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Abstract

Simulation models of complex dynamics in
the natural and social sciences commonly
lack a tractable likelihood function, render-
ing traditional likelihood-based statistical in-
ference impossible. Recent advances in ma-
chine learning have introduced novel algo-
rithms for estimating otherwise intractable
likelihood functions using a likelihood ra-
tio trick based on binary classifiers. Con-
sequently, efficient likelihood approximations
can be obtained whenever good probabilistic
classifiers can be constructed. We propose a
kernel classifier for sequential data using path
signatures based on the recently introduced
signature kernel. We demonstrate that the
representative power of signatures yields a
highly performant classifier, even in the cru-
cially important case where sample numbers
are low. In such scenarios, our approach can
outperform sophisticated neural networks for
common posterior inference tasks.

1 INTRODUCTION

Simulation models are ubiquitous in modern science,
arising in fields ranging from the biological sciences
(e.g. Christensen et al., 2015) to economics (e.g. Bap-
tista et al., 2016; Dyer et al., 2022). Scientific mod-
elling by describing a generative model directly via
computer code instead of a probability distribution
is appealing as it allows for complex, non-equilibrium
mechanics and the exploration of emergent phenom-
ena.
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The task of statistical inference for such models is,
however, challenging as most simulators lack tractable
likelihood functions, precluding the application of tra-
ditional likelihood-based inference techniques. En-
abling likelihood-free inference (lfi) in arbitrary sim-
ulation models has been a fundamental challenge in
computational statistics for some time (e.g. Diggle
and Gratton, 1984; Kennedy and O’Hagan, 2001). A
widely used and well researched paradigm is approx-
imate Bayesian computation (abc) (Pritchard et al.,
1999; Beaumont et al., 2002), in which the pertinence
of parameter values is determined on the basis of the
value of a distance between observed data y and sim-
ulation output x. While appealing, abc typically re-
quires many (hundreds of) thousands of calls to the
simulator, which is prohibitive for expensive models.

More recently, neural methods for estimating the like-
lihood function (Papamakarios et al., 2019), poste-
rior density (Greenberg et al., 2019), or likelihood-
to-evidence ratio (Thomas et al., 2016; Hermans
et al., 2020), have been seen to perform competitive
likelihood-free inference with far fewer samples (Lueck-
mann et al., 2021). However, despite the greater sam-
ple efficiency provided by these approaches, their bud-
get requirements can still be too high for very complex
models, for example high-dimensional spatio-temporal
simulations. Indeed, a single call to a simulator can
take hours to days for multi-scale models of 3D tumour
growth (e.g. Jagiella et al., 2017) or multiple thousands
of CPU hours for climate models (e.g. Danabasoglu
et al., 2020). For others, high simulation budgets may
in principle be attainable but undesirable due to the
concomitant financial and environmental costs. In ad-
dition, as recommended by Hermans et al. (2020), it
might be desirable in practice to train multiple den-
sity (ratio) estimators to benefit from ensembling and
to account for the variance in the density (ratio) esti-
mate. These considerations give rise to the question of
whether (semi-)automatic approaches exist for captur-
ing important features in high-dimensional time-series
data without the need for large simulation budgets,
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and make progress in this area important.

In this paper, we analyse a method based on the signa-
ture kernel (Kíraly and Oberhauser, 2019; Salvi et al.,
2021) for performing density ratio estimation (dre) for
expensive time-series simulators/low simulation bud-
gets. It is well known that kernel methods are useful
learning tools in low-training-example regimes, pro-
viding rich, ready-made data representations (Shawe-
Taylor and Cristianini, 2004).

Moreover, the signature can extract powerful features
from time-series data, acting analogously to moment-
generating functions for path-valued random variables.
To benefit from the advantages of both kernels and the
signature, we present an approach to lfi based on this
signature kernel, demonstrating more accurate infer-
ences than competing density ratio techniques when
the simulation budget is limited.

2 BACKGROUND

In this section, we provide some background on path
signatures, sequential kernels as introduced by Kíraly
and Oberhauser (2019), and approaches to likelihood-
free inference, with a focus on dre.

2.1 Path signatures

Let Sn(X ) be the space of length-n time-series on a
topological space X and x ∈ Sn(X ) be a time-series
of points (x1,x2, . . . ,xn) observed at times 0 = t1 <
t2 < · · · < tn = T . Assume we have a (continuous)
positive definite kernel κ : X×X → R yielding a repro-
ducing kernel Hilbert space (rkhs) (H, κ) through the
canonical feature map x 7→ κ(x, ·) ∈ H. We consider
paths h ∈ C([0, T ],H) with h(0) = 0 ∈ H and

∥h∥1 = sup
π(0,T )

n−1∑
i=1

∥h(ti+1)− h(ti)∥H < ∞,

where the supremum is taken over all finite partitions
π(0, T ) of [0, T ], and we may construct such a path
from x by linearly interpolating the κ(xi, ·). The sig-
nature, denoted Sig, (see e.g. Lyons, 2014) then maps
such paths into a series of tensors (by convention,
H⊗0 = R),

h 7→ Sig(h) := (1, S1(h), S2(h), . . . ) ∈
∏
m≥0

H⊗m, (1)

in which the m-th degree component Sm(h) consists
of the m-th moment tensor of the path integral:

Sm(h) :=

∫ T

0

dh⊗m :=

∫ T

0

∫ t

0

dh⊗(m−1) ⊗ dh(t),

with
∫
dh⊗0 = 1.

Example 2.1 (Kíraly and Oberhauser (2019)). Let
h(t) take values in R2, h(t) = (h1(t), h2(t)). Then

S1(h) =
[∫ T

0
dh1(t)

∫ T

0
dh2(t)

]′
where ′ is the transpose, and S2(h) is[∫ T

0

∫ t2
0

dh1(t1)dh1(t2)
∫ T

0

∫ t2
0

dh1(t1)dh2(t2)∫ T

0

∫ t2
0

dh2(t1)dh1(t2)
∫ T

0

∫ t2
0

dh2(t1)dh2(t2)

]
.

This general approach allows us to lift time-series
data into an rkhs, which can be particularly useful
when the underlying data consists of sequences of non-
Euclidean data e.g. graphs or images.

Signatures have several additional favourable proper-
ties which make them theoretically appealing: they
are a continuous map; they uniquely identify paths, in
practice1; and they are universal non-linearities (see
e.g. Kíraly and Oberhauser, 2019, for a proof). This
latter property means that for any compact set K of
paths of bounded variation, any function f ∈ C(K,R)
can be approximated uniformly by linear functionals
of the signature, i.e. for any ε > 0 there exists a linear
functional L

sup
h∈K

∣∣∣f(h)− L [Sig(h)]
∣∣∣ < ε.

In particular, this suggests that we can learn classifiers
by linearly regressing the logit on the signature.

Computing iterated integrals over potentially Hilbert
space valued paths might seem infeasible for practi-
cal applications. However, a kernel trick (Kíraly and
Oberhauser, 2019; Salvi et al., 2021), described below,
allows for efficient computation of inner products.

2.2 The signature kernel

We can kernelise the feature map (1) with the in-
ner product between A = (a0, a1, . . . ) and B =
(b0, b1, . . . ), A,B ∈

∏
m≥0 H⊗m as

⟨A,B⟩ =
∞∑

m=0

⟨am, bm⟩H⊗m , where (2)

⟨u1 ⊗ · · · ⊗ um, w1 ⊗ · · · ⊗ wm⟩H⊗m =

m∏
k=1

⟨uk, wk⟩H .

The signature kernel over κ for X -valued paths x, y,

k (x, y) = ⟨Sig(κ(x, ·)),Sig(κ(y, ·))⟩ (3)

1The signature is injective up to tree-like equivalence
(Hambly and Lyons, 2010), which is easily remedied with
time-augmentation h(t) 7→ (t, h(t)) (Levin et al., 2016).
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Figure 1: Time-series embedding via the signature ker-
nel k with static kernel κ. The time-series x, x̃ are
lifted to paths in feature space H, via κ and some in-
terpolation scheme, before being mapped to a Hilbert
space

∏
m≥0 H⊗m of tensors via the signature.

yields a positive-definite, universal kernel in which the
underlying paths are first lifted from X into paths
evolving in a feature space H via κ, before entering
the inner product (2) (Kíraly and Oberhauser, 2019).
Figure 1 shows a schematic illustrating how the dif-
ferent kernels embed the time-series in the signature
kernel. Kíraly and Oberhauser (2019) further show
that (3) can be efficiently evaluated using a Horner
scheme only relying on evaluations of κ; additionally,
Salvi et al. (2021) show that the untruncated signature
kernel can be estimated by solving a Goursat partial
differential equation. Equipped with the signature ker-
nel, we will be able to learn classifiers by linearly re-
gressing the logit on the signature using kernel logistic
regression.

2.3 Likelihood-free inference

Many approaches to likelihood-free inference (lfi)
have been proposed. Among them, a common theme
is approximation of the true likelihood function or pos-
terior density. Abc (see Beaumont, 2019, for a recent
review) is a family of methods in which samples from
an approximate posterior are derived through forward
simulation of the model, x ∼ p(x | θ), in combina-
tion with a summary statistic s and distance function
D(s(x), s(y)) capturing a meaningful discrepancy be-
tween simulated and real data. It can be seen as an
instance of kernel density estimation since the induced
likelihood approximation permits the expression

p(y | θ) ≈ 1

Q

Q∑
i=1

Kε

(
D(s(x(i)), s(y))

)
where x(i) iid∼ p(x | θ) and Kε, a kernel function with
window ε, largely controls the quality of the approx-
imation. In contrast, a number of methods for lfi
entail constructing explicit models of the likelihood
function or posterior density. An early example is syn-
thetic likelihood (Wood, 2010), in which p (s (x) | θ) is
modelled as a multivariate Gaussian with mean and

covariance estimated from Q > 1 simulations at θ.
More recent examples include neural likelihood esti-
mation (nle) (Papamakarios et al., 2019) and neural
posterior estimation (npe) (Greenberg et al., 2019), in
which p (s (x) | θ) and p (θ | s (x)), respectively, are es-
timated with highly flexible neural conditional density
estimators, in particular normalising flows.

2.4 Amortised density ratio estimation

We briefly recapitulate dre for lfi, first introduced
by Thomas et al. (2016), to estimate the likelihood-to-
evidence ratio

r (x,θ) =
p (x | θ)
p(x)

and thus the parameter posterior p (θ | x) given a prior
distribution p (θ). Most relevant for us is amortised
dre (Hermans et al., 2020). The core idea is to train
a binary classifier to distinguish between positive ex-
amples (x,θ) ∼ p (x | θ) p (θ) with label z = 1 and
negative examples (x,θ) ∼ p (x) p (θ) with label z = 0.
The optimal decision boundary is then

d (x,θ) =
p (x,θ)

p (x,θ) + p (x) p (θ)
, (4)

permitting posterior density evaluations as

p (θ | x) = d (x,θ)

1− d (x,θ)
p (θ) = r (x,θ) p (θ) . (5)

In practice, only an approximation r̂ (x,θ) is available.
Such approximations can be used for posterior sam-
pling with Markov chain Monte Carlo (mcmc) (Pham
et al., 2014; Thomas et al., 2016; Hermans et al., 2020,
e.g.) or to perform likelihood ratio tests for frequen-
tist inference (Cranmer et al., 2015; Dalmasso et al.,
2020). As with neural likelihood and posterior esti-
mation, we say that dre – in the form suggested by
Hermans et al. (2020) – can be amortised since r̂ (y,θ)
can be evaluated for any observation y and any param-
eter θ without retraining the density estimator.

2.5 Summary statistics

For many lfi methods, it is typically necessary to
reduce high-dimensional data x into summary statis-
tics s (x). A number of approaches for doing so have
been explored for abc, including semi-automatic abc
(Fearnhead and Prangle, 2012), in which summary
statistics s (y) = E [θ | y] are estimated by perform-
ing a vector-valued regression of θ(i) onto g

(
x(i)

)
for

training data {
(
x(i),θ(i)

)
}Q
i=1

∼ p (x,θ) and candidate
summary statistics g (·), and summary-free automatic
methods which compute distances on the full dataset
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without the need to first compute summary statistics
(Park et al., 2016; Bernton et al., 2019; Dyer et al.,
2021a). More recently, Chen et al. (2020) explored the
possibility of learning approximately sufficient, mutual
information-maximising summary statistics with neu-
ral networks.

Some of these methods remain applicable to npe
and dre. For example, Dinev and Gutmann (2018)
use a convolutional neural network to learn s (x) =
E [θ | x], which are then used as predictors in a lo-
gistic regression model for dre. Npe and dre are
however particularly interesting in that they per-
mit the concurrent learning of both summary statis-
tics and densities/ratios by augmenting a classifier
with an initial embedding network (Lueckmann et al.,
2017). This composite summary-learning/posterior-
estimating network is trained end-to-end on the same
loss function, producing competitive results (Green-
berg et al., 2019). However, learning relevant fea-
tures/summary statistics from neural networks in sce-
narios where sampling budgets are prohibitively low
can be challenging.

For later reference, we tabulate some of the key works
involving learning summary statistics for time-series
data in lfi settings. We list for each the adopted
training scheme, the number of trainable parameters
in each case (each involved neural networks), and the
assumed simulation budgets in Table 1.

3 METHOD

Our goal is to perform amortised density ratio estima-
tion as described in Section 2.4 for expensive simula-
tors/low simulation budgets. As we will see in exper-
iments below, learning both summary statistics and
a classifier can be challenging in such regimes. To
ameliorate this, we propose to build a classifier that
leverages the signature kernel, which defines a uni-
versal kernel for multivariate and possibly irregularly
sampled sequential data. The core idea is that us-
ing the predefined features captured by the signature
and made available by the signature kernel may yield
a more reliable density ratio estimator in low-sample
regimes than alternative methods for which summary
statistics must be learned.

To construct a probabilistic binary classifier using the
signature, we may use the fact that a third kernel m
on Sn(X )×Θ can be composed given two kernels k :
Sn(X )× Sn(X ) → R and l : Θ×Θ → R as

m
(
(x,θ) , (x̃, θ̃)

)
= k (x, x̃) l(θ, θ̃). (6)

Taking k to be the signature kernel (3) and l to be a
standard universal kernel on Θ, we may construct a

kernel-based binary classifier for the purpose of per-
forming dre for expensive time-series simulators, in
this sense bypassing the need to learn summary statis-
tics in addition to a density (ratio) estimator.

For a regularisation constant ω ∈ R+, training a ker-
nel binary classifier with loss ℓ amounts to solving the
optimisation problem

min
f∈Hm

N∑
i=1

ℓ
(
f(x(i),θ(i)), zi

)
+

ω

2
∥f∥2Hm

, (7)

where Hm is the rkhs associated with m and zi is
the class label associated with data (x(i),θ(i)). By the
representer theorem, the solution to (7) is of the form

f (x,θ) =

N∑
i=1

cik
(
x(i),x

)
l
(
θ(i),θ

)
(8)

for real coefficients ci. Throughout, we use the logistic
loss as ℓ, since this is known to yield classifiers with
well-calibrated probability estimates. This approach
to learning the likelihood-to-evidence ratio is appeal-
ing since m is a universal kernel:

Proposition 3.1. Let H be a Hilbert space, K a com-
pact set of continuousH-valued paths of bounded vari-
ation on [0, T ], and assume that ∀X ∈ K, X has at
least one monotone coordinate and X(0) = constant.
Also let k : K × K → R be the signature kernel and
l be a universal kernel on Θ. Then m as defined in
Equation (6) is a universal kernel on K ×Θ.

Proof. From Kíraly and Oberhauser (2019, Theorem
1), the signature kernel is a universal kernel on K.
Then the assumed universality of l and Blanchard
et al. (2011, Lemma 5.2) give the desired result.

The universality of m then enables us to learn an es-
timate of the density ratio arbitrarily well.

3.1 Low-rank approximation

Computing the signature kernel for all pairs
(
x(i),x(j)

)
in the simulated dataset can be expensive if the x(i)

are long and/or are high-dimensional. We therefore
use the kernel m defined in (6) – with k the signature
kernel and l : Θ × Θ → R an anisotropic Gaussian
radial basis function (RBF) kernel – and the Nyström
approximation to first find a representation of each
pair (x,θ) before feeding this low-dimensional approx-
imation into the logistic regression model. For a given
kernel m, the Nyström method (Williams and Seeger,
2001; Yang et al., 2012) provides a low-dimensional

approximation ϕ̂ of the high- or potentially infinite-
dimensional feature map ϕ(v) := m (v, ·) as follows:
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Table 1: Summary of network sizes and simulation budgets for summary statistic learning in previous works.

Authors Learning method Network size Simulation budget

Jiang et al. (2017) Posterior mean as summary ∼ 3× 104 106

Lueckmann et al. (2017) Embedding network ∼ 2× 103 5× 103 − 2.5× 104

Dinev and Gutmann (2018) Posterior mean as summary 8,422 105

Greenberg et al. (2019) Embedding network ∼ 3× 104 Between 103 and ∼ 104

Chen et al. (2020) Mutual information maximisation ∼ 1.5× 104 103 − 104

Dyer et al. (2021b) Embedding network ∼ 104 103 − 104

assume the kernel m is of rank q such that for any

data {v(i)}Ni=1 we may write the corresponding Gram
matrix K as

K = UDU′, (9)

where U ∈ RN×q is the matrix of eigenvectors and
D = diag (λ1, . . . , λq) ∈ Rq×q is the diagonal matrix
consisting of eigenvalues λi. Then denoting the first q
rows of U as Uq, we may find an approximate feature
representation of v under m as Yang et al. (2012)

ϕ̂ (v) = D− 1
2U′

q

[
m

(
v, v(1)

)
, . . . ,m

(
v, v(q)

)]′
.

Using these approximate feature representations ob-
tained with the Nyström approximation, we then con-
struct a linear logistic regression model by solving the
following optimisation problem:

min
w∈Rq

N∑
i=1

ℓ
(
w′ϕ̂

(
v(i)

)
, zi

)
+

ω

2
∥w∥22, (10)

where ℓ is the logistic loss. We omit the use of an
intercept in the linear logistic regression optimisation
problem above for simplicity, but include it in practice.

Throughout the rest of this paper, we term this ap-
proach to performing ratio estimation with the signa-
ture kernel and logistic regression SignatuRE.

4 EXPERIMENTS

In this section, we present experiments on the relative
performance of the SignatuRE method against pos-
sible alternatives for dre in likelihood-free inference
contexts. For each task, we compare the quality of
the posterior estimated with SignatuRE against the
posteriors estimated with three alternatives:

1. a neural network consisting of a gated-recurrent
unit (GRU) and residual network (ResNet),
jointly termed GRU-ResNet. The GRU has
trainable parameters φ and consists of two stacked
GRU layers of size 32. The GRU and ResNet are
trained concurrently on the cross-entropy loss, so
that the GRU learns a low-dimensional summary
sφ (x) as the ResNet learns the density ratio;

2. a ResNet which instead consumes predefined,
hand-crafted summary statistics s̃(x) that are tai-
lored to the inference task and known to be in-
formative of the parameters to be inferred for
tractable simulation models, or that are com-
monly used elsewhere in the literature when the
simulation model is not tractable. Such an ap-
proach should be considered a gold standard that
is not generally available for complex, opaque
simulation models whose structure cannot be ex-
ploited to derive suitable summary statistics. We
refer to this method as the Bespoke ResNet;

3. ratio estimation with double kernel logistic regres-
sion (K2-RE), a modification of K2-ABC (Park
et al., 2016) that we propose as an alternative
kernel-based method for dre. The setup is iden-
tical to SignatuRE with the exception that, in-
stead of the signature kernel, we use

k (x, x̃) = exp

−M̂MD
2
(µx, µx̃)

ϵ

 (11)

as the positive definite kernel on x, where µx is
the empirical measure consisting of the nx points

comprising x and M̂MD
2
(µx, µx̃) is an unbiased

estimate of the kernel maximum mean discrep-
ancy between µx and µx̃ for an appropriate ker-
nel χ (see Section 3. Park et al., 2016). We use a
Gaussian RBF and the median heuristic (Section
4. Park et al., 2016) for χ. We include further
details on this method in the supplement.

For the static kernel κ in the signature kernel (see
Section 2.1), we use a Gaussian RBF kernel with
scale parameter chosen as median{∥yi−yj∥2i,j}, where
y = (y1, . . . ,yn) is the observation2. For the kernel
l : Θ ×Θ → R, we use an anisotropic Gaussian RBF
kernel. To tune the length scale hyperparameters for
l, the regularisation parameter ω, and the ϵ parameter

2Tuning this scale parameter may be expensive for,
and thus is a limitation of, our particular implementation.
However, cheaper implementations exist for the signature
kernel (see e.g. https://github.com/tgcsaba/KSig).
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for K2-RE, we use Bayesian optimisation and 5-fold
cross-validation (see the Supplementary Material for
further details). To train the logistic regression mod-
els, we use the l-bfgs algorithm (Zhu et al., 1997)
with a maximum number of 500 iterations.

To construct the set of negative examples (x,θ) ∼
p (x) p (θ) for SignatuRE and K2-RE, we choose a
proportion K > 0 of the x(i) and pair them with some
θ(j), j ̸= i. K > 1 may also be chosen, in which case
some x(i) will appear multiple times in the set of nega-
tive examples. Unless stated otherwise, we take K = 1
and q = Bmin(K + 1) in the Nyström approximation
for both SignatuRE and K2-RE, where Bmin is the
smallest simulation budget considered in the experi-
ment3.

4.1 Computational expense

Evaluation of the signature kernel has complexity lin-
ear in the dimension of the time-series and linear (resp.
quadratic) in the length of the time-series when eval-
uated on CPU (resp. GPU). Empirically, we observe
SignatuRE to entail a comparable computational cost
to the GRU-ResNet, the former typically requiring
3-5 CPU hours for training and inference and the latter
typically requiring 1-2 CPU hours. For the simulation
models for which we suppose our approach may be
most helpful – those with significantly limited simula-
tion budgets – we expect this to amount to a negligible
difference: 1-4 additional CPU hours would allow for
few or no additional simulations to be generated.

4.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (ou) process (Uhlenbeck
and Ornstein, 1930) is a prototypical Gauss–Markov
stochastic differential equation (sde) model. We
discretise the sde such that the data x =
(x0,x1, . . . ,xT ) ,xi ∈ R is generated according to

xi = θ1 exp (θ2)∆t+ (1− θ1∆t)xi−1 +
ϵi
2
,

where ∆t = 0.2 is the time discretisation, θ = (θ1, θ2)
are the model parameters to be inferred, T = 50, and
ϵi ∼ N (0,∆t). We generate x∗ ∼ p (x | θ∗) with θ∗ =
(0.5, 1) and consider the task of estimating p (θ | x∗)
given priors θ1 ∼ U (0, 1) and θ2 ∼ U (−2, 2).

We compare SignatuRE against the alternative dre
methods described in Section 4. As s̃ (x), we use the
intercept and slope of a linear regression of xt vs. xt−1

as estimated with least squares (i.e. the maximum
likelihood estimate) and the mean value of x. These

3This value for q is chosen since it is the largest value
that can be consistently applied across the range of simu-
lation budgets considered in a given experiment.

Figure 2: (Ornstein-Uhlenbeck) Posteriors ob-
tained with SignatuRE (blue, top left), GRU-
ResNet (orange, top right), Bespoke ResNet
(green, bottom left), and K2-RE (red, bottom right)
for a budget of 500 simulations and the approximate
ground truth posterior obtained using the true likeli-
hood function and Metropolis-Hastings (black).

estimate θ1 exp (θ2)∆t, 1− θ1∆t, and exp (θ2), respec-
tively, and are thus informative summary statistics for
θ. For GRU-ResNet, we apply a linear layer of size
3 after the GRU in order to match the dimension of s̃,
resulting in a GRU with 9,795 trainable parameters.

In Figure 2 we show contour plots obtained by pool-
ing the samples obtained from each ratio estima-
tion method with a simulation budget of 500 simu-
lations across 20 different seeds. Samples from the
approximate ground truth posterior, obtained with
Metropolis–Hastings (mh) (see Appendix for details)
and the true likelihood function, are shown with
black contour lines throughout. Additionally, we show
in Figure 3 the Wasserstein distances (wd) between
the estimated posteriors and the approximate ground
truth posterior4, and in Figure 4 the distances between
the means of the estimated and approximate ground
truth posteriors, for each ratio estimation method.

From this, we observe that GRU-ResNet (orange,
top right of Figure 2) failed to learn both informa-
tive summary statistics and an accurate ratio estima-
tor with a low simulation budget, despite the simplic-
ity of the model. In contrast, an identical residual

4We refrain from using the maximum mean discrepancy
due to previous reports of sensitivity to hyperparameter
settings (see e.g. Lueckmann et al., 2021).
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Figure 3: (Ornstein-Uhlenbeck) Wasserstein dis-
tances (mean + 95% confidence intervals) between
posteriors obtained with each density ratio estimation
method and the approximate ground truth posterior.

network used for Bespoke ResNet (green, bottom
left of Figure 2) was able to learn a good estimate of
the density ratio, even from such a limited simulation
budget and with a summary statistic vector of identi-
cal size, but with the key difference that the summary
statistics were predefined and designed to be informa-
tive of the parameter values being inferred.

This may be seen as an ablation study and sug-
gests that the additional problem of learning summary
statistics is the primary contributing factor to the rel-
atively poor performance of GRU-ResNet.

We also observe that, of the methods that do not use
hand-crafted summary statistics, SignatuRE tends to
exhibit superior performance. This is apparent from
the posterior plots in Figure 2, and from Figure 3 in
which SignatuRE consistently generates smaller wds
thanGRU-ResNet andK2-RE and lags only slightly
behind Bespoke ResNet.

From Figure 4 we see that SignatuRE tends to
generate a significantly better parameter point esti-
mate than GRU-ResNet and is additionally a slight
improvement on K2-RE in this respect. The lat-
ter indicates that the success of SignatuRE in the
low-simulation-budget regime is not only attributable
to the expressive, preexisting feature representations
available with general kernel methods, but also to the
fact that the sequentialisation of the kernel employed
in SignatuRE captures important information on the
time-dependence of the data whereas in K2-RE the
data is treated as iid.

4.3 Moving average model

We next consider a simple moving average model of
order 2 (ma2), for which the data-generating process

Figure 4: (Ornstein-Uhlenbeck) Euclidean dis-
tances (mean + 95% confidence intervals) between
posterior means obtained with each density ratio es-
timation method and the approximate ground truth
posterior.

given parameters θ = (θ1, θ2) is

xt = ϵt + θ1ϵt−1 + θ2ϵt−2, ϵt ∼ N (0, 1) . (12)

We generate x∗ ∼ p (x | θ∗) with θ∗ = (0.6, 0.2) and
consider the task of estimating p (θ | x∗) given a uni-
form prior over the triangle given by θ1 + θ2 > −1,
θ1 − θ2 < 1, and θ2 < 1. Such a prior ensures that the
model parameters are identifiable (Marin et al., 2012).
Here, x and x∗ are taken to be of length 50.

As s̃(x) we use the variance of the observed stream
and the autocorrelations for lags 1 and 2. These give
estimates of

Var (X) = 1+ θ21 + θ22, ρ1 =
θ1 + θ1θ2
1 + θ21 + θ22

,

and ρ2 =
θ2

1 + θ21 + θ22
,

respectively, and are thus informative about θ. We
once again apply a single linear layer of size 3 following
the GRU in GRU-ResNet to match the dimensions
of the summary statistics in Bespoke ResNet.

We show in Figure 5 the wds between samples from
the posteriors estimated with each density ratio es-
timation method and the approximate ground truth
posterior obtained with Metropolis-Hastings mcmc.
In Figure 6, we show the Euclidean distances between
the means of the posteriors estimated with the dif-
ferent density ratio estimators and the approximate
ground truth posterior. In this experiment, we once
more see that Bespoke ResNet significantly outper-
forms GRU-ResNet in estimating the shape of the
posterior distribution, despite the fact that they use
identical residual networks to perform the density ra-
tio estimation and that dim (s̃) = dim (sφ). This again
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Figure 5: (MA(2)) Wasserstein distances (mean +
95% confidence intervals) between posteriors obtained
with each density ratio estimation method and the ap-
proximate ground truth posterior.

suggests that the complex task of learning summary
statistics in addition to learning the density ratio is
the source of the difference in their performance.

We further observe that SignatuRE outperforms
GRU-ResNet both in terms of the wd and distances
between the estimated and approximate ground truth
posterior means for simulation budgets of less than
500. For simulation budgets of 600-1000, SignatuRE
and GRU-ResNet display comparable performance
according to the wds, while SignatuRE continues to
obtain superior posterior mean estimates. Interest-
ingly, SignatuRE additionally yields better estimates
of the posterior mean than Bespoke ResNet, de-
spite the fact that this density estimator has a con-
siderable advantage through the use of hand-crafted
summary statistics that are known to be informative
of the parameters being inferred. As in the previous
experiment, the success of SignatuRE appears to be
attributable not only to the general properties of ker-
nel methods that make them appealing in low-sample
regimes – their ready-made, expressive feature spaces –
but also to the fact that the signature accounts for the
ordering of observations. We believe this explains the
gap in performance between K2-RE and SignatuRE
despite the former also being a kernel method.

4.4 Complex, intractable example:
partially-observed stochastic epidemic

Finally, we consider a more complex example with an
intractable posterior distribution. The model we con-
sider here is a generalised stochastic epidemic (gse)
model (Kypraios, 2007), which simulates the spread of
an infection through a fixed population of N individu-
als. Individuals in the system are initially susceptible,
can become infected, and subsequently enter a recov-

Figure 6: (MA(2)) Euclidean distances (mean +
95% confidence intervals) between posterior means ob-
tained with each density ratio estimation method and
the approximate ground truth posterior mean.

ered state in which they are no longer susceptible to
reinfection. In a time interval δt, infections, recoveries,
and an absence of activity occur with probabilities

PI := P [(δXt, δYt) = (−1, 1) | σt] = βXtYtδt+ o(δt),

PR := P [(δXt, δYt) = (0,−1) | σt] = γYtδt+ o(δt),

P [(δXt, δYt) = (0, 0) | σt] = 1− (PI + PR),

respectively, where Xt and Yt are the number of sus-
ceptible and infected agents at time t ∈ [0, T ], respec-
tively, σt is a sigma-algebra generated by the process
up until time t, and θ = (β, γ) is the model parameter.

We simulate the model using the Gillespie algo-
rithm (Gillespie, 1977) and observe the series x =

(Xi∆t, Yi∆t)
D
i=0 ∈ SD+1

(
R2

)
at regular time inter-

vals of length ∆t = 0.5 with D = 100. We consider
the task of estimating p (θ | x∗) for x∗ ∼ p (x | θ∗),
θ∗ =

(
10−2, 10−1

)
, and priors β ∼ Γ (0.1, 2) and

γ ∼ Γ (0.2, 0.5). To sample from the posterior in this
case, we use a sampling importance resampling (sir)

scheme5: we sample T = {θm}Mm=1 from the prior, be-

fore resampling {θ̃m}
M̃

m=1 from T , where each sample
in T has weight proportional to the density ratio es-
timated by the classifiers. We take M = 5 × 104 and
M̃ = 103.

In this instance, the ground truth posterior distribu-
tion is not available for comparison. For this rea-
son, we assess the quality of inferences by comparing
against the posterior obtained from sequential Monte
Carlo abc (smc-abc) (Beaumont et al., 2009) in which

5Due to the complicated target distribution, the
Metropolis–Hastings scheme adopted in the rest of this pa-
per performed poorly.
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Table 2: Median Wasserstein distance from smc-abc posterior for the partially-observed epidemic model (from
10 seeds). Smaller values are better. Bold and italics indicate best and second-best, respectively, of the methods
that do not use pre-defined summary statistics.

Method Simulation budget
50 100 200 500 1000

GRU-ResNet 0.434 0.425 0.355 0.273 0.090
K2-RE 0.417 0.432 0.407 0.454 0.431
K2-RE-5 0.440 0.427 0.374 0.206 0.255

SignatuRE 0.430 0.411 0.351 0.513 0.321
SignatuRE-5 0.241 0.333 0.176 0.133 0.083

Bespoke ResNet 0.379 0.222 0.146 0.104 0.092

we use the Euclidean distance between time-series

D∑
i=0

∥xi − x∗
i ∥22 (13)

as the distance measure with 107 simulations, a Gaus-
sian kernel, and ϵ decay factor equal to 0.8. We again
compare SignatuRE with GRU-ResNet, Bespoke
ResNet, and K2-RE. For Bespoke ResNet, we use
the mean of each series, log variance of each series,
autocorrelation coefficients for lags 1 and 2 of each se-
ries, and the cross-correlation coefficient between the
two series as s̃(x), which are common summary statis-
tics for stochastic kinetic models (Papamakarios et al.,
2019; Greenberg et al., 2019). For GRU-ResNet, we
apply a single linear layer of size 9 to match the di-
mensions of s̃(x).

We present the median Wasserstein distance between
the estimated posteriors and the approximate ground
truth posterior from smc-abc in Table 2, in which
suffix “-5” indicates that K = 5 for kernel methods
(otherwise K = 1 is used as before). We take q =
Bmin(K + 1) components in the Nyström approxima-
tion for both SignatuRE and K2-RE, where Bmin =
50 is the minimum simulation budget in this experi-
ment. Median values are obtained by repeating the in-
ference procedure over 10 different random seeds using
the same pseudo-observed data. Of the methods that
must learn summary statistics (i.e. all but Bespoke
ResNet), our methods are either best (bold) or
second-best (italics) for all budgets, but the improve-
ment in performance over GRU-ResNet at a bud-
get of 1000 simulations is minor. While this demon-
strates that the range of applicability of SignatuRE
may be limited, it nonetheless also demonstrates that
SignatuRE can be preferable under extreme restric-
tions on the simulation budget, as can be the case in
many real-world contexts.

5 DISCUSSION

This paper discusses the use of signature transforms
as automatic and effective feature extractors for likeli-
hood (ratio) estimation. Our method, based on univer-
sal kernels for sequential data and termed SignatuRE,
delivers competitive performance even when sample
numbers are very low. Indeed, our simulation stud-
ies suggest that using signatures as features improves
upon a time-series specialised GRU-ResNet or ker-
nels based on maximum mean discrepancies in low-
simulation-budget scenarios. We propose that this
can be understood in the following way: while GRU-
ResNet must learn adequate summary statistics –
which can be difficult for low simulation budgets –
and K2-RE uses a kernel maximum mean discrep-
ancy estimator that treats the points in the time-series
as exchangeable, destroying important dependencies,
SignatuRE uses expressive ready-made geometric fea-
tures for paths which take the ordering of points into
account. In our experiments, SignatuRE was only
consistently outperformed by a classifier that used
bespoke hand-crafted summary statistics which were
constructed by carefully inspecting the model struc-
ture. For real, complex simulators, such an approach
is infeasible, making the proposed method appealing.
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Supplementary Material:
Amortised Likelihood-free Inference for Expensive Time-series

Simulators with Signatured Ratio Estimation

A EXPERIMENT DETAILS

A.1 Further details on K2-RE

To test the hypothesis that the signature kernel is responsible for the improved performance seen in the exper-
iments presented in the main text, we construct and compare an alternative kernel-based classifier to compare
against. The design of this classifier is chosen to match exactly that of SignatuRE, with an important change:
the kernel k is no longer taken to be the signature kernel, but instead a kernel based on the K2-ABC (Park et al.,
2016):

k (x, x̃) = exp

−M̂MD
2
(µx, µx̃)

ϵ

 , (14)

where

M̂MD
2
(µx, µx̃) = − 2

nxnx̃

nx∑
i=1

nx̃∑
j=1

χ (xi, x̃j) +
1

nx (nx − 1)

nx∑
i=1

∑
j ̸=i

χ (xi,xj)

+
1

nx̃ (nx̃ − 1)

nx̃∑
i=1

∑
j ̸=i

χ (x̃i, x̃j) (15)

is an unbiased estimate of the kernel maximum mean discrepancy between measures µx and µx̃ for an appropriate
kernel χ (see Section 3. Park et al., 2016). We use a Gaussian RBF and the median heuristic (Section 4. Park
et al., 2016) for χ.

Comparing against an alternative kernel classifier that does not account for the ordering of the points xi in x
allows us to test the hypothesis that it is specifically the signature kernel, and not just kernel methods in general,
that allow us to achieve the improved performance at low simulation budgets.

A.2 Tuning kernel parameters

To optimise the kernel parameters for SignatuRE and K2-RE, we use 5-fold cross-validation and Bayesian
optimisation via a tree Parzen estimator with the following priors:

1. a log-uniform prior with bounds
[
log 10−3, log 103

]
for all lengthscale parameters;

2. a log-uniform prior with bounds
[
log 10−5, log 104

]
for the regularisation parameters.

For this purpose, we make use of the hyperopt python package (Bergstra et al., 2013).

A.3 Training the ResNet models

For both GRU-ResNet and Bespoke ResNet, the ResNet consists of two hidden layers of 50 units with
ReLU activations, which has previously been seen to produce state-of-the-art performance in likelihood-free
density ratio estimation tasks (Durkan et al., 2020; Lueckmann et al., 2017). We follow Durkan et al. (2020)
and use Adam (Kingma and Ba, 2014) to train the network weights, along with a training batch size of 50 and
learning rate of 5 × 10−4. We furthermore reserve 10% of the data for validation, and stop training when the
validation error does not improve over 20 epochs to avoid overfitting. For these density ratio estimators, we use
the sbi python package (Tejero-Cantero et al., 2020).



Amortised Inference for Expensive Time-series Simulators with Signatured Ratio Estimation

A.4 Sampling with Metropolis-Hastings

Unless stated otherwise, we obtain samples from both the approximate ground-truth posteriors and the posterior
distributions estimated with density ratios with Metropolis-Hastings Markov chain Monte Carlo. We use a normal
proposal distribution q(θ̃ | θ) = N

(
θ, ℓ2Σ

)
with covariance matrix Σ, which estimate by performing a trial run

of 50,000 steps with a diagonal proposal covariance matrix (see e.g. the guidelines in Gelman et al., 2013, Section
12.2) and setting ℓ = 2/

√
d for θ ∈ Rd (Roberts et al., 1997). This works well if the posterior is approximately

normal (see Schmon and Gagnon, 2022). Once Σ is estimated, we run one further chain for 100,000 steps, and
thin by retaining every 100th sample. We furthermore start every chain from the true parameter values θ∗.

A.5 Confidence interval evaluations

In Figures 3-6 in the main text, the 95% confidence intervals are bootstrap confidence intervals obtained by
running the training procedures at different seeds and subsequently applying the trained ratio estimators to the
task of obtaining the posterior for the same pseudo-observed data in each case.


