denotes the unique cycle in T, U {f;}.

For each e € Ty, let X, denote the set of edges in the cut of the two connected components
of T, \ {e}. Existing algorithms for MST under explorable uncertainty repeatedly consider
(the changing) Cy or X, where e is the edge in 77, with maximum upper limit, and identify
the maximum or minimum edge in the cycle or cut by querying witness sets of size two, until
the problem is solved. For our algorithms, we need to identify witness sets in cycles C; # C1
and cuts X # X..
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» Lemma 4. Consider cycle C; with i € {1,...,1}. Let l; € C; \ {f;} such that I;, N Iy, # 0
and l; has the largest upper limit in C; \ {fi}, then {f;,l;} is a witness set. If wy, € I,, then
l; is mandatory.

Characterization of prediction mandatory free instances

We say an instance is prediction mandatory free if it contains no prediction mandatory
elements. A key part of our algorithms is to transform instances into prediction mandatory
free instances while maintaining a competitive ratio that allows us to achieve the optimal
consistency and robustness trade-off overall. We give the following characterization of
prediction mandatory free instances, (cf. Figure 3). Then, we show that prediction mandatory
free instances remain so as long as we ensure 11, = Ty .

Figure 3 Intervals in a prediction mandatory free cycle with predictions indicated as red crosses

» Lemma 5. An instance G is prediction mandatory free iff wy, > U. and W, < Ly, holds
for each e € C; \ {fi} and each cycle C; withi € {1,...,l}. Once an instance is prediction
mandatory free, it remains so even if we query further elements, as long as we maintain
unique T, =Ty .

Making instances prediction mandatory free

In the full version, we give a powerful preprocessing algorithm that transforms arbitrary
instances into prediction mandatory free instances.

» Theorem 6. There is an algorithm that makes a given instance prediction mandatory
free and satisfies |ALG| < min{(1 + %) -(J(ALGU D) N OPT| + kT (ALG) + k~ (ALG)), v -
[(ALGU D) N OPT| 4~ — 2} for the set of edges ALG queried by the algorithm and a set
D C E\ ALG of unqueried edges that do not occur in the remaining instance after executing
the algorithm.

The set D are edges that, even without being queried by the algorithm, are proven to be
maximal in a cycle or minimal in a cut. Thus, they can be deleted or contracted w.l.o.g. and
do not exist in the instance remaining after executing the preprocessing algorithm. This
is an important property as it means that the remaining instance is independent of D and
ALG (as all elements of ALG are already queried). Since the theorem compares |ALG| with
[(ALGUD)NOPT)| instead of just |OPT], this allows us to combine the given guarantee with
the guarantees of dedicated algorithms for prediction mandatory free instances. However, we
have to be careful with the additive term v — 2, but we will see that we can charge this term
against the improved robustness of our algorithms for prediction mandatory free instances.

4 An algorithm with optimal consistency and robustness trade-off

We give a bound on the best achievable tradeoff between consistency and robustness.

» Theorem 7. Let 5 > 2 be a fized integer. For the MST problem under explorable
uncertainty with predictions, there is no deterministic S-robust algorithm that is a-consistent

fora < 1+ % And wvice versa, no deterministic a-consistent algorithm, with o > 1, is
B-robust for f < max{-—1-,2}.

a—17
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The main result of this section is an optimal algorithm w.r.t. this tradeoff bound.

» Theorem 8. For every integer v > 2, there exists a (1 + %)-consistent and y-robust

algorithm for the MST problem under explorable uncertainty with predictions.

To show this result, we design an algorithm for prediction mandatory free instances
with unique Ty = Ty. We run it after the preprocessing algorithm which obtains such
special instance with the query guarantee in Theorem 6. Our new algorithm achieves the
optimal trade-off.

» Theorem 9. There exists a 1-consistent and 2-robust algorithm for prediction mandatory
free instances with unique Ty, = Ty of the MST problem under explorable uncertainty with
predictions.

In a prediction mandatory free instance G = (V, E), each f; € E \ Ty, is predicted to be
maximal on cycle C;, and each | € T7, is predicted to be minimal in X; (cf. Lemma 5). If
these predictions are correct, then T}, is an MST and the optimal query set is a minimum
vertex cover in a bipartite graph G = (V,E) with V = E (excluding trivial edges) and
E={{fie}|ie{l,....0l},ec C;\{fi} and I. N I}, # 0} [21,43]. We refer to G as the
vertex cover instance. Note that if a query reveals that an f; is not maximal on C; or an
l € Ty, is not minimal in X;, then the vertex cover instance changes. Let V' C' be a minimum
vertex cover of G. Non-adaptively querying VC' ensures 1-consistency but might lead to an
arbitrarily bad robustness. Indeed, the size of a minimum vertex cover can increase and
decrease drastically as we show in the full version. Thus, the algorithm has to be more
adaptive.

The idea of the algorithm (cf. Algorithm 1) is to sequentially query each e € VC and
charge for querying e by a distinct non-queried element h(e) such that {e, h(e)} is a witness
set. Querying exactly one element per distinct witness set implies optimality. To identify h(e)
for each element e € V', we use the fact that Kénig-Egervdry’s Theorem (e.g., [14]) on the
duality between minimum vertex covers and maximum matchings in bipartite graphs implies
that there is a matching h that maps each e € VC to a distinct ¢/ ¢ VC. While the sets
{e,h(e)} with e € VC in general are not witness sets, querying V'C in a specific order until
the vertex cover instance changes guarantees that {e, h(e)} is a witness set for each already
queried e. The algorithm queries in this order until it detects a wrong prediction or solves
the problem. If it finds a wrong prediction, it queries the partner h(e) of each already queried
edge e, and continues to solve the problem with a 2-competitive algorithm (e.g., [24,43]).
The following lemma specifies the order in which the algorithm queries VC.

» Lemma 10. Let l1,... 1}, be the edges in VC N Ty, ordered by non-increasing upper limit
and let d be such that the true value of each I} with i < d is minimal in cut Xlg, then
{li,h(l})} s a witness set for each i < d. Let fi,..., f, be the edges in VC \ Ty, ordered
by non-decreasing lower limit and let b be such that the true value of each f] with i <b is
mazimal in cycle Cyr, then {fi, h(f])} is a witness set for each i <b.

Proof. Here, we show the first statement and refer to the full version for the proof of the
second statement. Consider an arbitrary I} and h(l}) with ¢ < d. By definition of h, the edge
h(l}) is not part of the lower limit tree. Consider Cha), i-e., the cycle in Ty, U {h(1})}, then
we claim that Cj,/) only contains h(l;) and edges in {l},...,[;} (and possibly irrelevant
edges that do not intersect I h(z;))~ To see this, recall that I} € VC, by definition of &, implies
h(l;) ¢ VC. For V.C to be a vertex cover, each e € Cp,y \ {h(l;)} must either be in VC or
not intersect h(l;). Consider the relaxed instance where the true values for each I; with j < d

and j # i are already known. By assumption each such /; is minimal in its cut Xl;. Thus,
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Algorithm 1 1-consistent and 2-robust algorithm for prediction mandatory free instances.

Input: Prediction mandatory free graph G = (V, E') with unique T}, = Ty .
1 Compute maximum matching h and minimum vertex cover VC for G;
2 Set W =0, and let f{,..., fo and If, ..., 1} be as described in Lemma 10;
3 for e chosen sequentially from the ordered list f1,..., fo,1,...,1l; do
4 Query e and add h(e) to W;
5 if kT (e) # 0 then query set W and solve the instance with a 2-competitive
algorithm;

we can w.l.o.g. contract each such edge. It follows that in the relaxed instance [} has the
highest upper limit in C,7) \ {h(l})}. According to Lemma 4, {I}, h(l;)} is a witness set. <

Proof of Theorem 9. We first show 1-consistency. Assume that all predictions are correct,
then VC is an optimal query set and k7 (e) = 0 holds for all e € E. It follows that Line 5
never executes queries and the algorithm queries exactly V' C'. This implies 1-consistency.
Further, if the algorithm never queries in Line 5, then the consistency analysis implies
1-robustness. Suppose Line 5 executes queries. Let (01 denote the set of edges that are queried
before the queries of Line 5 and let Q2 = {h(e) | e € Q1}. Then Q2 corresponds to the set
W as queried in Line 5. By Lemma 10, each {e, h(e)} with e € @, is a witness set. Further,
the sets {e, h(e)} are pairwise disjoint. Thus, |Q1 U Q2| < 2-|OPTN(Q1 UQ2)|. Apart from
@1 U Q2, the algorithm queries a set @3 in Line 5 to solve the remaining instance with a
2-competitive algorithm. So, |Q3] < 2-|OPT \ (@1 U Q2)| and, adding up the inequalities,
|ALG| < 2-|OPT]. |

A careful combination of Theorems 6 and 9 implies Theorem 8. Full proof in the full version.

5 An error-sensitive algorithm

In this section, we extend the algorithm of Section 4 to obtain error sensitivity. First, we
note that kx = 0 implies £, = 0, so Theorem 7 implies that no algorithm can simultaneously
have competitive ratio better than 1 + % if kj, = 0 and g for arbitrary kp. In addition, we
can give the following lower bound on the competitive ratio as a function of ky,.

» Theorem 11. Any deterministic algorithm for MST under explorable uncertainty with
predictions has a competitive ratio p > min{1 + %, 2}, even for edge disjoint prediction
mandatory free cycles.

Again, we design an algorithm for prediction mandatory free instances with unique
Tr, = Ty and use it in combination with the preprocessing algorithm (Theorem 6) to prove
the following.

» Theorem 12. For every integer v > 2, there exists a min{1+ % + B’g%‘ .y + 1}-competitive

algorithm for the MST problem under explorable uncertainty with predictions.

We actually show a robustness of max{3,~y + ﬁ} which might be smaller than ~ + 1.
Our algorithm for prediction mandatory free instances asymptotically matches the error-
dependent guarantee of Theorem 11 at the cost of a slightly worse robustness.

» Theorem 13. There exists a min{1 + %,3}—60771}76%752'1)6 algorithm for prediction man-
datory free instances with unique Ty, = Ty of the MST problem under explorable uncertainty
with predictions.

12:11
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Algorithm 2 Error-sensitive algorithm for prediction mandatory free instances.

Input: Prediction mandatory free graph G = (V, E') with unique T}, = Ty .
1 Compute maximum matching h and minimum vertex cover VC for G and set W = (J;
2 Let fi,..., fyand l},..., [} be as described in Lemma 10 for VC and h;
3 L« T, N« E\Ty; /* recompute the actual 7; after each query */
4 for e chosen sequentially from the ordered list f1,..., fo,11,...,l; do
5 If e is non-trivial, i.e., has not been queried yet, query e and add h(e) to W;
6 Apply Lemma 1 to ensure unique T, = Tyy. For each query €', if
Ja s.t. {€¢/,a} € h, query a ;
Let G’ = (V', E’) be the vertex cover instance for the current instance;
if some e’ € L is not in Ty, or some ¢’ € N is in Ty, then

9 repeat

10 Let G =G and h = {{¢,e"} € h|{¢/,e"} € E'};

11 Compute h and VC by completing h with an augmenting path algorithm;
12 Query R=(VCURVC)N(WU{e|Jee W with {e,e'} € h}) ;

13 Ensure unique Ty, = Ty. For each query ¢, if Ja s.t. {€’,a} € h, query a;
14 Let G’ = (V', E’) be the vertex cover instance for the current instance;
15 until R = (;

16 Restart at Line 2. In particular, do not reset W;

We follow the same strategy as before. However, Algorithm 1 just executes a 2-competitive
algorithm once it detects an error. This is sufficient to achieve the optimal trade-off as we,
if an error occurs, only have to guarantee 2-competitiveness. To obtain an error-sensitive
guarantee however, we have to ensure both, |ALG| < 3 - |OPT| and |ALG| < OPT +5- kj,
even if errors occur. Further, we might not be able to afford queries to the complete set W
(Algorithm 1, Line 5) in the case of an error as this might violate |ALG| < OPT + 5 - kj,.

We adjust the algorithm to query elements of fy,..., f; and I1,...,l; as described in
Lemma 10 not only until an error occurs but until the vertex cover instance changes. That
is, until some f; that at the beginning of the iteration is not part of T}, becomes part of
the lower limit tree, or some [; that at the beginning of the iteration is part of Ty, is not
part of the lower limit tree anymore. Once the instance changes, we recompute both, the
bipartite graph G as well as the matching & and minimum vertex cover VC for G. Instead of
querying the complete set W, we only query the elements of W that occur in the recomputed
matching, as well as the new matching partners of those elements. And instead of switching
to a 2-competitive algorithm, we restart the algorithm with the recomputed matching and
vertex cover. Algorithm 2 formalizes this approach. In the algorithm, h denotes a matching
that matches each e € V' to a distinct h(e) ¢ VC; we use the notation {e,e’} € h to
indicate that h matches e and e’. For a subset U C VC let h(U) = {h(e) | e € U}. For
technical reasons, the algorithm does not recompute an arbitrary matching h but follows the
approach of Lines 10 and 11. Intuitively, an arbitrary maximum matching h might contain
too many elements of W, which would lead to too many additional queries.

Let ALG denote the queries of Algorithm 2 on a prediction mandatory free instance with
unique T, = Ty. We show Theorem 13 by proving ALG < OPT +5- kj, and ALG < 3-OPT.

Before proving the two inequalities, we state some key observations about the algorithm.
We argue that an element e’ can never be part of a partial matching  in an execution
of Line 10 after it is added to set W. Recall that the vertex cover instances only contain
non-trivial elements. Thus, if an element e is queried in Line 5 and the current partner
e/ = h(e) is added to set W, then the vertex cover instance at the next execution of Line 10
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does not contain the edge {e, e’} and, therefore, ¢’ is not part of the partial matching h of
that line. As long as €’ is not added to the matching by Line 11, it, by definition, can never
be part of a partial matching h in an execution of Line 10. As soon as the element €’ is
added to the matching in some execution of Line 11, it is queried in the following execution
of Line 12. Therefore, €/ can also not be part of a partial matching k in an execution of
Line 10 after it is added to the matching again. This leads to the following observation.

» Observation 14. An element €’ can never be part of a partial matching h in an execution
of Line 10 after it is added to set W. Once €' is added to the matching again in an execution
of Line 11, it is queried directly afterwards in Line 12, and cannot occur in Line 5 anymore.

We first analyze the queries that are not executed in Line 12. Let Q1 C ALG denote
the queries of Line 5. For each e € Q1 let h*(e) be the matching partner of e at the time it
was queried, and let h*(Q1) = U cq, {P*(e)}. Finally, let Q2 denote the queries of Lines 6
and 13 to elements of h*(Q1), and let Q3 denote the remaining queries of those lines.

» Lemma 15. [Q1 UQs UA*(Q1)] < 2-|OPT N (Q1 U Qs UK*(Q1))| and [Q1 U Qs U Qs| <
JOPT N (Q1UQ3UR*(Q1))] + k™ (Q2UQ3).

Proof. First, consider Q; and h*(Q1). By Lemma 5, the instance is prediction mandatory
free at the beginning of each restart of the algorithm. By Lemma 10, each {e, h*(e)} with
e € Q1 is a witness set. We claim that all such {e, h*(e)} are pairwise disjoint, which implies
Q1 UR*(Q1)] <2-|OPTN(Q1UR*(Q1))|. Otherwise, an element of {e, h*(e)} must occur
a second time in Line 5 after e is queried and h*(e) is added to W. Thus, either e or h*(e)
must become part of a recomputed matching in line 10. By Observation 14 and since e
becomes trivial, this cannot happen.

Consider an e € Q3 C h*(Q1) and let €/ € Q1 with h*(e/) = e. Since ¢’ € @1, it was
queried in Line 5. Observe that e must have been queried after €', as otherwise either ¢/ would
not have been queried in Line 5 (but together with e in Line 6 or 13), or e would not have been
the matching partner of ¢’ when it was queried by Observation 14; both contradict ¢’ € Q1
and h*(e’) = e. This and Observation 14 imply that, at the time e is queried, its current
matching partner is either the trivial e’ or it has no partner. So, e must have been queried
because it was mandatory and not as the matching partner of a mandatory element. Thus,
each query of )2 is mandatory but, by Lemma 5, not prediction mandatory at the beginning
of the iteration in which it is queried. Therefore, Lemma 3 implies that all mandatory
elements e of Q2 have k= (e) > 1. It follows |Q1 U Q2| < |OPT N (Q1 NA*(Q1))| + &k~ (Q2).

By the argument above, no element of ()3 was queried as the matching partner to an
element of QY2 U Q1. Thus, by Lemma 1 and the definition of the algorithm, at least half the
elements of Q3 are mandatory, and we have |Q3| < 2-|OPTNQs| (and 5|Q3| < |[OPTNQ3)),
which implies [Q1 U Q3 Uh*(Q1)] < 2-[OPT N (Q1UQ3UhL*(Q1))]

By the same argument as for ()2, all mandatory elements e of Q3 have k~(e) > 1. Thus,
k™(Q3) > 5 - |Qa]. Combining k™ (Q3) > 5 - Q3] and 3|Qs| < |OPT N Q| implies |Q3] <
|[OPT N Q3]+ k™ (Qs3). So, [Q1UQ2UQs| < |[OPTN(Q1UQsUA™(Q1))|+k7(Q2UQ3). <«

The first part of Lemma 15 captures all queries outside of Line 12 and all queries of
Line 12 to elements of W = h*(Q1). Let Q) be the remaining queries of Line 12. By definition
of the algorithm, |Q}| < |W]. Since |W| < |OPT|, we can conclude the next lemma.

» Lemma 16. |[ALG| < 3-|OPT].

Next, we show |[ALG| < |OPT| + 5 - k. Lemma 15 implies |@Q; U Q2 U Q3| < |[OPT N
(Q1UQ3Uh*(Q1))] + k (Q2UQ3). Hence, it remains to upper bound |Q4] with Q4 =
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ALG\ (Q1 UQ2UQ3) by 4 - ky. By definition, Q4 only contains edges that are queried in
Line 12. Thus, at least half the queries of Q)4 are elements of W that are part of the matching
h. By Observation 14, no element of W is part of the partial matching h in Line 10. Hence,
in each execution of Line 12, at least half the queries are not part of & in Line 10 but added
to A in Line 11. Our goal is to bound the number of such elements.

We start with some definitions. Define G; as the problem instance at the j’th execution
of Line 11, and let G denote the initial problem instance. For each G, let éj = (\737 Ej),
Ti and Tg, denote the corresponding vertex cover instance and lower and upper limit trees.
Observe that each G; has unique T = Tg,, and, by Lemma 5, is prediction mandatory free.
Let Y; denote the set of queries made by the algorithm to transform instance G;_; into
instance Gj. We partition ()4 into subsets S;, where S; contains the edges of ()4 that are
queried in the j’th execution of Line 12. We claim |S;| < 4- k™ (Y;) for each j, which implies
[Qal < 355151 <432,k (Y;) <4-kp. Toshow the claim, we rely on the following lemma.

» Lemma 17. Let I, f be non-trivial edges in G; such that {l,f} € E;_1AE;, then
k=(1),k~(f)>1. Furthermore, k*(Y;) > |U| for the set U of all endpoints of such edges

{1}
» Lemma 18. |ALG| < |OPT|+5- ky,.

Proof. We show |S;| < 4-k*(Y;) for each j, which, in combination with Lemma 15, implies
the lemma. Consider an arbitrary S; and the corresponding set Y;. Further, let h;_; denote
the maximum matching computed and used by the algorithm for vertex cover instance G -1,
and let h;_y = {{e,e’} € hj_1 | {e,e’} € E;}. Finally, let h; denote the matching that the
algorithm uses for vertex cover instance G That is, h; is computed by completing hj 1
with a standard augmenting path algorithm. As already argued, at least half the elements of
S; are not matched by l_lj_l but are matched by h; (cf. Observation 14).

We bound the number of such elements by exploiting that h; is constructed from ﬁj_l
via a standard augmenting path algorithm. By definition, each iteration of the augmenting
path algorithm increases the size of the current matching (starting with ﬁj_l) by one and, in
doing so, matches two new elements. In total, at most 2- (|| —|h;_1|) previously unmatched
elements become part of the matching. Thus, |S;| < 4 - (|h;]| — |hj_1])-

We show (|| — |hj—1]) < kT (Y}). According to Kénig-Egervdry’s Theorem (e.g., [14]),
the size of h; is equal to the size |V'C;| of the minimum vertex cover for G;. We show
\VC;| < |hj_1] + kT (Y;), which implies (|h;| — |hj_1|)=|VC;| — |hj_1] < kT (Y, ) and, thus,
the claim. Let VC _1={eeVCj_1|3e st. {e,e} € h] 1}, then |VC'J 1= \hj 1l-

We prove that we can construct a vertex cover for G by adding at most k™ (Y;) elements
to VC,_1, which implies |[VC;| < |h;j_1| + kT (Y;). Consider vertex cover instance G; and
set VC'] 1. By definition, VC,; 'j—1 covers all edges that are part of partial matchlng h] 1.

Consider the elements of V; that are an endpoint of an edge in {e, f} € E;AE;_; with
e, f non-trivial in G;. By Lemma 17, k™ (e) > 1 for each such e and k*(Y;) > |U\ for the set
U of all such elements. Thus, we can afford to add U to the vertex cover.

Next, consider an edge {e, f} € E; that is not covered by VC;_; UU. Since {e, f} is
not covered by U, it must hold that {e, f} € E; N E;_y. Thus, {e, f} was covered by VC;_;
but is not covered by VC;_;. This implies {e, f} N VCj_1 # 0 but {e, f} NVC,_1 = 0.
Assume w.l.o.g. that e € VC;_;. Then, there must be an ¢’ such that {e,e’} € h;_; but
{e,e'} & hj_1. Tt follows that {e,e’} & E;. As {e, f} is not covered by U, the endpoint
e/ must be trivial in G; but non-trivial in G;_;. Thus, ¢ must have been queried (i) as
a mandatory element (or a matching partner) in Line 6 or 13, (ii) as part of VC;_; in
Line 5 or (iii) in Line 12. Case (ii) implies ¢’ € VC;_1, contradicting e € VC;_;. Cases (i)
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or (iii) imply a query to the matching partner e of ¢/, which contradicts {e, f} € E; (as e
would be trivial). Thus, {e, f} is covered by VC;_; UU, which implies that VC;_; UU is a
vertex cover for G;. Lemma 17 implies |U| < k*(Y;). So, |[VC;| < |hj—1| + kT (Y;) which
concludes the proof. <

Lemmas 16 and 18 imply Theorem 13. Combining Theorems 6 and 13, we show The-
orem 12.

6 Further research directions

Plenty other (optimization) problems seem natural in the context of explorable uncertainty
with untrusted predictions. For our problem, it would be nice to close the gap in the
robustness. We expect that our results extend to all matroids as it does in the classical
setting. While we ask for the minimum number of queries to solve a problem ezactly, it
is natural to ask for approximate solutions. The bad news is that for the MST problem
there is no improvement over the robustness guarantee of 2 possible even when allowing an
arbitrarily large approximation of the exact solution [43, Section 10]. However, it remains
open whether an improved consistency or an error-dependent competitive ratio are possible.
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